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Let Rbe aringand M a right R-module with § = End(Mp). The module M is called almost
principally quasi-injective (or APQ-injective for short) if, for any m € M, there exists an
S-submodule X,, of M such that Iy;rr(m) = Sm@P X,,,. The module M is called almost
quasiprincipally injective (or AQP-injective for short) if, for any s € S, there exists a left
ideal X; of S such that Is(ker(s)) = Ss@ X;. In this paper, we give some characterizations
and properties of the two classes of modules. Some results on principally quasi-injective
modules and quasiprincipally injective modules are extended to these modules, respec-
tively. Specially in the case Rg, we obtain some results on AP-injective rings as corollaries.

1. Introduction

Throughout R is a ring with identity and M is a right R-module with § = End(Mg). Re-
call a ring R is called right principally injective [5] (or right P-injective for short) if, every
homomorphism from a principally right ideal of R to R can be extended to an endo-
morphism of R, or equivalently, Ir(a) = Ra for all a € R. The notion of right P-injective
rings has been generalized by many authors. For example, in [4, 8], right P-injective rings
are generalized to modules in two ways, respectively. Following [4], the module M is
called principally quasi-injective (or PQ-injective for short) if, each R-homomorphism
from a principal submodule of M to M can be extended to an endomorphism of M. This
is equivalent to saying that lyirr(m) = Sm for all m € M, where lyirr(m) consists of all
elements z € M such that mx = 0 implies zx = 0 for any x € R. In [8], the module M
is called quasiprincipally injective (or QP-injective for short) if, every homomorphism
from an M-cyclic submodule of M to M can be extended to an endomorphism of M,
or equivalently, Is(ker(s)) = Ss for all s € S. In [6], right P-injective rings are generalized
to almost principally injective rings, that is, a ring R is said to be almost principally in-
jective (or AP-injective for short) if, for any a € R, there exists a left ideal X, such that
Ir(a) = Ra@® X,. The nice structure of PQ-injective modules, QP-injective modules, and
AP-injective rings draws our attention to define almost PQ-injective modules and almost
QP-injective modules in similar ways to AP-injective rings, and to investigate their char-
acterizations and properties.

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:12 (2005) 18531860
DOI: 10.1155/IJMMS.2005.1853


http://dx.doi.org/10.1155/S0161171205411217

1854  Generalizations of principally quasi-injective modules

2. APQ-injective modules

Definition 2.1. Let M be a right R-module and let S = End(Mp). The module M is called
almost principally quasi-injective (briefly, APQ-injective) if, for any m € M, there exists
an S-submodule X,,, of M such that ly;rp(m) = Sm P X,,..

The concept of APQ-injective modules is explained by the following lemma.

LEmMA 2.2. Let Mg be a module and let S = End(MRg), and m € M.
(1) If Iyrr(m) = Sm@P X for some X = M as left S-modules, then Hompg(mR, M)
= ST as left S-modules, where T = { f € Homgp(mR,M) | f(m) € X}.
(2) If Homg(mR,M) = SPT as left S-modules, then Iy (rr(m)) = Sm@X as left S-
modules, where X = { f(m) | f € T}.
(3) Sm is a summand of Iy (rr(m)) as left S-modules if and only if S is a summand of
Homg(mR, M) as left S-modules.

Proof. The map 0: ly(rr(m)) — Homg(mR, M) with 8(a) = A, is a left S-isomorphism,
where A, : mR — M is defined by A,(mr) = ar, so the lemma follows. Moreover, s(Sm) is
nonsmall in ly(rr(m)) if and only if S is nonsmall in Homg(mR, M). O

From Lemma 2.2, the following corollary follows.

COROLLARY 2.3 [4, Lemma 1.1]. Let Mg be a right R-module with S = End(Mpg) and m €
M. Then Iy (rr(m)) = Sm if and only if every R-homomorphism of mR into M extends to M.

From Corollary 2.3, we see that all PQ-injective modules are APQ-injective. Since a
ring R is right P-injective (resp., AP-injective) if and only if the right R-module Ry is
PQ-injective (resp., APQ-injective), and Page and Zhou [6] have given three examples of
rings which are right AP-injective but not right P-injective, so in general, APQ-injective
modules need not be PQ-injective.

