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We define the sequence spaces [wθ ,M, p,u,∆]σ , [wθ ,M, p,u,∆]0
σ , and [wθ ,M, p,u,∆]∞σ

which are defined by combining the concepts of Orlicz functions, invariant means, and
lacunary convergence. We also study some inclusion relations and linearity properties of
the above-mentioned spaces. These are generalizations of those defined and studied by
Savaş and Rhoades in 2002 and some others before.

1. Introduction

Let l∞ and c denote the Banach spaces of bounded and convergent sequences x = (xk),
with xk ∈R or C, normed by ‖x‖ = supk |xk|, respectively.

A paranorm on a linear topological space X is a function g : X →R which satisfies the
following axioms for any x, y,x0 ∈ X and λ,λ0 ∈ C:

(i) g(θ)= 0, where θ = (0,0,0, . . .), the zero sequence,
(ii) g(x)= g(−x),

(iii) g(x+ y)≤ g(x) + g(y) (subadditivity),
(iv) the scalar multiplication is continuous, that is,

λ−→ λ0, x −→ x0 imply λx −→ λ0x0; (1.1)

in other words,∣∣λ− λ0
∣∣−→ 0, g

(
x− x0

)−→ 0 imply g
(
λx− λ0x0

)−→ 0. (1.2)

A paranormed space is a linear space X with a paranorm g and is written as (X ,g), (see
Maddox [10, page 92]).

Any function g which satisfies all conditions (i), (ii), (iii), and (iv), together with the
condition

(v) g(x)= 0 if and only if x = θ,
is called a total paranorm on X , and the pair (X ,g) is called a total paranormed space,
(see Maddox [10, page 92]).
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Schaefer [20] defined the σ-convergence as follows.
Let σ be the mapping of the set of positive integers into itself. A continuous linear

functional ϕ on l∞ is said to be an invariant mean or σ-mean if and only if
(i) ϕ(x)≥ 0 when the sequence x = (xn) has xn ≥ 0 for all n,

(ii) ϕ(e)= 1,
(iii) ϕ(xσ(n))= ϕ(x) for all x ∈ l∞.
In case σ is the translation mapping n→ n+ 1, a σ-mean is often called a Banach limit

and Vσ , the set of bounded sequences all of whose invariant means are equal, is the set of
almost convergence sequences.

A sequence x = (xk) ∈ l∞ is said to be almost convergent if all of its Banach limits
coincide (see Banach [1]). Let ĉ denote the space of all almost convergent sequences.
Lorentz [8] proved that

ĉ =
{
x ∈ l∞ : lim

m→∞ tmn(x) exists, uniformly in n
}

, (1.3)

where (tmn(x)= xn + xn+1 + ···+ xn+m)/(m+ 1).
The space [ĉ] of strongly almost convergence sequences was introduced by Maddox

[11] and Freedman et al. [4] as follows:

[ĉ]=
{
x ∈ l∞ : lim

m→∞ tmn
(|x− le|)= 0, uniformly in n, for some l ∈R

}
, (1.4)

where e = (1,1, . . .).
If x = (xk), write Tx = (Txk)= (xσ(k)). It can be shown that

Vσ =
{
x ∈ l∞ : lim

m→∞ tkm(x)= l, uniformly in m
}

, (1.5)

l = σ − limx, where

tkm(x)= xm + xσ(m) + xσ2(m) + ···+ xσk(m)

k+ 1
. (1.6)

Here σk(m) denotes the kth iterate of the mapping σ at m.
A σ-mean extends the limit functional on c in the sense that ϕ(x)= limx for all x ∈ c if

and only if σ has no finite orbits; that is to say, if and only if for all n≥ 0, j ≥ 0, σ j(n) �= n
(see Mursaleen [13]).

A sequence x is said to be strongly σ-convergent if there exists a number l such that

(∣∣xk − l
∣∣)∈Vσ (1.7)

with the limit zero (see Mursaleen [12]).
We write [Vσ] as the set of all strongly σ-convergent sequences. When (1.7) holds, we

write [Vσ]− limx = l. Taking σ(n)= n+ 1, we obtain [Vσ]= [ĉ] so that strong σ-conver-
gence generalizes the concept of strong almost convergence. Note that c ⊂ [Vσ]⊂Vσ ⊂ l∞.
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Using the concept of invariant means, the following sequence spaces have been intro-
duced and examined by Mursaleen et al. [14] as a generalization of Das and Sahoo [3]:

wσ =
{
x : lim

n

1
n+ 1

n∑
k=0

tkm(x− l)= 0, for some l ∈R, uniformly in m

}
,

[w]σ =
{
x : lim

n

1
n+ 1

n∑
k=0

∣∣tkm(x− l)
∣∣= 0, for some l ∈R, uniformly in m

}
,

[
wσ
]={x : lim

n

1
n+ 1

n∑
k=0

tkm
(|x− l|)= 0, for some l ∈R, uniformly in m

}
.

