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We define the sequence spaces [wg,M,p,u,A]o, [wo,M,p,u,A]g, and [we,M,p,u,A];"
which are defined by combining the concepts of Orlicz functions, invariant means, and
lacunary convergence. We also study some inclusion relations and linearity properties of
the above-mentioned spaces. These are generalizations of those defined and studied by
Savas and Rhoades in 2002 and some others before.

1. Introduction

Let I, and ¢ denote the Banach spaces of bounded and convergent sequences x = (xi),
with x; € R or C, normed by [|x|| = sup, [xk|, respectively.
A paranorm on a linear topological space X is a function g : X — R which satisfies the
following axioms for any x, y,xp € X and 1,4 € C:
(i) g(8) = 0, where 8 = (0,0,0,...), the zero sequence,
(if) g(x) = (),
(iii) g(x+ y) < g(x) + g(y) (subadditivity),
(iv) the scalar multiplication is continuous, that is,

A— Lo, x—x9 imply Ax — doxo; (1.1)
in other words,
[A=2o| — 0, g(x—x9) — 0 implyg(Ax—Aoxo) — O. (1.2)

A paranormed space is a linear space X with a paranorm g and is written as (X, g), (see
Maddox [10, page 92]).
Any function g which satisfies all conditions (i), (ii), (iii), and (iv), together with the
condition
(v) g(x) =0ifand onlyifx = 0,
is called a total paranorm on X, and the pair (X,g) is called a total paranormed space,
(see Maddox [10, page 92]).
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Schaefer [20] defined the o-convergence as follows.

Let o be the mapping of the set of positive integers into itself. A continuous linear
functional ¢ on I is said to be an invariant mean or o-mean if and only if

(i) @(x) = 0 when the sequence x = (x,) has x,, = 0 for all n,
(i) p(e) =1,

(iif) @(Xs(n)) = @(x) for all x € l.

In case o is the translation mapping n — n+ 1, a 0-mean is often called a Banach limit
and Vy, the set of bounded sequences all of whose invariant means are equal, is the set of
almost convergence sequences.

A sequence x = (xx) € I is said to be almost convergent if all of its Banach limits
coincide (see Banach [1]). Let ¢ denote the space of all almost convergent sequences.
Lorentz [8] proved that

= {x €ly: n11i£r010 tmn(x) exists, uniformly in n}, (1.3)

where (£, (X) = X+ Xpe1 + * + * + Xpym)/ (M + 1),
The space [¢] of strongly almost convergence sequences was introduced by Maddox
[11] and Freedman et al. [4] as follows:

[c] = {x €l :nlqizrolo tmn (lx — le|) = 0, uniformly in n, for some [ € [R}, (1.4)

wheree = (1,1,...).
If x = (xx), write Tx = (Txx) = (X(k))- It can be shown that

V, = {x €l :nl1i1130 tem(x) = [, uniformly in m}, (1.5)

| = o — limx, where

_ Xm + Xo(m) T Xo2(m) T+ = = T Xgk(m)

tin () = o (16)

Here 0% (m) denotes the kth iterate of the mapping o at m.

A o-mean extends the limit functional on ¢ in the sense that ¢(x) = limx for all x € cif
and only if o has no finite orbits; that is to say, if and only if forall n > 0, j > 0, 0/(n) # n
(see Mursaleen [13]).

A sequence x is said to be strongly o-convergent if there exists a number / such that

(|x—=1]) e Vs (1.7)

with the limit zero (see Mursaleen [12]).

We write [ V] as the set of all strongly o-convergent sequences. When (1.7) holds, we
write [V,] —limx = . Taking 0(n) = n+ 1, we obtain [V,] = [¢] so that strong o-conver-
gence generalizes the concept of strong almost convergence. Note thatc C [V,;] C V,; C .
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Using the concept of invariant means, the following sequence spaces have been intro-
duced and examined by Mursaleen et al. [14] as a generalization of Das and Sahoo [3]:

Wy {x hm Z tem(x —1) = 0, for some ] € R, uniformly in m},
(W], = {x hm% Z | tkm(x — 1) | =0, for some I € R, uniformly in m}, (1.8)
k=0

[wo] = {x hmﬁ Z tkm (1x —1[) = 0, for some I € R, uniformly in m}
k=0

By a lacunary sequence 6 = (k,); r = 0,1,2,..., where ko = 0, we will mean an increas-
ing sequence of nonnegative integers with k, — k,_; — co. The intervals determined by
0 will be denoted by I, = (k,_1,k,] and we let h, = k, — k,_;. The ratio k./k,_; will be
denoted by g,. The space of lacunary strongly convergent sequences Ny was defined by
Freedman et al. [4] as

N9={x—( ) hmhiz |xk—1] =0, forsomel}. (1.9)

T kel,

The concept of lacunary strong o-convergence was introduced by Savas [18] which is
a generalization of the idea of lacunary strong almost convergence due to Das and Patel
2].