Recall that a ring R is called right QP-injective [6, Definition 2.1], if for any 0 # a € R,
there exists a left ideal X, such that Ir(a) = Ra + X, with a ¢ X,. Now we extend this
concept to modules.

Definition 2.4. Let M be a right R-module with § = End(Mp), the module M is said to be
QPQ-injective (i.e., quasiprincipally quasi-injective) if, for any nonzero element m of M,
there exists an S-submodule X,,, of M such that ly;rr(m) = Sm+ X,,, with m & X,,,.
Clearly, right APQ-injective modules are QPQ-injective, but the reverse implication is
not true. For example, Z-module Z is QPQ-injective, but not APQ-injective.
Let M be a right R-module with S = End(Mg), and J(S) the Jacobson radical of S.
Following [4], write W(S) = {w € S | ker(w) =*° M}.

THEOREM 2.5. Let M be QPQ-injective with S = End(Mg). Then
(1) J(S) = W(S),
(2) Soc(Mg) € rm(J(S)).
Proof. (1) Let a € J(S). If a & W(S), then ker(a)(\K = 0 for some 0 # K < Mg. Take

k € K such that ak # 0, then ly;(rr(ak)) = S(ak) + X, with ak & Xy If r € rr(ak), then
kr € ker(a) (K, so kr = 0, and hence r € rg(k). This shows that rr(ak) = rr(k). Note that
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k € Iy(rr(k)) = lm(rr(ak)) = S(ak) + Xa, so we may write k = b(ak) +x, where b € S
and x € X. Then (1 — ba)k = x, and so k = (1 — ba)'x. Thus ak = a(1 — ba) 'x € Xy, a
contradiction.

(2) Let mR = M be simple. Suppose am # 0 for some a € J(S). Then, since mR is
simple, rgr(am) = rr(m). Since My is QPQ-injective, there is a left S-module X such that
am & X and Iyrr(am) = S(am) + X. Note that m € Iyirr(am), and so we may write m =
b(am) + x, where b € S and x € X. Then (1 — ba)m = x, so m = (1 — ba)~'x € X. This
means that am € X, a contradiction. O

CoROLLARY 2.6. Let My be QPQ-injective with S = End(Mp). If S is semilocal, then
Soc(Mg) < Soc(sM).

Proof. This follows from Theorem 2.5(2) and [1, Proposition 15.17]. O

LEMMA 2.7. Let My be APQ-injective with S = End(MRg). If s &€ W(S), then the inclusion
ker(s) C ker(s — sts) is strict for some t € S.

Proof. 1f s ¢ W(S), then ker(s)()mR = 0 for some 0 # m € M. Thus rg(m) = rr(sm), and
s0 Iyrr(m) = hyrr(sm) = S(sm) @ Xy as left S-modules because My is APQ-injective.
Write m = t(sm) + x, where x € Xj,,,. Then (s — sts)m = sx € S(sm) () Xsm, and hence (s —
sts)m = 0. Therefore, the inclusion ker(s) C ker(s — sts) is strict. O

LemMa 2.8. Let M be a right R-module with S = End(Mg). Suppose that for any sequence
{s1,82,...} €S, the chain ker(s;) € ker(sys1) S - - - terminates. Then

(1) W(S) is right T-nilpotent,

(2) S/W(S) contains no infinite set of nonzero pairwise orthogonal idempotents.

Proof. This is a corollary of [2, Lemma 1.9]. g

THEOREM 2.9. Let My be APQ-injective with S = End(Mg), then the following conditions
are equivalent.

(1) S is right perfect.

(2) For any sequence {s1,52,...} S S, the chain ker(s,) < ker(sys1) € - - - terminates.

Proof. (1) = (2).Lets; € S,i=1,2,.... Since Sis right perfect, S satisfies DCC on principal
left ideals. So the chain Ss; 2 85251 2 - - terminates. Thus there exists n > 0 such that
S(sp - +51) =S(spt18n -+ -s1) = - - -. It follows that ker(s,, - - - s1) =ker(s, 18, - -s1)="- -+

