
TRANSITIVE COURANT ALGEBROIDS

IZU VAISMAN

Received 28 September 2004 and in revised form 13 March 2005

We express any Courant algebroid bracket by means of a metric connection, and con-
struct a Courant algebroid structure on any orthogonal, Whitney sum E⊕C where E
is a given Courant algebroid and C is a flat, pseudo-Euclidean vector bundle. Then, we
establish the general expression of the bracket of a transitive Courant algebroid, that is,
a Courant algebroid with a surjective anchor, and describe a class of transitive Courant
algebroids which are Whitney sums of a Courant subalgebroid with neutral metric and
Courant-like bracket and a pseudo-Euclidean vector bundle with a flat, metric connec-
tion. In particular, this class contains all the transitive Courant algebroids of minimal
rank; for these, the flat term mentioned above is zero. The results extend to regular
Courant algebroids, that is, Courant algebroids with a constant rank anchor. The paper
ends with miscellaneous remarks and an appendix on Dirac linear spaces.

1. The basics of Courant algebroids

The framework of this paper is the C∞-category. In the literature, there are two notions of
a Courant algebroid, which include a skew-symmetric and a non-skew-symmetric bracket,
respectively. These notions are the result of an effort to unify the Courant bracket and the
Manin bracket [4].

We start with the definition of a non-skew-symmetric Courant algebroid [6, 7], with
the simplifications indicated in [8].

Definition 1.1. A Courant algebroid is a pseudo-Euclidean vector bundle (E→M, g) (g is
a symmetric, nondegenerate inner product on E) with an anchor morphism ρ : E→ TM
and a general, R-bilinear product � : ΓE× ΓE → ΓE (Γ denotes spaces of global cross-
sections) such that for all e,e1,e2,e3 ∈ ΓE, the following properties hold:

(1) (ρe)(g(e1,e2))= g(e� e1,e2) + g(e1,e� e2),
(2) e� e = ∂(g(e,e)),
(3) e1� (e2� e3)= (e1� e2)� e3 + e2� (e1� e3),

where ∂= (1/2)�g ◦t ρ : T∗M→ ΓE and

∂ f = ∂(df )= 1
2
�g tρ(df ), ∀ f ∈ C∞(M). (1.1)
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Here, t denotes transposition and � is the musical isomorphism defined like in Riemann-
ian geometry.

By polarization, property (2) is equivalent with the prescription of the symmetric part
of the product

(
e1,e2

)
∗ =

1
2

(
e1� e2 + e2� e1

)= ∂(g(e1,e2
))
. (1.2)

On the other hand, the definition of the operator ∂ is equivalent with

g(∂ f ,e)= 1
2

(ρe) f , ∀ f ∈ C∞(M), ∀e ∈ ΓE. (1.3)

Hence, property (2) is also equivalent with

g
(
e,
(
e1,e2

)
∗
)= 1

2
(ρe)

(
g
(
e1,e2

))
. (1.4)

Thus, modulo property (1), we may replace (2) by a condition that does not contain ∂,
namely,

2g
(
e,
(
e1,e2

)
∗
)= g(e� e1,e2

)
+ g
(
e1,e� e2

)
. (1.5)

We also consider the skew-symmetric part of the product

[
e1,e2

]= [e1,e2
]
∗ =

1
2

(
e1� e2− e2� e1

)
. (1.6)

With (1.2) and (1.6), we get

e1� e2 =
[
e1,e2

]
+ ∂g

(
e1,e2

)
. (1.7)

From the properties postulated by Definition 1.1, one can deduce the following.

Proposition 1.2 [8]. Let (E→M,g,ρ,�) be a Courant algebroid. Then, for all e,e1,e2 ∈
ΓE, for all f ∈ C∞(M), the following properties hold:

(a) e1� ( f e2)= f (e1� e2) + ((ρe1) f )e2,
(b) ( f e1)� e2 = f (e1� e2)− ((ρe2) f )e1 + 2g(e1,e2)∂ f ,
(c) (∂ f )� e = 0, e� (∂ f )= ∂((ρe) f ),
(d) ρ(e1� e2)= [ρe1,ρe2]TM,
(e) ρ(∂ f )= 0.

Proof. Property (a) follows from the comparison of the results of expressing (ρe)(g( f e1,
e2)) in two ways, first by applying property (1) of Definition 1.1 straightforwardly, second
by using the Leibniz rule for the vector field ρe applied to the product f g(e1,e2) and then
property (1) for g(e1,e2).

Property (b) follows from (a) by using (1.2) and the fact that, on functions, ∂ satisfies
the Leibniz rule.

Notice that properties (a) and (b) show that a Courant algebroid product is an op-
erator of the local type (i.e., (e1� e2)(x) depends only on the restrictions of e1, e2 to a
neighborhood of the point x ∈M).
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Now, we denote

�
(
e1,e2,e3

)= e1�
(
e2� e3

)− (e1� e2
)
� e3− e2�

(
e1� e3

)
. (1.8)

From (1.2), it follows that

�
(
e1,e2,e

)
+ �

(
e2,e1,e

)=−2
[
∂
(
g
(
e1,e2

))
� e

]
. (1.9)

Since any function f ∈ C∞(M) may locally be written as

f = g
(
e1,

f

g
(
e1,e1

)e1

)
, (1.10)

where e1 is not g-isotropic, (1.9) and property (3) of Definition 1.1 imply the first part of
(c). The second part of (c) follows from the first part and relation (1.2).

In order to get property (d) (where the right-hand side is a Lie bracket of vector fields
on M), we start with (1.3), written as

(
ρe2
)
f = 2g

(
∂ f ,e2

)
, (1.11)

and apply ρe1, while using Definition 1.1(1) and (1.3) again. The result is

(
ρe1
)(
ρe2
)
f = 2g

(
e1� (∂ f ),e2

)
+ ρ
(
e1� e2

)
f . (1.12)

In view of the second part of (c), this relation becomes

(
ρe1
)(
ρe2
)
f = ρ(e1� e2

)
f +

(
ρe2
)(
ρe1
)
f . (1.13)

Since f is an arbitrary function, we got precisely (d).
Finally, from (b), we get

ρ
((
f e1
)
� e2

)= f ρ
(
e1� e2

)− ((ρe2
)
f
)
ρe1 + 2g

(
e1,e2

)
ρ(∂ f ), (1.14)

and, if we use (d) in the two sides of the previous relation while assuming g(e1,e2) �= 0,
we deduce property (e). �

Remark 1.3. Property (c) implies that the skew-symmetric part of a Courant algebroid
product satisfies the property

[e,∂ f ]= 1
2
∂
(
(ρe) f

)
. (1.15)

Property (e) is equivalent with g(∂ f ,∂g) = 0, for all f ,g ∈ C∞(M), that is, with the fact
that im∂x is a g-isotropic subspace of the fiber Ex, for all x ∈M. We also note that prop-
erty (e) is implied by (b) and (d). Finally, the computation used in the proof of (d) is
reversible in the sense that (d) and formula (1.12) imply property (c) as well as its conse-
quence (1.15).
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Remark 1.4. If ρ = 0, we have ∂ = 0 and the Courant algebroid is just a bundle of Lie
algebras with a pseudo-Euclidean metric g that is invariant for the Lie algebra structure
of each fiber.

From Definition 1.1 and Proposition 1.2, it follows that the skew-symmetric part (1.6)
of a product� has the properties indicated by the following proposition.

