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The notion of left-right (resp., right-left) f -derivation of a BCI-algebra is introduced,
and some related properties are investigated. Using the idea of regular f -derivation, we
give characterizations of a p-semisimple BCI-algerba.

1. Introduction and preliminaries

In the theory of rings and near-rings, the properties of derivations are an important topic
to study, see [2, 3, 7, 10]. In [6], Jun and Xin applied the notions in rings and near-
rings theory to BCI-algebras, and obtained some related properties. In this paper, the
notion of left-right (resp., right-left) f -derivation of a BCI-algebra is introduced, and
some related properties are investigated. Using the idea of regular f -derivation, we give
characterizations of a p-semisimple BCI-algebra.

By a BCI-algebra we mean an algebra (X ;∗,0) of type (2,0) satisfying the following
conditions:

(I) ((x∗ y)∗ (x∗ z))∗ (z∗ y)= 0;
(II) (x∗ (x∗ y))∗ y = 0;

(III) x∗ x = 0;
(IV) x∗ y = 0 and y∗ x = 0 imply that x = y;

for all x, y,z ∈ X .
In any BCI-algebra X , one can define a partial order “≤” by putting x ≤ y if and only

if x∗ y = 0.
A subset S of a BCI-algebra X is called subalgebra of X if x∗ y ∈ S for all x, y ∈ S. A

subset I of a BCI-algebra X is called an ideal of X if it satisfies (i) 0∈ I ; (ii) x∗ y ∈ I and
y ∈ I imply that x ∈ I for all x, y ∈ X .

A mapping f of a BCI-algebra X into itself is called an endomorphism of X if f (x∗
y) = f (x)∗ f (y) for all x, y ∈ X . Note that f (0) = 0. Especially, f is monic if for any
x, y ∈ X , f (x)= f (y) implies that x = y.

A BCI-algebra X has the following properties:
(1) x∗ 0= x;
(2) (x∗ y)∗ z = (x∗ z)∗ y;
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(3) x ≤ y implies that x∗ z ≤ y∗ z and z∗ y ≤ z∗ x;
(4) x∗ (x∗ (x∗ y))= x∗ y;
(5) (x∗ z)∗ (y∗ z)≤ x∗ y;
(6) 0∗ (x∗ y)= (0∗ x)∗ (0∗ y);
(7) x∗ 0= 0 implies that x = 0.

For a BCI-algebra X , denote by X+ (resp., G(X)) the BCK-part (resp., the BCI-G part)
of X , that is, X+={x ∈ X | 0≤ x} (resp., G(X)= {x ∈ X | 0∗ x=x}). Note that G(X)∩
X+={0}. If X+ = {0}, then X is called a p-semisimple BCI-algebra.

In a p-semisimple BCI-algebra X , the following hold:
(8) (x∗ z)∗ (y∗ z)= x∗ y;
(9) 0∗ (0∗ x)= x;

(10) x∗ (0∗ y)= y∗ (0∗ x);
(11) x∗ y = 0 implies that x = y;
(12) x∗ a= x∗ b implies that a= b;
(13) a∗ x = b∗ x implies that a= b;
(14) a∗ (a∗ x)= x.
Let X be a p-semisimple BCI-algebra. We define addition “+” as x + y = x∗ (0∗ y)

for all x, y ∈ X . Then (X ,+) is an abelian group with identity 0 and x− y = x∗ y. Con-
versely, let (X ,+) be an abelian group with identity 0 and let x∗ y = x− y. Then X is a
p-semisimple BCI-algebra and x+ y = x∗ (0∗ y) for all x, y ∈ X (see [5]).