(2) = (1). First we prove that /W (S) is von Neumann regular. Let s; & W (S). Then
ker(s;) is not essential in M. By Lemma 2.7, there exists t; € S such that ker(s;) C ker(s; —
sit1s1) is proper. Put s, = s; — s1151. If s € W(S), then we have 57 =57 - £; - 57 in the ring
S/IW(S). If s, & W(S), then there exists s3 € S such that ker(s,) C ker(s3) is proper, where
$3 = $, — S2hs; for some £, € S by the preceding proof. Repeating the above process, we
get a strictly ascending chain

ker (s1) C ker (s;) Cker(s3) C -+ -, (2.1)

where s;y1 = s; — sit;s; for some t; €S, i=1,2,.... Let uy =1, up =1 —s1t5, u3 =1 —
oty Uip1 = 1 —sity,.... Then sy = ug, $2 = Uoy, S3 = UsUsUT,. .., Siv1 = Uip1Ui = * UdUTs. ..,
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whence we have the following strict ascending chain
ker (u1) C ker (upuy) C ker (uzupuy) C -+ -, (2.2)

which contradicts the hypothesis. So there exists a positive integer #n such that s,4; €
W(S). This shows that s, is a regular element of /W (S), and hence 5,1, S,—2,...,51 are
regular elements of /W (S). Thus /W (S) is regular.

Note that since My is APQ-injective, J(S) € W(S) by Theorem 2.5(1). Since the chain
ker(s;) < ker(s,s;1) € - - - terminates, by Lemma 2.8(1), W(S) is right T-nilpotent, and so
it follows that W(S) < J(S), and thus §/J(S) is regular. By Lemma 2.8, we get that S is right
perfect. O

By Lemma 2.8 (1) and [7, Remark 2], we have the following lemma.

LemMa 2.10. Let M be a right R-module with S = End(Mg). If Mg satisfies ACC on
{rm(A) | A € S}, then W(S) is nilpotent.

The next corollary follows from Theorem 2.9 and Lemma 2.10.

CoROLLARY 2.11. Let My be APQ-injective with S = End(Mg). If My satisfies ACC on
{rm(A) | A € S}, then S is semiprimary.

For a module Mz, a submodule X of M is called a kernel submodule if X = ker(f)
for some f € End(Mp), and X is called an annihilator submodule if X = (¢, ker(f) for
some A € End(Mp).

COROLLARY 2.12. Let My be an APQ-injective module and S = End(Mp). Then
(1) if Mg satisfies ACC on kernel submodules, then S is right perfect,
(2) if Mg satisfies ACC on annihilator submodules, then S is semiprimary.

3. AQP-injective modules
In this section we study a generalization of quasiprincipally injective modules.

Definition 3.1. Let M be a right R-module with § = End(Mg). Then M is said to be almost
quasiprincipally injective (briefly, AQP-injective) if, for any s € S, there exists a left ideal
X, of S such that I5(ker(s)) = Ss@P X, as left S-modules.

The next result gives the relationship between the AQP-injectivity of a module and the
AP-injectivity of its endomorphism ring.

THEOREM 3.2. Let Mg be a right R-module with S = End(Mg). Then
(1) if S is right AP-injective, then My is AQP-injective,
(2) if Mg is AQP-injective and M generates ker(s) for each s € S, then S is right AP-
injective.
Proof. (1) Let s € S. Since S is right AP-injective, there exists a left ideal I, such that
Isrs(s) = SsP L. If a € Is(ker(s)) and b € rg(s), then sb = 0, so bM < ker(s), and hence

abM = 0, that is, ab = 0. It follows that Ig(ker(s)) < Isrs(s). Thus, we have Ss € Is(ker(s)) <
Ss P I;. This shows that Is(ker(s)) = Ss &P Is(ker(s)) (I, and (1) is proved.
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(2) Let 0 # s € S. As Mg is AQP-injective, Is(ker(s)) = Ss@ X; for some left ideal X
of S. Assume a € Isrs(s). Since M generates ker(s), ker(s) = >.;,crt(M) for some subset
T of S. It is easy to see that at = 0 for each t € T, thus ax = 0 for each x € ker(s). This
implies that Isrs(s) < Is(ker(s)), from which we have Ss < Isrs(s) = Ss@ X;, and hence
Isrs(s) = Ss@B(Isrs(s) N Xs). Therefore, S is right AP-injective. |

TaEOREM 3.3. Let M be a right R-module with S = End(Mg). If M is an AQP-injective
module which is a self-generator, then J(S) = W(S).