Proposition 1.5 [6]. For any Courant algebroid and for all e,e1,e2,e3 ∈ ΓE, for all f ∈
C∞(M), the following properties hold:

(i) ρ[e1,e2]= [ρe1,ρe2],
(ii) im(�g ◦ tρ)⊆ kerρ,

(iii)
∑

Cycl[[e1,e2],e3]= (1/3)∂[
∑

Cycl g([e1,e2],e3)],
(iv) [e1, f e2]= f [e1,e2] + ((ρe1) f )e2− g(e1,e2)∂ f ,
(v) (ρe)[g(e1,e2)]= g([e,e1] + ∂g(e,e1),e2) + g(e1, [e,e2] + ∂g(e,e2)).

Proof. Except for (iii), these properties are immediate consequences of Definition 1.1 and
Proposition 1.2. For (iii), we denote

�
(
e1,e2,e3

)= [[e1,e2
]
,e3
]

+
[[
e2,e3

]
,e1
]

+
[[
e3,e1

]
,e2
]
. (1.16)

Using (1.7), we get

�
(
e1,e2,e3

)= ∑
Cycl(1,2,−3)

∂
(
g
(
e1,
[
e2,e3

]))
+

∑
Cycl(1,−2,3)

[
e1,∂

(
g
(
e2,e3

))]

− 1
2

∑
Cycl(−1,2,3)

∂
((
ρe1
)(
g
(
e2,e3

)))−�
(
e1,e2,e3

)
,

(1.17)

where, in the sums of the right-hand side, the indices (1,2,3) move cyclically while the
signs of the terms are as indicated in the summation index.

Now, taking the sum of (1.17) over cyclic permutations of (1,2,3) and using (1.9), we
get

6�
(
e1,e2,e3

)= ∑
Cycl(1,2,3)

{
�
(
e1,e2,e3

)−�
(
e2,e1,e3

)
+ 2∂

(
g
(
e1,
[
e2,e3

]))}
. (1.18)

Formula (1.18) shows that property (3) of Definition 1.1 implies the present property
(iii). �

Definition 1.6 [4]. A skew-symmetric Courant algebroid is a pseudo-Euclidean vector bun-
dle (E→M,g) with an anchor morphism ρ : E→ TM and a skew-symmetric bracket [·,·]
on ΓE such that properties (i)–(v) of Proposition 1.5 hold.
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Remark 1.7 [8]. With the same proofs as for Proposition 1.2, we can see that property (v)
of Proposition 1.5 implies (iv) and properties (i) and (iv) imply (ii). Therefore, conditions
(i), (iii), and (v) suffice in the definition of a skew-symmetric Courant algebroid.

Remark 1.8. Just like in the case of a Lie algebroid, for a skew-symmetric Courant alge-
broid, �= imρ is a generalized foliation onM. Indeed, from property (i), Proposition 1.5,
it follows that � = span{ρe/∀e ∈ ΓE} is spanned by a Lie algebra, and, for any vector
field X = ρe, for all x ∈M, dim�(exp(tX))(x) = rankρ|(exp(tX))(x) = const. (For the latter as-
sertion, look at a Lie derivative of ρ defined as for a tensor field and notice that this Lie
derivative vanishes.) Then the result follows from the Sussmann-Stefan-Frobenius theo-
rem (e.g., [10, Theorem 2.9”]).

For simplicity, in what follows, we will use the language provided by the next defini-
tions.

Definition 1.9. A Courant anchor is a vector bundle morphism ρ : E→ TM, where (E,g)
is a pseudo-Euclidean vector bundle over the manifold M, which is such that imρ is a
(generalized) foliation and the corresponding morphism ∂ : T∗M → E defined by (1.1)
has a g-isotropic image. A triple (E,g,ρ) where ρ is a Courant anchor will be called a
Courant vector bundle. A Courant vector bundle endowed with a skew-symmetric bracket
[·,·] on ΓE, which satisfies properties (v) and (i) (therefore, also, (iv) and (ii)) of a skew-
symmetric Courant algebroid will be called a pre-Courant algebroid.

Notice that, since, for all x ∈M, both imρ and im∂ have the dimension equal to rankρ,
a Courant vector bundle must satisfy the condition rankρ ≤ b ≤ (1/2)rankE, where b is
the smallest between the positive-negative inertia indices of g. Furthermore, in view of
Remark 1.3, formula (1.15) holds for any pre-Courant algebroid. Using (1.15) it is easy
to check that any pre-Courant algebroid satisfies property (iii) of Proposition 1.5 if at
least one of the arguments ea ∈ im∂ (a= 1,2,3) (the cross-sections of the subbundle im∂
are locally spanned over C∞(M) by cross-sections of the form ∂ f ( f ∈ C∞(M))).

By Proposition 1.5, the skew-symmetric part of a Courant algebroid product yields a
skew-symmetric Courant algebroid bracket. The converse is also true.

Proposition 1.10 (e.g., [6]). If the bracket [·,·] satisfies the properties of a skew-symmetric
Courant algebroid, the product � defined by (1.7) satisfies the properties of a Courant alge-
broid.

Proof. Obviously, Definition 1.1(1) and (2) hold. Moreover, as explained in Remark 1.3,
property (c) of Proposition 1.2 holds independently of formula (1.9). Accordingly, now,
(1.9) proves that

�
(
e1,e2,e3

)
+ �

(
e2,e1,e3

)= 0. (1.19)

On the other hand, if Proposition 1.5(iii) holds, formula (1.18) implies

�
(
e1,e2,e3

)−�
(
e2,e1,e3

)= 0. (1.20)

Hence, we are done. �
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The following proposition shows the possible changes of the bracket of a pre-Courant
algebroid.

Proposition 1.11. Let (E,g,ρ, [·,·]) be a pre-Courant algebroid. Then, the formula

[
e1,e2

]′ = [e1,e2
]

+ λ
(
e1,e2

)
, e1,e2 ∈ ΓE, (1.21)

where λ∈ Γ(∧2E∗ ⊗E), ρ ◦ λ= 0, and

Λ
(
e1,e2,e3

)= g(λ(e1,e2
)
,e3
)

(1.22)

is totally skew-symmetric (i.e., Λ ∈ Γ∧3 E∗), yields all the pre-Courant algebroid struc-
tures on (E,g,ρ). Furthermore, the bracket (1.21) is that of a Courant algebroid if and only
if

(
∂[]Λ

)(
e1,e2,e3

)=�
(
e1,e2,e3

)− 1
3
∂

[∑
Cycl

g
([
e1,e2

]
,e3
)]

, (1.23)

where

(
∂[]Λ

)(
e1,e2,e3

)= ∂(Λ
(
e1,e2,e3

))
−

∑
Cycl(1,2,3)

{
λ
(
λ
(
e1,e2

)
,e3
)

+ λ
([
e1,e2

]
,e3
)

+
[
λ
(
e1,e2

)
,e3
]}∈ Γ

(∧3 E∗ ⊗E).
(1.24)

Proof. The difference of two brackets of pre-Courant algebroid structures is a form λ ∈
Γ(∧2E∗ ⊗E) because of property (iv), Proposition 1.5. The indicated conditions for λ are
equivalent with properties (i) and (v) of the same proposition, respectively. Notice that
ρ ◦ λ= 0 is equivalent with

Λ
(
e1,e2,∂ f

)= 0, ∀ f ∈ C∞(M), (1.25)

therefore, in view of the skew-symmetry of Λ, is also equivalent with

λ(e,∂ f )= 0, ∀e ∈ ΓE, ∀ f ∈ C∞(M). (1.26)

Finally, a technical computation shows that property (iii) is equivalent with (1.23) and
(1.24). �

Remark 1.12 [1, 4]. Any g-isotropic subalgebroid (i.e., a vector subbundle that is closed
by brackets) of a skew-symmetric Courant algebroid is a Lie algebroid.
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2. Courant brackets and metric connections

We will get further insight into the structure of the bracket of a Courant algebroid by
using a metric connection∇ on the pseudo-Euclidean bundle (E,g), which means that

X
(
g
(
e1,e2

))= g(∇Xe1,e2
)

+ g
(
e1,∇Xe2

)
(X ∈ ΓTM). (2.1)

If we also have the morphism ρ : E→ TM, we define the ρ-torsion T(∇,ρ) ∈ Γ(∧2E∗ ⊗TM)
by the formula

T(∇,ρ)
(
e1,e2

)= ρ(∇ρe1e2−∇ρe2e1
)− [ρe1,ρe2

]
. (2.2)

Now, we can prove the following.