If [V?] denotes the set of all lacunary strongly o-convergent sequences, then Savas 18]
defined

[Ve] = {x = (xx) : hmh1 > |%gk(m — 1| = 0, for some I, uniformly in n} (1.10)

T kel,

Recall [5, 7] that an Orlicz function is a function M : [0,00) — [0, o) which is contin-
uous, nondecreasing, and convex with M(0) = 0, M(x) >0 for x >0, and M(x) — oo as
X — oo,

If convexity of M is replaced by M(x+ y) < M(x) + M(y), then it is called a modulus
function, defined and discussed by Ruckle [16].

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to define what is called
an Orlicz sequence space:

Iy = {x:ZM<M> < o0, forsomep>0} (1.11)

k=1 P

which is a Banach space with the norm

llxlla = 1nf{p>0 zM<| |)51} (1.12)

k=1 P
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An Orlicz function M is said to satisfy the A,-condition for all values of u, if there
exists a constant K > 0 such that

MQu) < KM(u) (u=0). (1.13)

It is easy to see that always K > 2. The A,-condition is equivalent to the satisfaction of
the inequality

M(lu) < K(lu)M(u) (1.14)

for every value of u and for I > 1 (see Krasnosel’skil and Rutickii [6]).

Parashar and Choudhary [15] have introduced and examined some properties of four
sequence spaces defined by using an Orlicz function M, which generalizes the well-known
Orlicz sequence space I and strong summable sequence spaces [C, 1, p], [C, 1, plo, and
[C, 1, plw. It may be noted that the spaces of strongly summable sequences were discussed
by Maddox [9].

The main object of this paper is to define and study the sequence spaces: [w?, M, iy
Alg, [wg,M,p, u,A]% and [we,M,p, u,A]%, which are defined by combining the concepts
of an Orlicz function, invariant mean, and lacunary convergence. We examine some lin-
earity and inclusion relations of these spaces and establish the connection between lacu-
nary [w],-convergence and lacunary [w],-convergence with respect to an Orlicz function
which satisfies the A,-condition.

Now, if u = (ux) is any sequence such that u; # 0(k = 1,2,...) and for any sequence
x = (xy), the difference sequence Ax is given by Ax = (Ax,),—1 = (xXn — Xu—1),=1, then we
define the following sequence spaces:

|t (ulx — le) | )]”

[w?, M, p,u,A], = {x = (xx) :lipl— > [M( ,

=0, for some [, p >0, uniformly in m},

Pk
[w?, M, p,u,A]; = {x = (%) :li;nhi > [WM)}

r p
. (1.15)

=0, for some p >0, uniformly in m},

Pk
nm T e,

< oo for some p > 0}.

If u = e, and Axy = xi, for all k, then these spaces reduce to those defined and studied
by Savas and Rhoades [19]. Also some sequence spaces are obtained by specializing 0,
M, and p. For example, if u = e, Axy = xx, and py = 1 for all k, then we get the spaces
(w9, M1y, [w?,M]9, and [wf, M]%.
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If x € [w? M],, we say that x is lacunary [w],-convergence with respect to the Orlicz
function M.

When u = e, Axg = xy, forall k, and o(n) = n+ 1, the spaces [w?, M, p,u, Al,, [w?, M, p,
u,A19, and [w? M, p,u,A]? reduce to the spaces [Wg, M, pls, [We, M, p]9, and [Wg, M,
P13, respectively, which are defined as

[Wo, M, p] = {x= (k) :liphi s |:M<|tmn(x—l)|>:|l7k

" mel, P

= 0, uniformly in n, for somel, p >0+,

Pk
[we, M, p], = {X= (xx) :limi Z [M<M)]
r hr mel, P
r (1.16)

= 0, uniformly in #, for some p > 0},

Pk
[wo, M, p], = {XZ (xx) :suphl Z [M(W)}
nn T el

< o0, for some p > 0}

Ifu = e, and Axy = xi, forall k, M(x) = x, 0 = (2"),and px = 1, for all k, then [WG,M,p,
u,Al, = [w], (see Mursaleen et al. [14]) and [wg, M, p,u,A] = [w] (see Das and Sahoo
[3]). When u = e, Axy = x, forall k, M(x) = x, and py = 1, for all k, then [wo,M,p,u,A]g
= (w9, [W0, M, p,u, A1 = [w]9. Ifu = e, Axx = xy, for all k, and 6 = (27), then [w?, M, p,
u,Aly = [w,M, plo, (W, M, p,u,A1% = [w,M, p]%, and [w?, M, p,u, A% = [w, M, p]<.