Proof. Lets € J(S). Then we will show that s € W(S). If not, then there exists a nonzero
submodule K of M such that ker(s) (VK = 0. As M is a self-generator, K = >,c; t(M) for
some subset I of S, hence we have some 0 # ¢ € I such that ker(s) (¢(M) = 0. Clearly,
st # 0 and ker(st) = ker(¢). Since M is AQP-injective, Is(ker(st)) = S(st) P X as left S-
modules. Now t € Ig(ker(t)) = Is(ker(st)) = S(st) D X,;. Write t = u(st) + v, where u € S
and v € X,;. Then st — su(st) = sv € S(st) () Xy, hence st — su(st) = 0, that is, (1 — su)st =
0. Note that 1 — su is left invertible, so st = 0, a contradiction.

Conversely, let s € W(S). Then, for each t € S, ts € W(S) and so 1 —ts # 0. Since Mg
is AQP-injective, Is(ker(1 —ts)) = S(1 — ts) P X, as left S-modules. Note that ker(ts) ()
ker(1 —ts) = 0, so we have ker(1 — ts) =0, thus S = S(1 — ts) P X;_, and then 1 = e+x
for some e € S(1 — ts) and x € X. It follows that e = e and Se = S(1 — ts), and so 1 — ts =
ue for some u € S. Since ker(ts) is essential in Mg, if e # 1, there is a nonzero element
(1-e)me (1 —e)M[\ker(ts). Then (1 —ts)(1 —e)m = (1 —e)m. But (1 —ts)(1 —e)m =
ue(l —e)m = 0. This is a contradiction. So e = 1 and hence 1 — ts is left invertible. The
result follows. O

Recall that a module My, is said to satisfy the C,-condition if every submodule of M
that is isomorphic to a direct summand of M is itself a direct summand of M. A module
M is said to satisfy the C3-condition if whenever M; and M, are two summands of M and
MM, = 0, then M; P M, is a summand of M. It is well known that the C,-condition
implies the C;-condition.

THEOREM 3.4. If My is an AQP-injective module, then it satisfies the C,-condition. In par-

ticular, right AP-injective rings are right C,-rings.

Proof. Let A be a direct summand of M with A = B and S = End(Mp). Let A = eM, let
e2=e€ S, and let ¢ : eM — B be an isomorphism. Then B = bM with b = se for some
s € S, and ker(e) = ker(b). Thus, e € Is(ker(e)) = Is(ker(b)) = SbEP X, as My is AQP-
injective, where X}, is a left S-module. Then e = tb + x with t € S and x € X;,. Hence we
have b = be = btb + bx, and thus b = btb. Let f = bt. Then f* = f and bM = fM. O

CoROLLARY 3.5. Let M be a quasiprojective right R-module and let S = End(Mp). Then S
is regular if and only if My is AQP-injective and im(s) are M-projective for every s € S.

Proof. By combining Theorems 3.2, 3.4, and [9, Theorem 37.7], one can complete the
proof. O

Recall that a ring R is called right P.P. if every principally right ideal of R is projective.
COROLLARY 3.6. A ring R is regular if and only if R is right P.P. and right AP-injective.
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Following [3], a module M is said to be weakly injective if, for any finitely generated
submodule N € E(M), we have N € X = M for some X < E(M).

COROLLARY 3.7. Let My be an f.g. module. If M is weakly injective and AQP-injective, then
M is injective. In particular, if R is a right AP-injective and a right weakly injective ring, then
R is right self-injective.

Proof. Let x € E(M). Then there exists X < E(M) such that M +xR < X = M, hence X is
AQP-injective , and so M | X by Theorem 3.4. This shows that M = X, so x € M. O

We let S = End(Mp). Following [7], an element u € S is called a right uniform element
of Sif u # 0 and u(M) is a uniform submodule of M. In the following, we generalize some
results on maximal left ideals of the endomorphism rings of quasiprincipally injective
modules and on maximal right ideals of right AP-injective rings to maximal left ideals of
the endomorphism rings of AQP-injective modules.