Proposition 2.1. (1) The formula

[
e1,e2

]
0 =∇ρe1e2−∇ρe2e1− γ

(
e1,e2

)
, (2.3)

where γ is defined by the equality

g
(
γ
(
e1,e2

)
,e
)= 1

2

[
g
(
e1,∇ρee2

)− g(e2,∇ρee1
)]

, ∀e ∈ ΓE, (2.4)

defines a skew-symmetric bracket on ΓE that satisfies property (v) of Proposition 1.5.
(2) The most general bracket that satisfies (v) is given by

[
e1,e2

]= [e1,e2
]

0−β
(
e1,e2

)
, (2.5)

where β ∈ Γ(∧2E∗ ⊗E) and

B
(
e1,e2,e3

)= g(β(e1,e2
)
,e3
)

(2.6)

is totally skew-symmetric, that is, B ∈ Γ∧3 E∗.
(3) The bracket (2.5) also satisfies property (i) of Proposition 1.5 if and only if the follow-

ing two equalities hold:

ρ ◦ ∂= 0, (2.7)

ρ
(
β
(
e1,e2

))= T(∇,ρ)
(
e1,e2

)
, ∀e1,e2 ∈ ΓE, (2.8)

where T(∇,ρ) is the ρ-torsion of ∇. In particular, if (E,g,ρ) has a metric connection ∇ with
zero ρ-torsion, the bracket (2.3) satisfies property (i).

Proof. First, we notice that formula (2.4) actually defines γ because if this formula holds
for e ∈ ΓE, it also holds for f e, for all f ∈ C∞(M), and since g is nondegenerate. Then, a
technical calculation, which takes into account the metric property (2.1), shows that the
bracket (2.3) satisfies property (v).

Now, the difference β between two brackets that satisfy (v) is such that the corre-
sponding B given by (2.6) is totally skew-symmetric, and β ∈ Γ(∧2E∗ ⊗E), respectively,
B ∈∧3E∗, because (v) implies property (iv) of Proposition 1.5. These remarks justify the
general formula (2.5).



1744 Transitive Courant algebroids

Finally, from (2.5), we get

ρ
[
e1,e2

]= [ρe1,ρe2
]

+T∇,ρ
(
e1,e2

)− ρ(γ(e1,e2
))− ρ(β(e1,e2

))
. (2.9)

We know that if properties (i) and (v) of Proposition 1.5 hold, so does (iv) and then (ii),
and (ii) is equivalent with (2.7). Then, by using (2.4) for e = ∂ f , f ∈ C∞(M), we get
ρ ◦ γ = 0, and (2.9) implies (2.8). The converse also is clear from (2.9). The last assertion
follows since, if T(∇,ρ) = 0, we may chose β = 0. �

Remark 2.2. By applying the vector fields of formula (2.8) to an arbitrary function f , it
follows that (2.8) is equivalent with

B
(
e1,e2,∂ f

)= 1
2

(
T(∇,ρ)

(
e1,e2

))
f , e1,e2 ∈ ΓE, f ∈ C∞(M). (2.10)

Formula (2.5), where B defined by (2.6) is skew-symmetric and (2.7), (2.8) hold, de-
fines all the pre-Courant algebroid brackets on a given Courant vector bundle. Among
them, the Courant algebroid brackets are obtained if condition (iii) of Proposition 1.5
also holds. In order to express the latter, we denote

�
(
e1,e2,e3

)= �
(
e1,e2,e3

)− 1
3
∂

[ ∑
Cycl(1,2,3)

g
([
e1,e2

]
,e3
)]

, (2.11)

where � is defined by (1.16), and denote by an index 0 the same expression for the bracket
[·,·]0. Assuming that property (i) holds, it follows that

�0
(
e1,e2,e3

)= ∑
Cycl(1,2,3)

{(∇ρe3γ
)(
e1,e2

)
+ γ
(
γ
(
e1,e2

)
,e3
)−R∇(ρe1,ρe2

)
e3
}

, (2.12)

where R∇ is the curvature of the connection∇ and∇γ is defined as if γ would be a tensor.
In order to check formula (2.12), we express g(�0(e1,e2,e3),e) for an arbitrary vector e,
and use (1.3) and the metric character of ∇. The computation is lengthy but technical.
Furthermore, if the brackets of (2.11) are replaced by their expression (2.5), and the terms
of the resulting formula are grouped conveniently, one gets

�
(
e1,e2,e3

)=�0
(
e1,e2,e3

)
+

∑
Cycl(1,2,3)

{
β
(
β
(
e1,e2

)
,e3
)−β([e1,e2

]
0,e3

)− [β(e1,e2
)
,e3
]

0

}
. (2.13)

These formulas express the condition for the bracket (2.5) to satisfy property (iii), �= 0,
by means of the metric connection ∇. In particular, if there exists a metric connection
of zero ρ-torsion, the corresponding bracket (2.3), which satisfies (i), also satisfies (iii)
if and only if �0 = 0, and this condition reminds us of the Bianchi identity for a linear
connection with torsion on a differentiable manifold M.



Izu Vaisman 1745

As an application of the results given in this section, we have the following.

Proposition 2.3. Let (E,g,ρ, [·,·]) be a pre-Courant algebroid. Then, for any pseudo-
Euclidean vector bundle (C,g0) over M and any metric connection∇ on C, the brackets

[
e1,e2

]
, [e,c]=−[c,e]=∇ρec,

[
c1,c2

]=−γ0
(
c1,c2

)
, (2.14)

where e,e1,e2 ∈ ΓE, c,c1,c2 ∈ ΓC, and γ0(c1,c2)∈ ΓE is defined by

g
(
γ0
(
c1,c2

)
,e
)= 1

2

[
g0
(
c1,∇ρec2

)− g0
(
c2,∇ρec1

)]
, (2.15)

define a pre-Courant algebroid structure on (E⊕C,g ⊕ g0,ρ⊕ 0). If the original algebroid is
a Courant algebroid, (2.14) yields a Courant algebroid structure if and only if the connection
∇ is flat.