For a BCI-algebra X , we denote x∧ y = y∗ (y∗ x), in particular, 0∗ (0∗ x)= ax, and
Lp(X)= {a∈ X | x∗ a= 0⇒ x = a for any x ∈ X}. We call the elements of Lp(X) the p-
atoms of X . For any a∈ X , let V(a)= {x ∈ X | a∗ x = 0}, which is called the branch of X
with respect to a. It follows that x∗ y ∈V(a∗ b) whenever x ∈V(a) and y ∈V(b) for all
x, y ∈ X and a,b ∈ Lp(X). Note that Lp(X)= {x ∈ X | ax = x}, which is the p-semisimple
part of X , and X is a p-semisimple BCI-algebra if and only if Lp(X)= X (see [6]). Note
also that ax ∈ Lp(X), that is, 0∗ (0∗ ax)= ax, which implies that ax ∗ y ∈ Lp(X) for all
y ∈ X . It is clear that G(X)⊆ Lp(X), x∗ (x∗ a)= a, and a∗ x ∈ Lp(X) for all a∈ Lp(X)
and x ∈ X . For more details, refer to [1, 8, 11].

Definition 1.1 [9]. A BCI-algebra X is said to be commutative if x = x∧ y whenever x ≤ y
for all x, y ∈ X .

Definition 1.2 [4]. A BCI-algebra X is said to be branchwise commutative if x∧ y = y∧ x
for all x, y ∈V(a) and all a∈ Lp(X).

Lemma 1.3 [6]. A BCI-algebraX is commutative if and only if it is branchwise commutative.

Definition 1.4 [6]. Let X be a BCI-algebra. By a left-right derivation (briefly, (l,r)-
derivation) of X , a self-map d of X satisfying the identity d(x∗ y) = (d(x)∗ y)∧ (x∗
d(y)) for all x, y ∈ X is meant. If d satisfies the identity d(x∗ y)= (x∗d(y))∧ (d(x)∗ y)
for all x, y ∈ X , then it is said that d is a right-left derivation (briefly, (r, l)-derivation) of
X . Moreover, if d is both an (r, l)- and an (l,r)-derivation, it is said that d is a derivation.

2. f -derivations

In what follows, let f be an endomorphism of X unless otherwise specified.
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Definition 2.1. Let X be a BCI-algebra. By a left-right f -derivation (briefly, (l,r)- f -
derivation) of X , a self-map d f of X satisfying the identity d f (x∗ y)= (d f (x)∗ f (y))∧
( f (x)∗d f (y)) for all x, y ∈ X is meant, where f is an endomorphism of X . If d f satisfies
the identity d f (x∗ y) = ( f (x)∗ d f (y))∧ (d f (x)∗ f (y)) for all x, y ∈ X , then it is said
that d f is a right-left f -derivation (briefly, (r, l)- f -derivation) of X . Moreover, if d f is both
an (r, l)- and an (l,r)- f -derivation, it is said that d f is an f -derivation.

Example 2.2. Let X = {0,1,2,3,4,5} be a BCI-algebra with the following Cayley table:

∗ 0 1 2 3 4 5
0 0 0 2 2 2 2
1 1 0 2 2 2 2
2 2 2 0 0 0 0
3 3 2 1 0 0 0
4 4 2 1 1 0 1
5 5 2 1 1 1 0

Define a map d f : X → X by

d f (x)=



2 if x = 0,1,

0 otherwise,
(2.1)

and define an endomorphism f of X by

f (x)=



0 if x = 0,1,

2 otherwise.
(2.2)

Then it is easily checked that d f is both derivation and f -derivation of X .

Example 2.3. Let X be a BCI-algebra as in Example 2.2. Define a map d f : X → X by

d f (x)=



2 if x = 0,1,

0 otherwise.
(2.3)

Then it is easily checked that d f is a derivation of X .
Define an endomorphism f of X by

f (x)= 0, ∀x ∈ X. (2.4)

Then d f is not an f -derivation of X since

d f (2∗ 3)= d f (0)= 2, (2.5)

but

(
d f (2)∗ f (3)

)∧ ( f (2)∗d f (3)
)= (0∗ 0)∧ (0∗ 0)= 0∧ 0= 0, (2.6)

and thus d f (2∗ 3) 
= (d f (2)∗ f (3))∧ ( f (2)∗d f (3)).
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Remark 2.4. From Example 2.3, we know that there is a derivation of X which is not an
f -derivation of X .

