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Suppose that C is a nonempty closed convex subset of a real uniformly convex Banach
space X . Let T : C→ C be an asymptotically quasi-nonexpansive mapping. In this paper,
we introduce the three-step iterative scheme for such map with error members. More-
over, we prove that if T is uniformly L-Lipschitzian and completely continuous, then the
iterative scheme converges strongly to some fixed point of T .

1. Introduction

Let C be a subset of normed space X , and let T be a self-mapping on C. T is said to be
nonexpansive provided that ‖Tx−Ty‖ ≤ ‖x− y‖ for all x, y ∈ C; T is called asymptoti-
cally nonexpansive if there exists a sequence {kn} in [0,∞) with limn→∞ kn = 0 such that
‖Tnx−Tny‖ ≤ (1 + kn)‖x− y‖ for all x, y ∈ C and n≥ 1. T is said to be an asymptotically
quasi-nonexpansive map if there exists a sequence {kn} in [0,∞) with limn→∞ kn = 0 such
that ‖Tnx− p‖ ≤ (1 + kn)‖x− p‖ for all x ∈ C and p ∈ F(T), and n ≥ 1 (F(T) denotes
the set of fixed points of T , that is, F(T)= {x ∈ C : Tx = x}).

From the above definitions, if F(T) �= ∅, then asymptotically nonexpansive mapping
must be asymptotically quasi-nonexpansive mapping.

The concept of asymptotically nonexpansiveness was introduced by Goebel and Kirk
in 1972 [2]. In 2001, Noor [5, 6] introduced the three-step iterative scheme and he stud-
ied the approximate solutions of variational inclusions (inequalities) in Hilbert spaces.
The three-step iterative approximation problems were studied extensively by Noor [5, 6],
Glowinski and Le Tallec [1], and Haubruge et al. [3].

Recently, Xu and Noor [8] introduced the three-step iterative scheme for asymptoti-
cally nonexpansive mappings and they proved the following strong convergence theorem
in Banach spaces.

Theorem 1.1 (see [8, Theorem 2.1]). Let X be a real uniformly convex Banach space, let
C be a nonempty closed, bounded convex subset of X . Let T be a completely continuous
and asymptotically nonexpansive self-mapping with sequence {kn} satisfying kn ≥ 0 and
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∑∞
n=1 kn <∞. Let {αn},{βn}, and {γn} be real sequences in [0,1] satisfying

(i) 0 < liminfn→∞αn ≤ limsupn→∞αn < 1,
(ii) 0 < liminfn→∞βn ≤ limsupn→∞βn < 1.
For a given x0 ∈D, define

zn = γnT
nxn +

(
1− γn

)
xn,

yn = βnT
nzn +

(
1−βn

)
xn,

xn+1 = αnT
nyn +

(
1−αn

)
xn.

(1.1)

Then {xn},{yn}, and {zn} converge strongly to a fixed point of T .

In this paper, we will extend the iterative scheme (1.1) to the iterative scheme of asymp-
totically quasi-nonexpansive mappings with error members. Moreover, we will prove the
strong convergence of iterative scheme to a fixed point of T (C need not to be a bounded
set), requiring T to be uniformly L-Lipschitzian and completely continuous. The results
presented in this paper generalize and extend the corresponding main results of Xu and
Noor [8].

2. Preliminaries

For the sake of convenience, we first recall some definitions and conclusions.

Definition 2.1 (see [2]). A Banach space X is said to be uniformly convex if the modulus
of convexity of X

δX(ε)= inf
{

1− ‖x+ y‖
2

: ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε
}
> 0 (2.1)

for all 0 < ε ≤ 2 (i.e., δX(ε) is a function (0,2]→ (0,1)).

Definition 2.2. A mapping T : C → C is called uniformly L-Lipschitzian if there exists a
constant L > 0 such that for all x, y ∈ C,

∥∥Tnx−Tny
∥∥≤ L‖x− y‖, ∀n≥ 1. (2.2)

In what follows, we will make use of the following lemmas.