Proof. Straightforward checks show that the brackets (2.14) satisfy property (v) of a pre-
Courant algebroid. For a full justification of property (i), we must also notice that ρ(γ0(c1,
c2))= 0. This follows since (2.15) implies g(γ0(c1,c2),∂ f )= 0, for all f ∈ C∞(M). For the
last assertion of the proposition, we refer to property (iii) of a Courant algebroid. For
arguments e1, e2, e3, (iii) holds if E is a Courant algebroid and for arguments c1, c2, c3,
(iii) follows from ρ(γ0(c1,c2)) = 0. For arguments e1, e2, c, (iii) is just R∇(ρe1,ρe2)c = 0,
where R∇ is the curvature of∇. Finally, for arguments e, c1, c2, (iii) means

[
e,γ0

(
c1,c2

)]− γ0
(∇ρec1,c2

)− γ0
(
c1,∇ρec2

)− 1
2
∂
{
g0
(∇ρec1,c2

)− g0
(
c1,∇ρec2

)}= 0.

(2.16)

Since for a pre-Courant algebroid property (iv) holds, the left-hand side of the previous
equality is C∞(M)-linear and it suffices to check it for a local basis of C. If connection ∇
is flat, C has local∇-parallel bases and (2.16) obviously holds. �

3. Transitive and regular Courant algebroids

In this section, we determine the structure of the transitive Courant algebroids, that is,
Courant algebroids with a surjective anchor. The results may then be extended to reg-
ular Courant algebroids, that is, Courant algebroids with a constant rank anchor. When
this paper was ready, I was informed that the transitive Courant algebroids were also
determined by Ševera in unpublished correspondence with Weinstein, without metric
connections (see Remark 3.6 later on).

Let (E,g,ρ) be a Courant vector bundle with a surjective anchor ρ. Then, K = kerρ is a
(regular) subbundle of E of rank k = r−n, where r = rankE and n= dimM, and, if K⊥g

is the g-orthogonal subbundle of K , rank(K ∩K⊥g )= r − s, where s= rank(K +K⊥g ). In
view of the properties of a Courant anchor rank(im∂)= n and im∂⊆ (K ∩K⊥g ), whence
it follows easily that s = k. Accordingly, K is a g-coisotropic subbundle of E and K⊥g =
im∂⊆ K .
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In this situation, it is known that there exists an isotropic, complementary subbundle
Q of K in E and a complementary subbundle C of im∂ in K such that

E = P⊕C (P = im∂⊕Q) (3.1)

is a g-orthogonal decomposition, the restriction of g to C is nondegenerate, and the re-
striction of g to P is nondegenerate and neutral (i.e., of signature zero). We will say that
P is a neutral completion of im∂. (The reader may see [9] for similar results in the sym-
plectic case and the proofs are the same in the pseudo-Euclidean case.) For what follows,
we fix a decomposition (3.1), which means that we also have E = K ⊕Q, and ρ|Q is an
isomorphism with the inverse σ : TM→ Q. We will denote by pK , pQ, pP , pim∂, pC the
projections of E onto the corresponding subspaces, respectively.

Furthermore, we construct a metric connection ∇ of E as follows. ∇ will be the sum
of metric connections of the components P, C. Furthermore, the component ∇P will be
a sum∇im∂⊕∇Q where∇Q is arbitrary and∇im∂ is defined by the condition

X
(
g(q,∂ f )

)=g(q,∇im∂
X (∂ f )

)
+g
(∇Q

Xq,∂ f
) (

q∈ΓQ, X∈ΓTM, f ∈C∞(M)
)
. (3.2)

This condition defines well ∇im∂ because g|P is neutral. A metric connection on (E,g)
which is obtained by the process described above is said to be suitable, and we fix one
such suitable connection.

The component ∇Q of a suitable connection may be identified with a linear connec-
tion D on M by means of the formula

DXY = ρ
(∇X(σY)

)
(X ,Y ∈ ΓTM). (3.3)

The following formula defines a 3-form B1 ∈ Γ∧3 E∗:

B1
(
e1,e2,e3

)= ∑
Cycl(1,2,3)

g
(
σ(T(∇,ρ)

(
e1,e2

))
, pim∂

(
e3
))
. (3.4)

From the fact that the ∇-parallel translations preserve the subbundle im∂, and formula
(2.2), it follows that B1 satisfies condition (2.10). Hence, formula (2.5) with β = β1 de-
fined by B1 yields a structure of a pre-Courant algebroid on (E,g,ρ), with a bracket that
we denote by [·,·]1.

Like for any pre-Courant algebroid, in the transitive case too, the brackets [e,∂ f ] are
always given by formula (1.15). Furthermore, we get the following.

Proposition 3.1. The bracket [·,·]1 is defined by the formulas

pQ
[
e1,e2

]
1 = pQ∇ρe1e2− pQ∇ρe2e1− σ

(
T(∇,ρ)

(
e1,e2

))
, ∀e1,e2 ∈ ΓE, (3.5)

g
(
pK
[
e1,e2

]
1,e
)= g(∇ρe1e2,e

)− g(∇ρe2e1,e
)− 1

2
g
(∇ρee2,e1

)
+

1
2
g
(∇ρee1,e2

)
− g(pQ∇ρe1e2,e

)
+ g
(
pQ∇ρe2e1,e

)
+ g
(
σT(∇,ρ)

(
e1,e

)
,e2
)

− g(σT(∇,ρ)
(
e2,e

)
,e1
)
,

(3.6)

where e ∈ ΓE and we use an arbitrary decomposition (3.1) and an arbitrary suitable connec-
tion∇.
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Proof. The first formula follows by applying σ to (2.2), since σ ◦ ρ is the projection pQ
and the bracket [·,·] satisfies property (i).

Furthermore, if we expend the expression of the bracket [·,·]1, take the scalar g-
product by an arbitrary e ∈ ΓE, and use formula (3.5), we see that (3.6) also holds.

Formulas (3.5) and (3.6) define the projections of the bracket [·,·]1 onQ andK , hence
completely define the bracket. �

In the following proposition, we give a more transparent expression of the bracket
[·,·]1.

Proposition 3.2. Let (E,g,ρ) be a Courant vector bundle with a surjective anchor, for which
a choice of a splitting (3.1) and of a suitable connection ∇ is made. Then, (E,g,ρ) has a
structure of pre-Courant algebroid with the bracket [·,·]1 given by the formulas

[
q1 + ∂ f1,q2 + ∂ f2

]
1 = σ

[
ρq1,ρq2

]
+

1
2

[
∂
((
ρq1

)
f2
)− ∂((ρq2

)
f1
)]

,[
c1,c2

]
1 =−γ

(
c1,c2

)
, [c,q+ ∂ f ]1 =−∇ρqc,

(3.7)

where f , f1, f2 ∈ C∞(M); q,q1,q2 ∈ ΓQ; c,c1,c2 ∈ ΓC, and γ is defined by (2.4). Further-
more, [·,·]1 is a Courant algebroid bracket if and only if the C-component of the connection
∇ is flat.

Proof. In view of the properties of decomposition (3.1), k ∈ K is completely defined by
the scalar products g(k,q) for all q ∈Q. But, if e, e1, e2 of (3.6) are in Q, using the defini-
tion of a suitable connection, we get pK [q1,q2]1 = 0.

Accordingly, with (3.5) and (2.2), we get [q1,q2]1 = σ[ρq1,ρq2] and the first formula
(3.7) follows if we also take into account (1.15).

By similar considerations based on the properties of decomposition (3.1) and of a
suitable connection, (3.5), (3.6), and (1.15) yield the remaining formulas (3.7).

Of course, brackets [·,·]1 with general factors
∑

i hi∂ fi ∈ im∂ will be deduced from
(3.7) by means of property (iv), Proposition 1.5. (Alternatively, we may use again (3.5)
and (3.6).) Notice also that (2.4) implies γ(e1,e2)∈ K⊥g = im∂, for all e1,e2 ∈ ΓE.