Example 2.5. Let X = {0,1,2,3,4,5} be a BCI-algebra with the following Cayley table:

∗ 0 1 2 3 4 5
0 0 0 3 2 3 2
1 1 0 5 4 3 2
2 2 2 0 3 0 3
3 3 3 2 0 2 0
4 4 2 1 5 0 3
5 5 3 4 1 2 0

Define a map d f : X → X by

d f (x)=




0 if x = 0,1,

2 if x = 2,4,

3 if x = 3,5,

(2.7)

and define an endomorphism f of X by

f (x)=




0 if x = 0,1,

2 if x = 2,4,

3 if x = 3,5.

(2.8)

Then it is easily checked that d f is both derivation and f -derivation of X .

Example 2.6. Let X be a BCI-algebra as in Example 2.5. Define a map d f : X → X by

d f (x)=




0 if x = 0,1,

2 if x = 2,4,

3 if x = 3,5.

(2.9)

Then it is easily checked that d f is a derivation of X .
Define an endomorphism f of X by

f (0)= 0, f (1)= 1, f (2)= 3, f (3)= 2, f (4)= 5, f (5)= 4. (2.10)

Then d f is not an f -derivation of X since

d f (2∗ 3)= d f (3)= 3, (2.11)

but

(
d f (2)∗ f (3)

)∧ ( f (2)∗d f (3)
)= (2∗ 2)∧ (3∗ 3)= 0∧ 0= 0, (2.12)

and thus d f (2∗ 3) 
= (d f (2)∗ f (3))∧ ( f (2)∗d f (3)).
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Example 2.7. Let X be a BCI-algebra as in Example 2.5. Define a map d f : X → X by

d f (0)= 0, d f (1)= 1, d f (2)= 3, d f (3)= 2, d f (4)= 5, d f (5)= 4. (2.13)

Then d f is not a derivation of X since

d f (2∗ 3)= d f (3)= 2, (2.14)

but

(
d f (2)∗ 3

)∧ (2∗d f (3)
)= (3∗ 3)∧ (2∗ 2)= 0∧ 0= 0, (2.15)

and thus d f (2∗ 3) 
= (d f (2)∗ 3)∧ (2∗d f (3)).
Define an endomorphism f of X by

f (0)= 0, f (1)= 1, f (2)= 3, f (3)= 2, f (4)= 5, f (5)= 4. (2.16)

Then it is easily checked that d f is an f -derivation of X .

Remark 2.8. From Example 2.7, we know that there is an f -derivation of X which is not
a derivation of X .

For convenience, we denote fx = 0∗ (0∗ f (x)) for all x ∈ X . Note that fx ∈ Lp(X).

Theorem 2.9. Let d f be a self-map of a BCI-algebra X defined by d f (x)= fx for all x ∈ X .
Then d f is an (l,r)- f -derivation of X . Moreover, if X is commutative, then d f is an (r, l)-
f -derivation of X .

Proof. Let x, y ∈ X .
Since

0∗ (0∗ ( fx ∗ f (y)
))= 0∗ (0∗ ((0∗ (0∗ f (x)

))∗ f (y)
))

= 0∗ (0∗ ((0∗ f (y)
)∗ (0∗ f (x)

)))

= 0∗ (0∗ (0∗ f (y∗ x)
))= 0∗ f (y∗ x)

= 0∗ ( f (y)∗ f (x)
)= (0∗ f (y)

)∗ (0∗ f (x)
)

= (0∗ (0∗ f (x)
))∗ f (y)= fx ∗ f (y),

(2.17)

we have fx ∗ f (y)∈ LP(X), and thus

fx ∗ f (y)= ( f (x)∗ fy
)∗ (( f (x)∗ fy

)∗ ( fx ∗ f (y)
))
. (2.18)

It follows that

d f (x∗ y)= fx∗y = 0∗ (0∗ f (x∗ y)
)= 0∗ (0∗ ( f (x)∗ f (y)

))

= (0∗ (0∗ f (x)
))∗ (0∗ (0∗ f (y)

))= fx ∗ fy

= (0∗ (0∗ fx
))∗ (0∗ (0∗ f (y)

))= 0∗ (0∗ ( fx ∗ f (y)
))