Lemma 2.3 (see [4]). Let the nonnegative number sequences {an},{bn}, and {dn} satisfy
that

an+1 ≤
(
1 + bn

)
an +dn, ∀n= 1,2, . . . ,

∞∑
n=1

bn <∞,
∞∑
n=1

dn <∞. (2.3)

Then,
(1) limn→∞ an exists;
(2) if liminfn→∞ an = 0, then limn→∞ an = 0.
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Lemma 2.4 ([7], J. Schu’s Lemma). Let X be a real uniformly convex Banach space, 0 <
α≤ tn ≤ β < 1, xn, yn ∈ X , limsupn→∞‖xn‖ ≤ a, limsupn→∞‖yn‖ ≤ a, and limn→∞‖tnxn +
(1− tn)yn‖ = a, a≥ 0. Then, limn→∞‖xn− yn‖ = 0.

3. Main results

In this section, we prove our main theorem. First of all, we will need the following lem-
mas.

Lemma 3.1. Let X be a real uniformly convex Banach space, C a nonempty closed convex
subset of X . Let T be an asymptotically quasi-nonexpansive mapping with sequence {kn}n≥1

such that
∑∞

n=1 kn <∞ and F(T) �= ∅. Let x0 ∈ C and

zn = α′′n T
nxn +β′′n xn + γ′′n un,

yn = α′nT
nzn +β′nxn + γ′nvn,

xn+1 = αnT
nyn +βnxn + γnwn,

(3.1)

where {αn}, {α′n}, {α′′n }, {βn}, {β′n}, {β′′n }, {γn}, {γ′n}, and {γ′′n } are real sequences in [0,1]
and {un},{vn}, and {wn} are three bounded sequences in C such that

(i) αn +βn + γn = α′n +β′n + γ′n = α′′n +β′′n + γ′′n = 1,
(ii)

∑∞
n=1 γn <∞,

∑∞
n=1 γ

′
n <∞,

∑∞
n=1 γ

′′
n <∞.

If p ∈ F(T), then limn→∞‖xn− p‖ exists.

Proof. Let p ∈ F(T). Since {un},{vn}, and {wn} are bounded sequences in C, put

M = sup
n≥1

∥∥un− p
∥∥∨ sup

n≥1

∥∥vn− p
∥∥∨ sup

n≥1

∥∥wn− p
∥∥. (3.2)

Then M is a finite number. So for each n≥ 1, we note that

∥∥xn+1− p
∥∥= ∥∥αnTnyn +βnxn + γnwn− p

∥∥
≤ αn

∥∥Tnyn− p
∥∥+βn

∥∥xn− p
∥∥+ γn

∥∥wn− p
∥∥

≤ αn
(
1 + kn

)∥∥yn− p
∥∥+βn

∥∥xn− p
∥∥+ γn

∥∥wn− p
∥∥,

(3.3)

∥∥yn− p
∥∥= ∥∥α′nTnzn +β′nxn + γ′nvn− p

∥∥
≤ α′n

∥∥Tnzn− p
∥∥+β′n

∥∥xn− p
∥∥+ γ′n

∥∥vn− p
∥∥

≤ α′n
(
1 + kn

)∥∥zn− p
∥∥+β′n

∥∥xn− p
∥∥+ γ′n

∥∥vn− p
∥∥,

(3.4)

∥∥zn− p
∥∥≤ α′′n

(
1 + kn

)∥∥xn− p
∥∥+β′′n

∥∥xn− p
∥∥+ γ′′n

∥∥un− p
∥∥. (3.5)
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Substituting (3.5) into (3.4),