From the first formula (3.7), we see that (P,g|P ,ρ|P) (P =Q⊕ im∂) is a pre-Courant
algebroid with the induced bracket. Moreover, it is easy to check that property (iii) of
Proposition 1.5 also holds on P, therefore we actually have a Courant algebroid P, and
(3.7) is the structure defined on P⊕Q by Proposition 2.3. Accordingly, the last assertion
of the present proposition follows from the last assertion of Proposition 2.3. �

As shown by Proposition 1.11, all the other pre-Courant brackets of the Courant bun-
dle with surjective anchor (E,g,ρ) will be obtained from (3.7) by the addition of a form
λ that satisfies the corresponding hypotheses, whence λ∈ Γ(∧2E∗ ⊗K) and (1.26) holds.
The corresponding formulas are

[
q1 + ∂ f1,q2 + ∂ f2

]= σ[ρq1,ρq2
]

+ λ
(
q1,q2

)
+

1
2

[
∂
((
ρq1

)
f2
)− ∂((ρq2

)
f1
)]

,[
c1,c2

]=−γ(c1,c2
)

+ λ
(
c1,c2

)
, [c,q+ ∂ f ]=−∇ρqc+ λ(c,q).

(3.8)
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In order to get Courant algebroid brackets, we must ask λ to satisfy condition (1.23).
If expressed on arguments q ∈ ΓQ, c ∈ ΓC, (1.23) decomposes into the following four
components:

(
∂[]Λ

)(
q1,q2,q3

)= 0, (3.9)

(
∂[]Λ

)(
q1,q2,c

)=−R∇(ρq1,ρq2
)
c, (3.10)

(
∂[]Λ

)(
q,c1,c2

)= ∂[g(q,γ
(
c1,c2

))]
1 +
[
q,γ

(
c1,c2

)]
1− γ

(∇ρqc1,c2
)− γ(c1,∇ρqc2

)
,

(3.11)(
∂[]Λ

)(
c1,c2,c3

)= ∑
Cycl(1,2,3)

[
c1,γ

(
c2,c3

)]
1. (3.12)

In principle, formulas (3.8) and (3.9)–(3.12) yield all the transitive Courant alge-
broids.

We get a more transparent result if we restrict ourselves to the subclass of transitive
Courant algebroids that admit a bracket-closed neutral extension of the subbundle im∂.
We will call them transitive, restricted, Courant algebroids.

The general bracket (3.8) is restricted if and only if it is defined by a form λ such
that, for all q1,q2 ∈ ΓQ, λ(q1,q2)∈ im∂. This condition is equivalent with Λ(q1,q2,c)= 0,
which, because of the skew-symmetry, is equivalent with λ(c,q) ∈ ΓC. Then, we may
change the C-component of the connection ∇ by ∇XC �→ ∇XC + λ(c,σ(X)) and get for
the same bracket a simplified expression (3.8) that looks as if we have used an additional
form λ such that λ(c,q) = 0 and, accordingly, λ(c1,c2) ∈ ΓC. Then, conditions (3.9)–
(3.12) become simpler and we obtain the following.

Proposition 3.3. The bracket (3.8) defines a transitive, restricted, Courant algebroid if and
only if the C-component of the connection ∇ is flat and, in addition to the conditions for a
pre-Courant algebroid, the form λ also satisfies the conditions

λ(c,q)= 0, λ
(
q1,q2

)∈ Γ(im∂), λ
(
c1,c2

)∈ ΓC, (3.13)

∂
(
Λ
(
q1,q2,q3

))= ∑
Cycl(1,2,3)

{
λ
(
σ
[
ρq1,ρq2

]
,q3
)− [q3,λ

(
q1,q2

)]}
, (3.14)

∂
(
Λ
(
c1,c2,c3

))=− ∑
Cycl(1,2,3)

γ
(
λ
(
c1,c2

)
,c3
)
, (3.15)

(∇ρqλ
)(
c1,c2

)= 0. (3.16)

Proof. Conditions (3.13) transform (3.10) into the flatness of∇, (3.9) into (3.14), (3.12)
into (3.15), and (3.11) into (3.16). �

Corollary 3.4. A Courant vector bundle with surjective anchor has a restricted Courant
algebroid structure if and only if it is a Whitney sum (3.1) of a Courant subalgebroid with
neutral metric and a flat pseudo-Euclidean bundle.
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Proof. For a Courant algebroid, the conditions stated by the corollary were proven in
Proposition 3.3. The bracket of the subalgebroid is defined by the first formula (3.8).
Conversely, if the conditions hold, a corresponding Courant algebroid bracket is defined
by (3.8) with λ= 0. �

Remark 3.5. The minimal possible rank of a transitive Courant algebroid over an n-
dimensional manifoldM is 2n. Proposition 3.3 yields all the transitive Courant algebroids
of minimal rank. Namely, they have no C-component and the bracket is defined by the
first formula (3.8) where λ(q1,q2)∈ im∂ satisfies condition (3.14).

Remark 3.6. With the notation used above, let E be a transitive Courant algebroid. Then
E/ im∂ gets an induced structure of a transitive Lie algebroid and we have the exact se-
quence

0−→ im∂
⊆−→ E

π−→ E/ im∂−→ 0. (3.17)

Hence, E may be seen as a central extension of a transitive Lie algebroid. In the restricted
case, the splitting σ induces a splitting TM

σ→ E/ im∂ which is a morphism of Lie alge-
broids. Ševera expressed the bracket of the Courant algebroid E by means of the bracket
of the Lie algebroid E/ im∂.

The results obtained so far in this section straightforwardly extend to regular Courant
algebroids. Indeed, such an algebroid (E,g,ρ) is a transitive Courant algebroid over the
base manifold M of E seen as the sum of the leaves of the foliation � = imρ. Therefore,
we get formulas (3.8) again. In order to ensure that we obtain brackets that are differen-
tiable with respect to the original differentiable structure of M, it suffices to use metric
connections and forms λ, Λ that enjoy this kind of differentiability. Such connections are
just Lie algebroid connections for the tangent Lie algebroid of � (called �-partial con-
nections or connections along the leaves of � in foliation theory). Thus, Propositions 3.2,
3.3, and Corollary 3.4, where we ask the anchor to be surjective over a regular foliation �
of M and the connection to be along the leaves of �, describe all the regular (restricted)
Courant algebroids.

4. Miscellanies

(a) The basic example of a skew-symmetric Courant algebroid appeared in [1]. It was the
vector bundle E = TM⊕T∗M, endowed with the neutral pseudo-Euclidean metric

g(X ⊕α,Y ⊕β)= 1
2

(
i(X)β+ i(Y)α

)
, (4.1)

the nondegenerate cross-section ω ∈∧2E∗,

ω(X ⊕α,Y ⊕β)= 1
2

(
i(X)β− i(Y)α

)
, (4.2)

the Courant bracket

[X ⊕α,Y ⊕β]= [X ,Y]⊕ [LXβ−LYα−d(ω(X ⊕α,Y ⊕β)
)]

, (4.3)
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and the projection ρ(X ⊕ α) = X , where X ,Y ∈ Γ(TM), α,β ∈ Γ(T∗M), and, for clarity,
we denoted an element (X ,α)= X +α∈ TM⊕T∗M by X ⊕α.