(1.8)

By a lacunary sequence θ = (kr); r = 0,1,2, . . ., where k0 = 0, we will mean an increas-
ing sequence of nonnegative integers with kr − kr−1 →∞. The intervals determined by
θ will be denoted by Ir = (kr−1,kr] and we let hr = kr − kr−1. The ratio kr/kr−1 will be
denoted by qr . The space of lacunary strongly convergent sequences Nθ was defined by
Freedman et al. [4] as

Nθ =
{
x = (xk) : lim

r

1
hr

∑
k∈Ir

∣∣xk − l
∣∣= 0, for some l

}
. (1.9)

The concept of lacunary strong σ-convergence was introduced by Savaş [18] which is
a generalization of the idea of lacunary strong almost convergence due to Das and Patel
[2].

If [Vθ
σ ] denotes the set of all lacunary strongly σ-convergent sequences, then Savaş [18]

defined

[
Vθ
σ

]={x = (xk) : lim
r→∞

1
hr

∑
k∈Ir

∣∣xσk(n)− l
∣∣= 0, for some l, uniformly in n

}
. (1.10)

Recall [5, 7] that an Orlicz function is a function M : [0,∞)→ [0,∞) which is contin-
uous, nondecreasing, and convex with M(0) = 0, M(x) > 0 for x > 0, and M(x)→∞ as
x→∞.

If convexity of M is replaced by M(x + y)≤M(x) +M(y), then it is called a modulus
function, defined and discussed by Ruckle [16].

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to define what is called
an Orlicz sequence space:

lM :=
{
x :

∞∑
k=1

M

(∣∣xk∣∣
ρ

)
<∞, for some ρ > 0

}
(1.11)

which is a Banach space with the norm

‖x‖M = inf

{
ρ > 0 :

∞∑
k=1

M

(∣∣xk∣∣
ρ

)
≤ 1

}
. (1.12)
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An Orlicz function M is said to satisfy the ∆2-condition for all values of u, if there
exists a constant K > 0 such that

M(2u)≤ KM(u) (u≥ 0). (1.13)

It is easy to see that always K > 2. The ∆2-condition is equivalent to the satisfaction of
the inequality

M(lu)≤ K(lu)M(u) (1.14)

for every value of u and for l > 1 (see Krasnosel’skiı̆ and Rutickiı̆ [6]).
Parashar and Choudhary [15] have introduced and examined some properties of four

sequence spaces defined by using an Orlicz functionM, which generalizes the well-known
Orlicz sequence space lM and strong summable sequence spaces [C,1, p], [C,1, p]0, and
[C,1, p]∞. It may be noted that the spaces of strongly summable sequences were discussed
by Maddox [9].

The main object of this paper is to define and study the sequence spaces: [wθ ,M, p,u,
∆]σ , [wθ ,M, p,u,∆]0

σ and [wθ ,M, p,u,∆]∞σ , which are defined by combining the concepts
of an Orlicz function, invariant mean, and lacunary convergence. We examine some lin-
earity and inclusion relations of these spaces and establish the connection between lacu-
nary [w]σ-convergence and lacunary [w]σ-convergence with respect to an Orlicz function
which satisfies the ∆2-condition.

Now, if u = (uk) is any sequence such that uk �= 0(k = 1,2, . . .) and for any sequence
x = (xn), the difference sequence ∆x is given by ∆x = (∆xn)∞n=1 = (xn− xn−1)∞n=1, then we
define the following sequence spaces:

[
wθ ,M, p,u,∆

]
σ =

{
x = (xk) : lim

r

1
hr

∑
k∈Ir

[
M

(∣∣tkm(u∆x− le
)∣∣

ρ

)]pk

= 0, for some l, ρ > 0, uniformly in m

}
,

[
wθ ,M, p,u,∆

]0
σ =

{
x = (xk) : lim

r

1
hr

∑
k∈Ir

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk

= 0, for some ρ > 0, uniformly in m

}
,

[
wθ ,M, p,u,∆

]∞
σ =

{
x = (xk) : sup

r,m

1
hr

∑
k∈Ir

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk

<∞ for some ρ > 0

}
.