∥∥yn− p
∥∥≤ α′nα

′′
n

(
1 + kn

)2∥∥xn− p
∥∥

+α′nβ
′′
n

(
1 + kn

)∥∥xn− p
∥∥+α′nγ

′′
n

(
1 + kn

)∥∥un− p
∥∥+β′n

∥∥xn− p
∥∥+ γ′n

∥∥vn− p
∥∥

≤ (1−β′n− γ′n
)
α′′n
(
1 + kn

)2∥∥xn− p
∥∥+β′n

∥∥xn− p
∥∥

+
(
1−β′n− γ′n

)
β′′n
∥∥xn− p

∥∥+mn

≤ β′n
(
1 + kn

)2∥∥xn− p
∥∥+

(
1−β′n

)
α′′n
(
1 + kn

)2∥∥xn− p
∥∥

+
(
1−β′n

)
β′′n
(
1 + kn

)2∥∥xn− p
∥∥+mn

= β′n
(
1 + kn

)2∥∥xn− p
∥∥+

(
1−β′n

)(
α′′n +β′′n

)(
1 + kn

)2∥∥xn− p
∥∥+mn

≤ β′n
(
1 + kn

)2∥∥xn− p
∥∥+

(
1−β′n

)(
1 + kn

)2∥∥xn− p
∥∥+mn

= (1 + kn
)2∥∥xn− p

∥∥+mn,
(3.6)

where mn = γ′′n (1 + kn)M + γ′nM. Substituting (3.6) into (3.3) again, we have

∥∥xn+1− p
∥∥≤ αn

(
1 + kn

)((
1 + kn

)2∥∥xn− p
∥∥+mn

)
+βn

∥∥xn− p
∥∥+ γn

∥∥wn− p
∥∥

= αn
(
1 + kn

)3∥∥xn− p
∥∥+αn

(
1 + kn

)
mn +βn

∥∥xn− p
∥∥+ γn

∥∥wn− p
∥∥

≤ (αn +βn
)(

1 + kn
)3∥∥xn− p

∥∥+
(
1 + kn

)
mn + γn

∥∥wn− p
∥∥

≤ (1 + kn
)3∥∥xn− p

∥∥+
(
1 + kn

)
mn + γn

∥∥wn− p
∥∥

≤ (1 + kn
)3∥∥xn− p

∥∥+
(
1 + kn

)
mn + γnM

= (1 +dn
)∥∥xn− p

∥∥+ bn,

(3.7)

where dn = 3kn + 3k2
n + k3

n and bn = (1 + kn)mn + γnM. Since
∑∞

n=1dn <∞ and
∑∞

n=1 bn <
∞, by Lemma 2.3, we have that limn→∞‖xn− p‖ exists. This completes the proof. �

Lemma 3.2. Let X be a real uniformly convex Banach space, C a nonempty closed convex
subset of X . Let T be an asymptotically quasi-nonexpansive mapping with sequence {kn}n≥1

such that
∑∞

n=1 kn <∞ and F(T) �= ∅. Let x0 ∈ C and for each n≥ 0,

zn = α′′n T
nxn +β′′n xn + γ′′n un,

yn = α′nT
nzn +β′nxn + γ′nvn,

xn+1 = αnT
nyn +βnxn + γnwn,

(3.8)

where {un},{vn}, and {wn} are three bounded sequences in C and {αn}, {α′n}, {α′′n }, {βn},
{β′n}, {β′′n }, {γn}, {γ′n}, and {γ′′n } are real sequences in [0,1] which satisfy the same as-
sumptions as Lemma 3.1 and the additional assumption that 0≤ α < αn, βn,α′n,β′n ≤ β < 1
for some α, β in (0,1). Then limn→∞‖Tnyn− xn‖ = 0= limn→∞‖Tnzn− xn‖.
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Proof. For any p ∈ F(T), it follows from Lemma 3.1, that limn→∞‖xn − p‖ exists. Let
limn→∞‖xn− p‖ = a for some a≥ 0. From (3.6), we have

∥∥yn− p
∥∥≤ (1 + kn

)2∥∥xn− p
∥∥+mn. (3.9)

Taking limsupn→∞ in both sides, we obtain

limsup
n→∞

∥∥yn− p
∥∥≤ limsup

n→∞

∥∥xn− p
∥∥= lim

n→∞
∥∥xn− p

∥∥= a. (3.10)