2. Main results

We proved the following theorems.

THEOREM 2.1. For any Orlicz function M and a bounded sequence p = (px) of strictly posi-
tive real numbers, (w9, M, p,u,Aly, (W0, M, p,u,A1%, and [w9, M, p,u, A1 are linear spaces
over the set of complex numbers.

Proof. We will prove the result only for [w?, M, p,u,A]%. The others can be treated sim-
ilarly. Let x,y € [w?, M, p,u,A]% and a,f € C, the set of complex numbers. In order to
prove the result, we need to find some p3 >0 such that

Pk
limhi > [M( |tkm(ocuA;c+ﬂuAy)| >} =0, uniformlyin m. (2.1)
T kel, 3
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Since x,y € [we,M,p, u,A]Y, there exist positive p; and p, such that

1 | tem (uAX) | ):|Pk
lim M| ———— =0,
r hy k% [ ( P1

! [ ten ()| \ 1" >
E 1 lem\URY )| _
h£n hy k%, [M< P2 ):| *
uniformly in m.
Define p3 = max(2|alp1,2|B1p2). Since M is nondecreasing and convex,
1 Z [ <|tkm(aqu+[3uAy)| )]pk
h, kel, P3
L | tom (@A) | ) ( |t (Bury) | >]P
= g [ <7p1 +M B (2.3)
| tem (uAx) | )] [ ( | tkm (Buly) | )]pk
D— —_— +D— —_—
= hy ké |: < P1 hy kér P2

— 0,as r — oo, uniformly in m, where D = max(1,2#!), H = sup py, so that aux+ fuy €
[w? M, p>u,A]%. This completes the proof. O

TaEOREM 2.2. For any Orlicz function M and a bounded sequence p = (px) of strictly posi-
tive real numbers, [(w?, M, p,u,A]Y is a topological linear space, totally paranormed by:

el o (1 1Y L _
(x) =inf 4 pP"* M <L r=12m=12,...1,
g h
" kel, P

(2.4)

where H = max(1,sup px).

Proof. It is easy to see that g(x) = g(—x). By using Theorem 2.1, for a« = § = 1, we get
glx+y) <g(x)+g(y). Since M(0) = 0, we get inf{p?’H} = 0 for x = 0. Conversely, sup-
pose g(x) = 0, then

. w1 | tm (uAX) | P\
inf { pP/**: W > M| <1r=0. (2.5)
T kel, P

This implies that for a given € > 0, there exists some p3(0 < p3 < €) such that

Iy [M< [ i (u0) | )]p v 1 (2.6)
hr kel, p3 o '
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Thus

1/H

Ly [M( |tkm(qu)|>Tk (L s [M( | () | )Tk <1
h’kel, € N hrkelr P3 o

for each r and m.
Suppose that x,i(j) # 0 for each i and j. This implies that #;;(x) # 0, for each i and j.

Let € — 0. Then
|tij(x)|
() ., o

1 | tIJ(MAX) | Pk 1/H
W > M<e> — o (2.9)
T iel,

which is a contradiction.

Therefore, t;;(x) = 0 for each i and j, and thus x,i(j) = 0 for each i and j.

Showing that scalar multiplication is continuous is a standard argument, so we omit
it. O

(2.7)

It follows that

Tueorem 2.3. For any Orlicz function M which satisfies the A;-condition, [w?,u,
Aly < (W9, M, u,Al.
To prove the theorem, we need the following lemma.

LemMMA 2.4. Let M be an Orlicz function which satisfies the A,-condition and let 0 < § < 1.
Then for each x > 8, M(x) < Kx6~'M(2) for some constant K > 0.

Proof. It follows by a straightforward calculation using the A,-condition. O
Proof of Theorem 2.3. Let x € [w?,u,A],. Then we have

1

A=

Z | tim(uAx —le)| — 0, (2.10)
" kel,

as r — oo, uniformly in m, for some /.
Let € > 0 and choose 6 with 0 < § < 1 such that M(¢) < € for 0 <t < 6.
Then we can write

LS Mltmudx—10)) == 5 M(|tin(udx- L))
" kel, T kel | tim(uAx—le)| <8
+ L > M (| tym(uArx —le)|) (2.11)

" kel |tim(uAx—le)|>6

<h;'(h,€)+h;'KS§'M(2)h,A,, by Lemma 2.4.