(1.15)

If u= e, and ∆xk = xk, for all k, then these spaces reduce to those defined and studied
by Savaş and Rhoades [19]. Also some sequence spaces are obtained by specializing θ,
M, and p. For example, if u = e, ∆xk = xk, and pk = 1 for all k, then we get the spaces
[wθ ,M]σ , [wθ ,M]0

σ , and [wθ ,M]∞σ .
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If x ∈ [wθ ,M]σ , we say that x is lacunary [w]σ-convergence with respect to the Orlicz
function M.

When u= e,∆xk = xk, for all k, and σ(n)= n+ 1, the spaces [wθ ,M, p,u,∆]σ , [wθ ,M, p,
u,∆]0

σ , and [wθ ,M, p,u,∆]∞σ reduce to the spaces [ŵθ ,M, p]σ , [ŵθ ,M, p]0
σ , and [ŵθ ,M,

p]∞σ , respectively, which are defined as

[
ŵθ ,M, p

]={x = (xk) : lim
r

1
hr

∑
m∈Ir

[
M

(∣∣tmn(x− l)
∣∣

ρ

)]pk

= 0, uniformly in n, for some l, ρ > 0

}
,

[
ŵθ ,M, p

]
0 =

{
x = (xk) : lim

r

1
hr

∑
m∈Ir

[
M

(∣∣tmn(x)
∣∣

ρ

)]pk

= 0, uniformly in n, for some ρ > 0

}
,

[
ŵθ ,M, p

]
∞ =

{
x = (xk) : sup

r,n

1
hr

∑
m∈Ir

[
M

(∣∣tmn(x)
∣∣

ρ

)]pk

<∞, for some ρ > 0

}
.

(1.16)

If u= e, and∆xk = xk, for all k,M(x)= x, θ = (2r), and pk = 1, for all k, then [wθ ,M, p,
u,∆]σ = [w]σ (see Mursaleen et al. [14]) and [ŵθ ,M, p,u,∆] = [ŵ] (see Das and Sahoo
[3]). When u= e, ∆xk = xk, for all k, M(x)= x, and pk = 1, for all k, then [wθ ,M, p,u,∆]σ
= [wθ]σ , [wθ ,M, p,u,∆]0

σ = [w]0
σ . If u= e, ∆xk = xk, for all k, and θ = (2r), then [wθ ,M, p,

u,∆]σ = [w,M, p]σ , [wθ ,M, p,u,∆]0
σ = [w,M, p]0

σ , and [wθ ,M, p,u,∆]∞σ = [w,M, p]∞σ .

2. Main results

We proved the following theorems.

Theorem 2.1. For any Orlicz function M and a bounded sequence p = (pk) of strictly posi-
tive real numbers, [wθ ,M, p,u,∆]σ , [wθ ,M, p,u,∆]0

σ , and [wθ ,M, p,u,∆]∞σ are linear spaces
over the set of complex numbers.

Proof. We will prove the result only for [wθ ,M, p,u,∆]0
σ . The others can be treated sim-

ilarly. Let x, y ∈ [wθ ,M, p,u,∆]0
σ and α,β ∈ C, the set of complex numbers. In order to

prove the result, we need to find some ρ3 > 0 such that

lim
r

1
hr

∑
k∈Ir

[
M

(∣∣tkm(αu∆x+βu∆y)
∣∣

ρ3

)]pk

= 0, uniformly in m. (2.1)
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Since x, y ∈ [wθ ,M, p,u,∆]0
σ , there exist positive ρ1 and ρ2 such that

lim
r

1
hr

∑
k∈Ir

[
M

(∣∣tkm(u∆x)
∣∣

ρ1

)]pk

= 0,

lim
r

1
hr

∑
k∈Ir

[
M

(∣∣tkm(u∆y)
∣∣

ρ2

)]pk

= 0,

(2.2)

uniformly in m.
Define ρ3 =max(2|α|ρ1,2|β|ρ2). Since M is nondecreasing and convex,

1
hr

∑
k∈Ir

[
M

(∣∣tkm(αu∆x+βu∆y)
∣∣

ρ3

)]pk

≤ 1
hr

∑
k∈Ir

1
2pk

[
M

(∣∣tkm(αu∆x)
∣∣

ρ1

)
+M

(∣∣tkm(βu∆y)
∣∣

ρ2

)]pk

≤D
1
hr

∑
k∈Ir

[
M

(∣∣tkm(αu∆x)
∣∣

ρ1

)]pk

+D
1
hr

∑
k∈Ir

[
M

(∣∣tkm(βu∆y)
∣∣

ρ2

)]pk

(2.3)

→ 0, as r →∞, uniformly in m, where D =max(1,2H−1), H = sup pk, so that αux+βuy ∈
[wθ ,M, p,u,∆]0

σ . This completes the proof. �

Theorem 2.2. For any Orlicz function M and a bounded sequence p = (pk) of strictly posi-
tive real numbers, [wθ ,M, p,u,∆]0

σ is a topological linear space, totally paranormed by:

g(x)= inf

ρpr /H :

 1
hr

∑
k∈Ir

[
M

(∣∣tkm(x)
∣∣

ρ

)]pk
1/H

≤ 1, r = 1,2, m= 1,2, . . .