Note that

limsup
n→∞

∥∥Tnyn− p
∥∥≤ limsup

n→∞

(
1 + kn

)∥∥yn− p
∥∥= limsup

n→∞

∥∥yn− p
∥∥≤ a,

a= lim
n→∞

∥∥xn+1− p
∥∥= lim

n→∞
∥∥αnTnyn +βnxn + γnwn− p

∥∥

= lim
n→∞

∥∥∥∥αn
[
Tnyn− p+

γn
2αn

(
wn− p

)]
+βn

[
xn− p+

γn
2βn

(
wn− p

)]∥∥∥∥
= lim

n→∞

∥∥∥∥αn
[
Tnyn− p+

γn
2αn

(
wn− p

)]
+
(
1−αn

)[
xn− p+

γn
2βn

(
wn− p

)]∥∥∥∥.

(3.11)

By J. Schu’s Lemma 2.4, we have

lim
n→∞

∥∥∥∥Tnyn− xn +
(
γn

2αn
− γn

2βn

)(
wn− p

)∥∥∥∥= 0. (3.12)

Since limn→∞‖(γn/2αn− γn/2βn)(wn− p)‖ = 0, it follows that

lim
n→∞

∥∥Tnyn− xn
∥∥= 0. (3.13)

Finally, we will prove that limn→∞‖Tnzn − xn‖ = 0. To this end, we note that for each
n≥ 1,

∥∥xn− p
∥∥≤ ∥∥Tnyn− xn

∥∥+
∥∥Tnyn− p

∥∥≤ ∥∥Tnyn− xn
∥∥+

(
1 + kn

)∥∥yn− p
∥∥. (3.14)

Since limn→∞‖Tnyn− xn‖ = 0= limn→∞ kn, we obtain that

a= lim
n→∞

∥∥xn− p
∥∥≤ liminf

n→∞
∥∥yn− p

∥∥. (3.15)

It follows that

a≤ liminf
n→∞

∥∥yn− p
∥∥≤ limsup

n→∞

∥∥yn− p
∥∥≤ a. (3.16)

This implies that

lim
n→∞

∥∥yn− p
∥∥= a. (3.17)
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On the other hand, we note that
∥∥zn− p

∥∥= ∥∥α′′n Tnxn +β′′n xn + γ′′n un− p
∥∥

≤ α′′n
(
1 + kn

)∥∥xn− p
∥∥+β′′n

∥∥xn− p
∥∥+ γ′′n

∥∥un− p
∥∥

≤ α′′n
(
1 + kn

)∥∥xn− p
∥∥+

(
1−α′′n

)(
1 + kn

)∥∥xn− p
∥∥+ γ′′n

∥∥un− p
∥∥

≤ (1 + kn
)∥∥xn− p

∥∥+ γ′′n
∥∥un− p

∥∥.
(3.18)

By boundedness of the sequence {un} and limn→∞ kn = 0= limn→∞ γ′′n , we have

limsup
n→∞

∥∥zn− p
∥∥≤ limsup

n→∞

∥∥xn− p
∥∥= a, (3.19)

and so

limsup
n→∞

∥∥Tnzn− p
∥∥≤ limsup

n→∞

(
1 + kn

)∥∥zn− p
∥∥≤ a,

a= lim
n→∞

∥∥yn− p
∥∥= lim

n→∞
∥∥α′nTnzn +β′nxn + γ′nvn− p

∥∥

= lim
n→∞

∥∥∥∥α′n
[
Tnzn− p+

γ′n
2α′n

(
vn− p

)]
+β′n

[
xn− p+

γ′n
2β′n

(
vn− p)

]∥∥∥∥
= lim

n→∞

∥∥∥∥α′n
[
Tnzn− p+

γ′n
2α′n

(
vn− p

)]
+
(
1−α′n

)[
xn− p+

γ′n
2β′n

(
vn− p

)]∥∥∥∥.