Letting r — oo, it follows that x € [w? M,u,A],. O
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THEOREM 2.5. Let 0 = (k) be a lacunary sequence with liminf, g, > 1. Then for any Or-
liCquT’lCtiOnM, [W,M,p,u,A]a C [WO)M)P)%AJU: [W)MaP)U)A]g C [WG’M’p’u’A]g’ al’ld
[w, M, p,u,A]? C (W0, M, p,u, A1, where

n Pk
[w, M, p,u, A, = {x = (%) +lim —— Z [ (M)]

p

= 0, uniformly in m, for somel, p > 0},

n Pk
(w, M, p,u,A]S = {x: (%) : sup 11 Z [M(M)] < oo, for some p >0}.
(2.12)

(In case | = 0, write [w,M, p,u,Al; = [w, M, p,u,A1%).

Proof. We will prove [w,M, p,u,A], C [w?,M, p,u,A], only. The others can be treated
similarly. It is sufficient to show that [w, M, p,u,A]% C [w? M, p,u,A]%; the general in-
clusion follows by linearity. Suppose liminf, g, > 1, then there exists § > 0 such that
qgr = (ky/ky—1) = 1+ 6 for all r > 1. Then for x € [w, M, p,u,A]°, we write

v s (gl
:}ié[M@fkm(gAx )]pﬁz[ (|tkm<qu ze>>>]

k
_ ke kit Z [M( | tkm (uAx) | ) k;l 1 ( ' : [ ( | tkm (ulx) | ﬂ )
r k=1 r k 1 P

(2.13)

Since h, = k, — k,_1, we have

1+6
< 78 (2.14)

1
ok &

3“??‘
S =

The terms k;lzlz’ UMt (uAx) | /p) ]Px and k; 1Zk M ([tkm (uAx)1/p) 1P both con-
verge to zero uniformly in m, and it follows that A, converges to zero as r — oo, uniformly
in m, thatis, x € [we,M,p, u,A19. This completes the proof. O

THEOREM 2.6. Let 0 = (k,) be a lacunary sequence with limsup, g, < co. Then for any Or-
licz function M, [w9, M, p,u,Al, C [w, M, p,u, A, [W0, M, p,u,A1% C [w,M, p,u,A)), and
(w0, M, p,u,A]? C [w, M, p,u,A]Z.

Proof. We will prove [we,M,p,u,A]g C [w,M, p,u,A], only. The others can be treated
similarly. It is sufficient to show that [w, M, p,u,A]% C [w, M, p,u,A]%; the general inclu-
sion follows by linearity. Suppose limsup, g, < o, then there exists B > 0 such that g, < B
for all r > 1. Let x € [w?,M, p,u,A]% and € > 0. Then there exists L > 0 such that for
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every j > L and all m,

Pk
[M(W”Ax)'ﬂ <e. (2.15)

1
Aj=3-2, ,

j kel;

We can also find K >0 such that A; <K forall j = 1,2,....
Now let n be any integer with k,_; < n < k,, where r > L. Then

1< | tem (uAX) | )Tk
_ M L MmNy /1
2 [t
<k kz [M(' tiom (uAx) | )]pk
k=1

p

= k7, { 2. [M(' tim (19| )r +> [M(' o (WA%)| )Tk
kel P kel P

Pk
e 3 [ mtiae) )
kel, P

Pk P
AP [M< [tin ()| )] ) [M(' tim (29) | )]

kel p -1 kel P
Pk
+oe +%(1<R_1<R71)‘1 s [M('tk’”(qu)'ﬂ
=1 kel P
Pk
Sy [M<|fkm(”Ax>|)]
-1 kel, P
_ Kk kay — ki kr —kp
B kr71Al+ k-1 Aot ke—1 Ar
kr+1 — kg ky — K,
+ kr—l AR+1 + + kr,1 Ar
< (suij) ke + <supA]-> ke = kr <K ki +€B.
j=1 krfl j=R kr71 kr—l

(2.16)

Since k,_; — o0 as n — oo, it follows that

n Pr
1y [WM)} _.o, (217)
o

p

uniformly in m, and consequently x € [w, M, p,u,A]%. This completes the proof of the
theorem. U

TaEOREM 2.7. Let 0 = (k) be a lacunary sequence with 1 < liminf, g, < limsup, g, < o.
Then for any Orlicz function M, [w,M, p,u,A]s = [we,M,p, u,Al,.

Proof. Theorem 2.7 follows from Theorems 2.5 and 2.6. O
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