 ,

(2.4)

where H =max(1,sup pk).

Proof. It is easy to see that g(x) = g(−x). By using Theorem 2.1, for α = β = 1, we get
g(x+ y)≤ g(x) + g(y). Since M(0)= 0, we get inf{ρpr /H} = 0 for x = 0. Conversely, sup-
pose g(x)= 0, then

inf

ρpr /H :

 1
hr

∑
k∈Ir

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk
1/H

≤ 1

= 0. (2.5)

This implies that for a given ε > 0, there exists some ρ3(0 < ρ3 < ε) such that

 1
hr

∑
k∈Ir

[
M

(∣∣tkm(u∆x)
∣∣

ρ3

)]pk
1/H

≤ 1. (2.6)
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Thus 1
hr

∑
k∈Ir

[
M

(∣∣tkm(u∆x)
∣∣

ε

)]pk
1/H

≤
 1
hr

∑
k∈Ir

[
M

(∣∣tkm(u∆x)
∣∣

ρ3

)]pk
1/H

≤ 1,

(2.7)

for each r and m.
Suppose that xσi( j) �= 0 for each i and j. This implies that ti j(x) �= 0, for each i and j.

Let ε→ 0. Then (∣∣ti j(x)
∣∣

ε

)
−→∞. (2.8)

It follows that  1
hr

∑
i∈Ir

[
M

(∣∣ti j(u∆x)
∣∣

ε

)]pk
1/H

−→∞ (2.9)

which is a contradiction.
Therefore, ti j(x)= 0 for each i and j, and thus xσi( j) = 0 for each i and j.
Showing that scalar multiplication is continuous is a standard argument, so we omit

it. �

Theorem 2.3. For any Orlicz function M which satisfies the ∆2-condition, [wθ ,u,
∆]σ ⊆ [wθ ,M,u,∆].

To prove the theorem, we need the following lemma.

Lemma 2.4. Let M be an Orlicz function which satisfies the ∆2-condition and let 0 < δ < 1.
Then for each x ≥ δ, M(x) < Kxδ−1M(2) for some constant K > 0.

Proof. It follows by a straightforward calculation using the ∆2-condition. �

Proof of Theorem 2.3. Let x ∈ [wθ ,u,∆]σ . Then we have

Ar = 1
hr

∑
k∈Ir

∣∣tkm(u∆x− le)
∣∣−→ 0, (2.10)

as r →∞, uniformly in m, for some l.
Let ε > 0 and choose δ with 0 < δ < 1 such that M(t) < ε for 0≤ t ≤ δ.
Then we can write

1
hr

∑
k∈Ir

M
(∣∣tkm(u∆x− le)

∣∣)= 1
hr

∑
k∈Ir ,|tkm(u∆x−le)|≤δ

M
(∣∣tkm(u∆x− le)

∣∣)
+

1
hr

∑
k∈Ir ,|tkm(u∆x−le)|>δ

M
(∣∣tkm(u∆x− le)

∣∣)
< h−1

r

(
hrε

)
+h−1

r Kδ−1M(2)hrAr , by Lemma 2.4.

(2.11)

Letting r →∞, it follows that x ∈ [wθ ,M,u,∆]σ . �
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Theorem 2.5. Let θ = (kr) be a lacunary sequence with liminf r qr > 1. Then for any Or-
licz functionM, [w,M, p,u,∆]σ ⊂ [wθ ,M, p,u,∆]σ , [w,M, p,u,∆]0

σ ⊂ [wθ ,M, p,u,∆]0
σ , and

[w,M, p,u,∆]∞σ ⊂ [wθ ,M, p,u,∆]∞σ , where

[w,M, p,u,∆]σ =
{
x = (xk) : lim

n

1
n+ 1

n∑
k=0

[
M

(∣∣tkm(u∆x− le)
∣∣

ρ

)]pk

= 0, uniformly in m, for some l, ρ > 0

}
,

[w,M, p,u,∆]∞σ =
{
x = (xk) : sup

n

1
n+ 1

n∑
k=0

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk

<∞, for some ρ > 0

}
.

(2.12)

(In case l = 0, write [w,M, p,u,∆]σ = [w,M, p,u,∆]0
σ).