Straightforward computations show that the bracket (4.3), together with g,ρ, satisfies
the conditions of Definition 1.6, and TM⊕T∗M is a skew-symmetric Courant algebroid.

For the same data, the formula

(X ⊕α)� (Y ⊕β)= [X ,Y]⊕ (LXβ− i(Y)dα
)

(4.4)

defines a structure of a nonskew-symmetric Courant algebroid and the Courant bracket
(4.3) is the skew-symmetric part of the bracket (4.4).

The Courant bracket was extended by Ševera and Weinstein [7] by the addition of a
term of the form i(X ∧Y)Φ to the T∗M-component of the right-hand side of (4.3), Φ
being a closed 3-form on M.

The Courant algebroid structures described above are transitive, hence particular cases
of the general formulas (3.7), (3.8). Indeed, in the present case, ∂ f = 0⊕df ( f ∈ C∞(M)),
im∂ = T∗M, C = {0}, we may take Q = TM, and a suitable connection is provided by
any linear connection on M. Then, the first formula (3.7) becomes (4.3). Indeed, this is
trivial for α = df1,β = df2 ( f1, f2 ∈ C∞(M)), and it is true for any α,β because the two
formulas (3.7) and (4.3) behave in the same way when arguments are multiplied by a
function. The addition of a form λ leads to the Ševera-Weinstein Courant bracket with
Φ = −2Λ|Q. Since C = {0}, we necessarily are in the restricted case, λ, Λ satisfy (1.22),
and the conditions (3.14)–(3.16) reduce to dΦ = 0. Therefore, the Courant and Ševera-
Weinstein brackets define all the Courant algebroid structures on TM⊕T∗M endowed
with the metric (4.1) and the anchor ρ(X ⊕α)= X .

However, TM⊕T∗M may have more Courant algebroid structures if, for instance, we
change the anchor, as we will see below.

In [4], the Courant bracket was extended to vector bundles A⊕A∗, where (A,A∗) is a
Lie bialgebroid with anchors α, α∗, respectively, such that the extended bracket, the metric
g defined like in (4.1), and the anchor ρ = α+ α∗ define a structure of skew-symmetric
Courant algebroid. The extended bracket is

[[
a⊕ a∗,b⊕ b∗]]= {[a,b]A +L∗a∗b−L∗b∗a+d∗

(
ω
(
a⊕ a∗,b⊕ b∗)

)}
⊕ {[a∗,b∗

]
A∗ +Lab∗ −Lba∗ −d

(
ω
(
a⊕ a∗,b⊕ b∗))},

(4.5)

where d,L, respectively, d∗, L∗, are the exterior differential and Lie derivative associated
with the Lie algebroid structure of A, respectively, A∗, and ω is defined like in (4.2).

One can check that the bracket (4.5) is the skew-symmetric part of the product
(
a⊕ a∗)� (b⊕ b∗)

= {[a,b]A +L∗a∗b+ i
(
b∗
)
d∗a

}⊕ {[a∗,b∗
]
A∗ +Lab∗ − i(b)da∗

}
.

(4.6)

It is possible to connect the bracket (4.5) with a metric connection as indicated in
Proposition 2.1, but this does not seem to give interesting formulas. On the other hand,
we may use the bracket (4.5) and Propositions 1.11 and 2.3 in order to derive new Courant
algebroid structures on the vector bundles A⊕A∗ and A⊕A∗ ⊕C for any flat pseudo-
Euclidean bundle C.
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The Courant bracket (4.3) on TM⊕TM∗ is the particular case of the bracket (4.5)
whereA= TM with the Lie bracket andA∗ = T∗M with the zero bracket and zero anchor.
But, if we assume that P is a Poisson bivector field on M and use the cotangent algebroid
structure defined by P on T∗M, we get a new Courant algebroid structure on TM⊕TM∗

with the same metric (4.1), with the anchor IdTM⊕�P , and with the bracket (4.5). Again,
we are in the transitive, restricted case, and it will be possible to express the bracket under
the form (3.7). Indeed, the kernel of the anchor is

K = {X ⊕α/X +�Pα= 0
}≈ T∗M, (4.7)

and we may use the complementary subbundle Q = {X ⊕ 0} ≈ TM such that a cross-
section of TM⊕TM∗ decomposes as follows:

X ⊕α= ((X +�Pα
)⊕ 0

)
+
((−�Pα)⊕α). (4.8)

It is easy to see that

∂ f = (−XP
f

)⊕df , f ∈ C∞(M), (4.9)

where XP
f is the Hamiltonian vector field of f with respect to P. Then, by technical cal-

culations, one checks that the brackets defined by the first formula (3.7) and by (4.5)
coincide; the checks are to be made in each of the cases: two arguments in Q, one in Q
and one in im∂, and two arguments in im∂.

The original Courant bracket also leads to an example of a nonrestrictive, transitive
pre-Courant algebroid. Assume that the manifoldM is endowed with a Riemannian met-
ric G and consider the vector bundle E = TM⊕T∗M ⊕TM with the anchor defined as
the projection on the first term and the metric g ⊕G, where g is given by (4.1). Then,
∂ f = 0⊕ df ⊕ 0 and E is a Courant vector bundle with surjective anchor, with the natu-
ral decomposition E = (Q⊕ im∂)⊕C where Q = TM and C = (TM,G), and the suitable
connection defined by the Levi-Civita connection∇ of G, which satisfies T∇,ρ = 0.

Accordingly, we get a pre-Courant algebroid bracket on TM⊕T∗M⊕TM if we use the
corresponding formulas (3.7). The first formula (3.7) again yields the original Courant
bracket and the remaining brackets (3.7) are determined by the Levi-Civita connection
∇ of G and the value of γ as defined by (2.4), which yields

γ
(
0⊕ 0⊕Y1,0⊕ 0⊕Y2

)= 0⊕ ξ(Y1,Y2
)⊕ 0, (4.10)

where

ξ
(
Y1,Y2

)=G(Y1,∇Y2
)−G(∇Y1,Y2

)
(4.11)

and Xa,Ya ∈ ΓTM, αa ∈ ΓT∗M (a= 1,2). Indeed, the g ⊕G-scalar product of the right-
hand side of (4.10) by any triple X ⊕α⊕Y is the one prescribed by (2.4).

Now, let Φ be a differential 3-form on M and define

λ
(
X1⊕α1⊕Y1,X2⊕α2⊕Y2

)
= 0⊕ 2

[
i
(
X1∧Y2−X2∧Y1

)
Φ
]⊕�G[i(X1∧X2

)
Φ
]
.

(4.12)
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This form vanishes if one of the arguments belongs to im∂ and

Λ
(
X1⊕α1⊕Y1,X2⊕α2⊕Y2,X3⊕α3⊕Y3

)
=Φ

(
X1,X2,Y3

)
+Φ

(
X1,Y2,X3

)
+Φ

(
Y1,X2,X3

) (4.13)

is skew-symmetric. Therefore λ of (4.12) may serve as an additional term that leads to a
new pre-Courant algebroid bracket (3.8) on TM⊕T∗M⊕TM, which is not restricted. It
will be a Courant algebroid bracket if and only if the conditions (3.9)–(3.12) hold. The
significance of these conditions is unclear.