(3.20)

By J. Schu’s Lemma 2.4, we have

lim
n→∞

∥∥∥∥Tnzn− xn +
(
γ′n

2α′n
− γ′n

2β′n

)(
vn− p

)∥∥∥∥= 0. (3.21)

Since limn→∞‖(γ′n/2α′n− γ′n/2β′n)(vn− p)‖ = 0, it follows that

lim
n→∞

∥∥Tnzn− xn
∥∥= 0. (3.22)

This completes the proof. �

Theorem 3.3. Let X be a real uniformly convex Banach space, C a nonempty closed convex
subset of X . Let T be uniformly L-Lipschitzian, completely continuous, and an asymptotically
quasi-nonexpansive mapping with sequence {kn}n≥1 such that

∑∞
n=1 kn <∞ and F(T) �= ∅.

Let x0 ∈ C and for each n≥ 0,

zn = α′′n T
nxn +β′′n xn + γ′′n un,

yn = α′nT
nzn +β′nxn + γ′nvn,

xn+1 = αnT
nyn +βnxn + γnwn,

(3.23)

where {un},{vn}, and {wn} are three bounded sequences in C and {αn}, {α′n}, {α′′n }, {βn},
{β′n}, {β′′n }, {γn}, {γ′n}, and {γ′′n } are real sequences in [0,1] which satisfy the same as-
sumptions as Lemma 3.1 and the additional assumption that 0≤ α < αn, βn,α′n,β′n ≤ β < 1
for some α, β in (0,1). Then {xn},{yn}, and {zn} converge strongly to a fixed point of T .
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Proof. It follows from Lemma 3.2 that

lim
n→∞

∥∥Tnyn− xn
∥∥= 0= lim

n→∞
∥∥Tnzn− xn

∥∥ (3.24)

and this implies that

∥∥xn+1− xn
∥∥≤ αn

∥∥Tnyn− xn
∥∥+ γn

∥∥wn− xn
∥∥−→ 0 as n−→∞. (3.25)

We note that
∥∥Tnxn− xn

∥∥≤ ∥∥Tnxn−Tnyn
∥∥+

∥∥Tnyn− xn
∥∥≤ L

∥∥xn− yn
∥∥+

∥∥Tnyn− xn
∥∥

≤ α′nL
∥∥xn−Tnzn

∥∥+ γ′nL
∥∥vn− xn

∥∥+
∥∥Tnyn− xn

∥∥−→ 0 as n−→∞,

(3.26)∥∥xn−Txn
∥∥≤∥∥xn+1− xn

∥∥+
∥∥xn+1−Tn+1xn+1

∥∥+
∥∥Tn+1xn+1−Tn+1xn

∥∥+
∥∥Tn+1xn−Txn

∥∥
≤∥∥xn+1− xn

∥∥+
∥∥xn+1−Tn+1xn+1

∥∥+
(
1 + kn+1

)∥∥xn+1− xn
∥∥+L

∥∥Tnxn− xn
∥∥.

(3.27)

It follows from (3.25), (3.26), and the above inequality that

lim
n→∞

∥∥xn−Txn
∥∥= 0. (3.28)

By Lemma 3.1, {xn} is bounded. It follows from our assumption that T is completely
continuous and that there exists a subsequence {Txnk} of {Txn} such that Txnk → p ∈ C
as k→∞. Moreover, by (3.28), we have ‖Txnk − xnk‖ → 0 which implies that xnk → p as
k→∞. By (3.28) again, we have

∥∥p−Tp
∥∥= lim

k→∞
∥∥xnk −Txnk

∥∥= 0. (3.29)

This shows that p ∈ F(T). Furthermore, since limn→∞‖xn − p‖ exists, we have
limn→∞‖xn − p‖ = 0, that is, {xn} converges to some fixed point of T . It follows that

∥∥yn− xn
∥∥≤ α′n

∥∥Tnzn− xn
∥∥+ γ′n

∥∥vn− xn
∥∥−→ 0,∥∥zn− xn

∥∥≤ α′′n
∥∥Tnxn− xn

∥∥+ γ′′n
∥∥un− xn

∥∥−→ 0.
(3.30)

Therefore, limn→∞ yn = p = limn→∞ zn. This completes the proof. �
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