LemMa 3.8. Let My be a module with S = End(Mp). Given a set {X; | s € S} of left ideals of
S, the following are equivalent.
(1) Is(ker(s)) = SsP X foralls € S.
(2) Is(tM N ker(s)) = (X : £)1+ Ss and (X : £)1(\Ss € Is(t) for all s,t € S, where (X :
t)={xeS|xteXy}

Proof. (1) = (2). Letx € Is(tM(\ker(s)). Then ker(st) < ker(xt) and so xt € Is(ker(xt)) =
Is(ker(st)) = S(st) B X Write xt = s,(st) + y, where s; € Sand y € X, then (x —s15)t =
y € Xy and hence x — 515 € (X : t);. It follows that x € (X : t); + Ss. Obviously, Ss <
Is(tM Nker(s)). If z € (X : t);, then zt € Xy < Is(ker(st)). Let tm € tM (\ker(s), then stm
= 0, hence ztm = 0. This shows that z € Is(tM (\ker(s)). Therefore, Is(tM (\ker(s)) =
(X : )1+ Ss. If " € (X : £);1( Ss, then s'st € X[ S(st) = 0, and thus s's € Ig(¢).

(2)= (1). Lett = 1. 0

LemMa 3.9. Let Mg be an AQP-injective module with S = End(Mpg) and an index set {X |
s € S} of ideals such that Xy = Xy for all s,t € S. If 0 # u(M) is a uniform submodule of
M, define M, = {s € S | ker(s) \u(M) # 0}. Then M,, is the unique maximal left ideal of S
which contains > seg(Xsy : 1)),

Proof. Itis easy to see that M, is aleftideal. Let t € (X, : u);, then tu € Xy, and thus tus €
Xou N S(us) = Xus () S(us), since Xy, = X,s is an ideal. Then tus = 0 and so t € M,, if us # 0.
If us = 0, then Is(ker(us)) = 0, and so X, = X,s = 0. This shows that tu = 0 and hence
t € M,. Consequently, (X, : u); € M, for all s € S. Now if s ¢ M,,, then ker(s)(\uM = 0,
and so S = (X, : u); + Ss by Lemma 3.8, hence S = M, + Ss, showing that M, is a maximal
left ideal.

Finally, let L be a left ideal of S such that > (X, : u); L # M,. Then, as above,
S = (X :u);+Ss for any s € L — M,,. Therefore, L = S. O

LEmMa 3.10. Let Mg be AQP-injective with S = End(Mg) and an index set {X; | s € S} of
ideals such that Xy = Xys for all s,t € Sand let W = uuM @ u;M P - - - D u,, M be a direct
sum of uniform submodules u;M of M, where each u; € S. If T < S is a maximal left ideal
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not of the form M, for any u € S such that uM is uniform, then there is t € T such that
ker(1 —t)(\ W is essential in W.

Proof. Since T # M,,, let ker(a) N\u1M =0, a € T, then ker(au;) < ker(u;), and so u; €
Is(ker(auy)) = S(au;) @D Xay,- Thus, there exists s € S such that (1 — sa)u; € X,,,, and
so 1 —sa € (Xay, : 1)1 S My,. Let a; =sa. If 1 —a; € M, for all i, we are done. If, say,
1 —a; € M, then (1 — a;)u,M is uniform (being isomorphic to u, M), so, as above,
(1—a') € M—a))u, forsomea’ € T.Let a, = a’ta; —a’ay, then 1 —a, € My, (\M,,, con-
tinue in this way to obtain ¢ € S, such that ker(1 —t) (" u;M # 0 for each i, Lemma 3.10
follows. O

THEOREM 3.11. Let My be a self-generator with finite Goldie dimension and S = End(Mp).
If My is AQP-injective with an index set {X; | s € S} of left ideals of S such that Xy = Xy for
all s,t € S, then

(1) if T is a maximal left ideal of S, then T = M,, for some u € S such that uM is a uniform
submodule of M,

(2) S/J(S) is semisimple.

Proof. Since M is a self-generator, every uniform submodule of M contains an M-cyclic
submodule. Therefore, we can assume that W = uyM P u, M P - - - P u,, M is essential as
Mgy has finite Goldie dimension. If T'is not of the form A, for some right uniform element
of u € S, then by Lemma 3.10, there exists some ¢t € T such that ker(1 — t) (| W is essential
in W, so ker(1 —t) is essential in M. By Theorem 3.3, 1 —t € J(S) = T, a contradiction.
This proves (1). Asto (2),if s € M, (- - - (1 M,,, then ker(s) (u;M # 0 for each i, whence
ker(s) is essential in M. Hence, s € J(S), proving (2). O
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