(b) The Courant bracket (4.3) may be defined for every Lie algebroid A and it is the
particular case of (4.5) where the dual bundleA∗ is endowed with the zero anchor and the
zero bracket. In what follows, we use this remark in order to define a Courant algebroid
structure on the tangent bundle of a para-Hermitian manifold M. We recall the definition
[2]: a para-Hermitian structure on M consists of a neutral metric g on TM and a (1,1)-
tensor field F that satisfies the conditions

F2 = I = Id., g(FX ,FY)=−g(X ,Y), ∀X ,Y ∈ ΓTM, (4.14)

NF(X ,Y)= [FX ,FY]−F[FX ,Y]−F[X ,FY] +F2[X ,Y]= 0. (4.15)

Condition (4.15), which is the vanishing of the Nijenhuis tensor of F, is the integrability
condition of the structure.

It follows that M also has a nondegenerate 2-form

ω(X ,Y)= g(FX ,Y), (4.16)

which satisfies the condition

ω(FX ,FY)=−ω(X ,Y), (4.17)

and that TM =W+ ⊕W−, where the terms are the ±1-eigendistributions of F and are
integrable because of (4.15). We will denote by

F± = 1
2

(I ±F) (4.18)

the projectors on W±, respectively. From (4.14) and (4.17), it follows that W± are maxi-
mal isotropic subbundles with respect to g and Lagrangian subbundles with respect to ω.
Accordingly, the musical isomorphism �g sends W± onto the dual space W∗∓ and defines
an isomorphism TM≈W+⊕W∗

+ .
Because of integrability,W+, with the Lie bracket, is a Lie algebroid and, if we use (4.3)

in this case, we get a bracket on the tangent bundle TM defined by

[X ,Y]F+ =
[
X+,Y+

]
+�g

{
LX+�gY− −LY+�gX− −

1
2
d
[
ω(X ,Y)

]}
, (4.19)

where X± = F±X , Y± = F±Y . The conclusion is that (TM,g,F+,[·,·]F+ ) is a regular, skew-
symmetric Courant algebroid.
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Remark 4.1. In an obvious way, we may speak of para-Hermitian vector bundles and, for
any differentiable manifold M, the bundle TM⊕T∗M is para-Hermitian with the metric
(4.1) and with F defined by

F(X ⊕α)= X ⊕ (−α). (4.20)

Then, formulas (4.3) and (4.19) are similar.

(c) In what follows, we give some indications about the use of Proposition 2.1 for
possible Courant algebroid structures on the tangent bundle of an arbitrary differentiable
manifold M.

A Courant algebroid structure on TM requires a pseudo-Riemannian metric g on M,
and a field φ of endomorphisms of TM, which will be the anchor. Notice that ∂ f =
(1/2)�g(df ◦ φ) and that span{df ◦ φ} = annkerφ. Hence, φ is a Courant anchor if and
only if imφ is a generalized, completely integrable distribution and �g(annkerφ) is an
isotropic distribution. In particular, we must have rankφ ≤ (1/2)dimM. Furthermore,
one must have a bracket [[X ,Y]] (X ,Y , [[X ,Y]]∈ ΓTM) that satisfies properties (i), (iii),
and (v) of Proposition 1.5. In Section 4(b), we had an example of such a situation.

Generally, on TM we have the Levi-Civita connection∇ of g, which is metric, and we
may use it to express the bracket. The connection∇ has no torsion but it has a φ-torsion

T(∇,φ)(X ,Y)= φ(∇φXY −∇φYX
)− [φX ,φY]= (∇φYφ

)
(X)− (∇φXφ

)
(Y). (4.21)

A technical calculation shows that the φ-torsion is related with the Nijenhuis tensor Nφ

(see (4.15)). Namely,

T(∇,φ)(X ,Y)= (φ ◦∇Yφ
)
(X)− (φ ◦∇Xφ

)
(Y)−Nφ(X ,Y). (4.22)

The operator γ of (2.4) will now be defined by

g
(
γ(X ,Y),Z

)= 1
2

[
g
(
X ,∇φZY

)− g(∇φZX ,Y
)]

, (4.23)

and the Courant algebroid bracket will be

[[X ,Y]]=∇φXY −∇φYX − γ(X ,Y)−β(X ,Y), (4.24)

where β is a tensor field of type (1,2) on M such that φ(β(X ,Y)) = T(∇,φ)(X ,Y) and
B(X ,Y ,Z)= g(β(X ,Y),Z) is a 3-form on M.

Thus, essentially, a Courant algebroid structure on (TM,g,φ) is a special type of a 3-
form. What we must still ask is the fulfillment of condition �= 0 for � defined by (2.13).
Unfortunately, this condition is too complicated and does not provide a practical way
to find new Courant algebroids. This is true even if stronger conditions are added. For
instance, if we ask φ to be ∇-parallel along paths in the leaves of imφ, (4.21) shows that
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T(∇,φ) = 0, and we may consider the bracket (4.24) with β = 0. As shown in Section 2, the
condition for this bracket to define a Courant algebroid structure is the annulation of the
invariant �0 defined by formula (2.12), which, now, takes the form

∑
Cycl(X ,Y ,Z)

{
R∇(φX ,φY)Z− (∇φZγ

)
(X ,Y)− γ(γ(X ,Y),Z

)}= 0. (4.25)

(d) Now, in a different direction, we refer to the case of what should be called foliated,
regular Courant algebroids, and show another way of describing their brackets.

Let M be a manifold endowed with a regular foliation �. Let E be a foliated, vector
bundle over M endowed with a foliated, pseudo-Euclidean metric g. This means that
E has a given, maximal system of local trivializations with transition functions that are
constant along the leaves of � (foliated functions), and, for all e1,e2 ∈ ΓprE, where Γpr

denotes the space of projectable cross-sections of E (i.e., constant along the leaves), the
function g(e1,e2) is constant along the leaves (e.g., see [5] for the theory of foliations).
Then, we have the following.

Proposition 4.2. On a foliated pair (E,g), there exist metric connections∇ that satisfy the
condition∇Xe = 0, for all X ∈ ΓT� and for all e ∈ ΓprE.

Proof. Take an arbitrary normal bundleN� (i.e., TM= T�⊕N�) and an arbitrary met-
ric connection ∇̃ of (E,g). Then define

∇Xe =

∇̃Xe ∀X ∈ ΓN�, ∀e ∈ ΓE,

0 ∀X ∈ ΓT�, ∀e ∈ ΓprE.
(4.26)

It is easy to check that this produces a connection as required. Indeed, we must still define
∇Xe forX ∈ ΓT� and a nonprojectable e ∈ ΓE. For this purpose, we take local projectable
bases eα of E and, for

e =
∑
α

fαeα, eα ∈ ΓprE, fα ∈ C∞(M), (4.27)

we put

∇Xe =
∑
α

(
X fα

)
eα. (4.28)

�

A connection that satisfies the properties stated by Proposition 4.2 will be called an
adapted connection of (E,g).

Let (E,g) be foliated and we assume that there exists a surjective morphism ρ : E→ T�,
which is a Courant anchor of (E,g). Then, for any adapted connection ∇, one has a
nonzero ρ-torsion given by

T(∇,ρ)
(
e1,e2

)=−[ρe1,ρe2
]
, e1,e2 ∈ ΓprE. (4.29)
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Formula (2.4) yields the operator

γ
(
e1,e2

)= 0, e1,e2 ∈ ΓprE, (4.30)

and (2.3) gives a bracket such that

[
e1,e2

]
0 = 0, e1,e2 ∈ ΓprE. (4.31)

The values of this bracket for arbitrary cross-sections f1e1, f2e2, e1,e2 ∈ ΓprE, f1, f2 ∈
C∞(M) follow from property (iv), Proposition 1.5. Furthermore, the operator γ satis-
fies the condition �0 = 0, where �0 is defined by (2.12); this is obvious for projectable
arguments and is true for arbitrary arguments because �0 is a tensor. Hence, we get the
following.