Proof. We will prove [w,M, p,u,∆]σ ⊂ [wθ ,M, p,u,∆]σ only. The others can be treated
similarly. It is sufficient to show that [w,M, p,u,∆]0

σ ⊂ [wθ ,M, p,u,∆]0
σ ; the general in-

clusion follows by linearity. Suppose liminf r qr > 1, then there exists δ > 0 such that
qr = (kr/kr−1)≥ 1 + δ for all r ≥ 1. Then for x ∈ [w,M, p,u,∆]0

σ
, we write

Ar = 1
hr

∑
k∈Ir

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk

= 1
hr

kr∑
k=1

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk

− 1
hr

kr−1∑
k=1

[
M

(∣∣tkm(u∆x− le)
∣∣

ρ

)]pk

= kr
hr

k−1
r

kr∑
k=1

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk
− kr−1

hr

k−1
r−1

kr−1∑
k=1

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk
 .

(2.13)

Since hr = kr − kr−1, we have

kr
hr
≤ 1 + δ

δ
,

kr−1

hr
≤ 1

δ
. (2.14)

The terms k−1
r

∑kr
k=1[M(|tkm(u∆x)|/ρ)]pk and k−1

r−1

∑kr−1
k=1[M(|tkm(u∆x)|/ρ)]pk both con-

verge to zero uniformly in m, and it follows that Ar converges to zero as r →∞, uniformly
in m, that is, x ∈ [wθ ,M, p,u,∆]0

σ . This completes the proof. �

Theorem 2.6. Let θ = (kr) be a lacunary sequence with limsupr qr <∞. Then for any Or-
licz functionM, [wθ ,M, p,u,∆]σ ⊂ [w,M, p,u,∆]σ , [wθ ,M, p,u,∆]0

σ ⊂ [w,M, p,u,∆]0
σ , and

[wθ ,M, p,u,∆]∞σ ⊂ [w,M, p,u,∆]∞σ .

Proof. We will prove [wθ ,M, p,u,∆]σ ⊂ [w,M, p,u,∆]σ only. The others can be treated
similarly. It is sufficient to show that [w,M, p,u,∆]0

σ ⊂ [wθ ,M, p,u,∆]0
σ ; the general inclu-

sion follows by linearity. Suppose limsupr qr <∞, then there exists B > 0 such that qr < B
for all r ≥ 1. Let x ∈ [wθ ,M, p,u,∆]0

σ and ε > 0. Then there exists L > 0 such that for
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every j ≥ L and all m,

Aj = 1
hj

∑
k∈I j

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk

< ε. (2.15)

We can also find K > 0 such that Aj < K for all j = 1,2, . . ..
Now let n be any integer with kr−1 < n≤ kr , where r > L. Then

1
n

n∑
k=1

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk

≤ k−1
r−1

kr∑
k=1

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk

= k−1
r−1

∑
k∈I1

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk

+
∑
k∈I2

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk

+···+
∑
k∈Ir

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk


= k1

kr−1
k−1

1

∑
k∈I1

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk

+
k2−k1

kr−1

(
k2−k1

)−1 ∑
k∈I2

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk

+ ···+
kR− kR−1

kr−1

(
kR− kR−1

)−1 ∑
k∈I2

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk

+ ···+
kr − kr−1

kr−1

(
kr − kr−1

)−1 ∑
k∈I2

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk

= k1

kr−1
A1 +

k2− k1

kr−1
A2 + ···+

kR− kR−1

kr−1
AR

+
kR+1− kR

kr−1
AR+1 + ···+

kr − kr−1

kr−1
Ar

≤
(

sup
j≥1

Aj

)
kR
kr−1

+

(
sup
j≥R

Aj

)
kr − kR
kr−1

< K
kR
kr−1

+ εB.

(2.16)

Since kr−1 →∞ as n→∞, it follows that

1
n

n∑
k=1

[
M

(∣∣tkm(u∆x)
∣∣

ρ

)]pk

−→ 0, (2.17)

uniformly in m, and consequently x ∈ [w,M, p,u,∆]0
σ . This completes the proof of the

theorem. �

Theorem 2.7. Let θ = (kr) be a lacunary sequence with 1 < liminf r qr < limsupr qr <∞.
Then for any Orlicz function M, [w,M, p,u,∆]σ = [wθ ,M, p,u,∆]σ .

Proof. Theorem 2.7 follows from Theorems 2.5 and 2.6. �
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[17] E. Savaş, Strongly σ-convergent sequences, Bull. Calcutta Math. Soc. 81 (1989), no. 4, 295–300.
[18] , On lacunary strong σ-convergence, Indian J. Pure Appl. Math. 21 (1990), no. 4, 359–

365.
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