Proposition 4.3. For a triple (E,g,ρ) as described above, a Courant algebroid bracket is a
bracket of the form (2.5), where β ∈ Γ(∧2E∗ ⊗E) is associated with a 3-form B ∈ Γ(∧3E∗)
and satisfies the conditions

ρ
(
β
(
e1,e2

))=−[ρe1,ρe2
]
, (4.32)∑

Cycl(1,2,3)

β
(
β
(
e1,e2

)
,e3
)= ∑

Cycl(1,2,3)

[
β
(
e1,e2

)
,e3
]

0, (4.33)

for all e1,e2,e3 ∈ ΓprE.

Condition (4.33) exactly is the annulation of the invariant � defined by formula (2.13),
where we took into consideration (4.31) and the fact that �0 = 0. It was shown in
Section 2 that �= 0 characterizes Courant algebroids.

Appendix

Dirac linear spaces

The Courant algebroids resulted from the process of studying Dirac structures, which are
a significant generalization of the Poisson structures [1]. Although this is not a subject
of the present paper, we have added this appendix, which shows that the known linear
algebra of Dirac structures is a part of para-Hermitian linear algebra.

A para-Hermitian vector space is a 2n-dimensional vector space W that has the struc-
ture indicated for the fibers of the tangent bundle of a para-Hermitian manifold in the
previous section. On W we have the ingredients g, ω, F, W±, F±, with the algebraic prop-
erties stated in Section 4(b), and W =W+⊕W−, �g :W± ≈W∗∓ .

The space W has adapted bases (bi,cj) (i, j = 1, . . . ,n), where (b1, . . . ,bn) is a basis of
W+, therefore, �gb1, . . . ,�gbn is a basis of W∗− , and (c1, . . . ,cn) is the corresponding dual
basis of W−, that is, g(bi,cj)= δi j (i, j = 1, . . . ,n).

Definition A.4. (1) [1] A maximal, g-isotropic subspace L of the para-Hermitian vector
space W is called a Dirac subspace of W . (2) [3] A pair (L,L′) of complementary Dirac
subspaces of W (W = L⊕L′) is a reflector in W .
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Proposition A.5. For any Dirac subspace L⊆W , there exists a family �(L) of Dirac sub-
spaces that are complementary to L in W , and �(L) is an affine space modelled over the
linear space of the skew-symmetric matrices of order n.

Proof. The results are analogous to known results for Lagrangian subspaces of a sym-
plectic vector space, and we prove them as in the latter case, for example, [9]. For any
subspace S ⊆W such that W = L⊕ S and any basis (l1, . . . , ln) of L, there exists a unique
conjugated basis (s1, . . . ,sn) of S, such that g(li,s j)= δi j . Using the conjugated basis, we can
obtain vectors

ui = si + τki lk (A.1)

(the Einstein summation convention holds) such that g(ui,uj)= 0, and these vectors span
a Dirac subspace L′ that satisfies L⊕ L′ =W . Furthermore, if L′′ is another Dirac sub-
space such that L⊕L′′ =W and if (ui) is the conjugated basis of (li) in L′ and (vi) is the

conjugated basis of (li) in L′′, there exists a unique skew-symmetric matrix (θ
j
i ) such that

vi = ui + θ ji l j . �

Using adapted bases of W , it follows that the set of the reflectors of W is the n(n− 1)-
dimensional homogeneous space �=O(W ,g)/pH(W)≈O(n,n)/Gl(n), where O(W ,g)
is the g-preserving subgroup of the general linear group Gl(W), which acts transitively on
�, pH(W) is the para-Hermitian subgroup, which commutes with F and is the isotropy
subgroup of the pair (W+,W−)∈�, O(n,n)≈O(W ,g) is the subgroup of Gl(2n) which
preserves the canonical neutral metric, and Gl(n)≈ pH(W) by the embedding

A �−→
(
A 0
0 tA−1

) (
A∈Gl(n)

)
, (A.2)

see [3, 11].
Proposition A.5 shows that the set � of Dirac subspaces of W is the quotient space

of � by the equivalence relation with equivalence classes �(L), hence � is a [n(n−
1)/]2-dimensional space, namely, the homogeneous space O(W ,g)/OW+ (W ,g), where
the isotropy group of W+ ∈� at the denominator is that of the elements φ ∈ O(W ,g)
which satisfy the condition F− ◦φ ◦F+ = 0.

We also notice that L⊆W is a Dirac subspace if and only if F(L) is the ω-orthogonal
subspace of L. Therefore, if L is a Dirac subspace, ker(ω|L)= L∩F(L). On the other hand,
it follows easily that for a Dirac subspace L, one has

ker
(
ω|L

)= (W+∩L
)⊕ (W− ∩L

)
. (A.3)

The following proposition shows that the integers k = dim(W− ∩L) and r = rank(ω|L)
are the only invariants of a Dirac subspace with respect to the action of the para-
Hermitian subgroup pH(W).
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Proposition A.6. The group pH(W) acts transitively on the set of Dirac subspaces L with
given values k,r.

Proof. Denote p± = F±|L. Obviously, ker p± =W∓ ∩L, and we get two linear spaces

L± = im p± ≈ L/W∓ ∩L (A.4)

of dimension n− dim(W∓ ∩ L). Since W∓ ∩ L ⊆ ker(ω|L), we see that the subspaces L±
have induced, skew-symmetric, bilinear forms ωL±.

Moreover, because of the structure of ker(ω|L) as described above, we see that rank
ωL± = rank ω|L and kerωL± = p±(W± ∩L). (Clearly, p±|W±∩L have kernel zero and are iso-
morphisms onto the corresponding images.)

As shown in [1], it is possible to reconstruct L from each of the pairs (L±,ωL±), namely,

L=
{
w ∈W/F+(w)∈ L+, g

(
F−(w),u

)=−1
2
ωL+
(
F+(w),u

)
, ∀u∈ L+

}
,

L=
{
w ∈W/F−(w)∈ L−, g

(
F+(w),u

)= 1
2
ωL−
(
F−(w),u

)
, ∀u∈ L−

}
.

(A.5)

The two formulas have similar justifications, and we refer to the first only. A straight-
forward check shows that, for any choice of a pair (L+,ω+), which consists of an arbitrary
subspace of W and an arbitrary 2-form on that subspace, L defined by the first formula is
an isotropic subspace of W , that F+(L)= L+, and that ω+ is induced by ω. Furthermore,
the formula implies

kerF+|L = L∩W− =
{
w ∈W−/g(w,u)= 0, ∀u∈ L+

}
, (A.6)

and, since g|W−×W+ is a nondegenerate pairing, k = n− dim(L+). Accordingly, dimL =
dim(kerF+|L) + dim(imF+|L)= n and L is the required Dirac subspace.

Now, if L, L′ are Dirac subspaces of W with the same invariants k, r, there exists a
transformation ψ ∈Gl(W+) which sends the pair (L+,ωL+) onto (L′+,ωL

′
+ ). Obviously, the

image of ψ in pH(W) via the embedding (A.2) sends L onto L′. �

Of course, instead of the invariant k = dim(W− ∩L), we may consider h= dim(W+∩
L). These two numbers are related by k+h= n− r.
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