= fx ∗ f (y)= ( f (x)∗ fy
)∗ (( f (x)∗ fy

)∗ ( fx ∗ f (y)
))

= ( fx ∗ f (y)
)∧ ( f (x)∗ fy

)= (d f (x)∗ f (y)
)∧ ( f (x)∗d f (y)

)
,

(2.19)
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and so d f is an (l,r)- f -derivation of X . Now, assume that X is commutative. Using
Lemma 1.3, it is sufficient to show that d f (x)∗ f (y) and f (x)∗ d f (y) belong to the
same branch for all x, y ∈ X , we have

d f (x)∗ f (y)= fx ∗ f (y)= 0∗ (0∗ ( fx ∗ f (y)
))

= (0∗ (0∗ fx
))∗ (0∗ (0∗ f (y)

))

= fx ∗ fy ∈V
(
fx ∗ fy

)
,

(2.20)

and so fx ∗ fy=(0∗ (0∗ f (x)))∗ (0∗ (0∗ fy))=0∗ (0∗ ( f (x)∗ fy))=0∗ (0∗( f (x)∗
d f (y)))≤ f (x)∗d f (y), which implies that f (x)∗ d f (y)∈ V( fx ∗ fy). Hence, d f (x)∗
f (y) and f (x)∗d f (y) belong to the same branch, and so

d f (x∗ y)= (d f (x)∗ f (y)
)∧ ( f (x)∗d f (y)

)

= ( f (x)∗d f (y)
)∧ (d f (x)∗ f (y)

)
.

(2.21)

This completes the proof. �

Proposition 2.10. Let d f be a self-map of a BCI-algebra X . Then the following hold.
(i) If d f is an (l,r)- f -derivation of X , then d f (x)= d f (x)∧ f (x) for all x ∈ X .

(ii) If d f is an (r, l)- f -derivation of X , then d f (x) = f (x)∧ d f (x) for all x ∈ X if and
only if d f (0)= 0.

Proof. (i) Let d f be an (l,r)- f -derivation of X . Then,

d f (x)= d f (x∗ 0)= (d f (x)∗ f (0)
)∧ ( f (x)∗d f (0)

)

= (d f (x)∗ 0
)∧ ( f (x)∗d f (0)

)= d f (x)∧ ( f (x)∗d f (0)
)

= ( f (x)∗d f (0)
)∗ (( f (x)∗d f (0)

)∗d f (x)
)

= ( f (x)∗d f (0)
)∗ (( f (x)∗d f (x)

)∗d f (0)
)

≤ f (x)∗ ( f (x)∗d f (x)
)= d f (x)∧ f (x).

(2.22)

But d f (x)∧ f (x)≤ d f (x) is trivial and so (i) holds.
(ii) Let d f be an (r, l)- f -derivation of X . If d f (x) = f (x)∧ d f (x) for all x ∈ X , then

for x = 0, d f (0)= f (0)∧d f (0)= 0∧d f (0)= d f (0)∗ (d f (0)∗ 0)= 0.
Conversely, if d f (0) = 0, then d f (x) = d f (x∗ 0) = ( f (x)∗ d f (0))∧ (d f (x)∗ f (0)) =

( f (x)∗ 0)∧ (d f (x)∗ 0)= f (x)∧d f (x), ending the proof. �

Proposition 2.11. Let d f be an (l,r)- f -derivation of a BCI-algebra X . Then,
(i) d f (0)∈ Lp(X), that is, d f (0)= 0∗ (0∗d f (0));

(ii) d f (a)= d f (0)∗ (0∗ f (a))= d f (0) + f (a) for all a∈ Lp(X);
(iii) d f (a)∈ Lp(X) for all a∈ Lp(X);
(iv) d f (a+ b)= d f (a) +d f (b)−d f (0) for all a,b ∈ Lp(X).
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Proof. (i) The proof follows from Proposition 2.10(i).
(ii) Let a ∈ Lp(X), then a = 0∗ (0∗ a), and so f (a) = 0∗ (0∗ f (a)), that is, f (a) ∈

Lp(X). Hence

d f (a)= d f
(
0∗ (0∗ a)

)

= (d f (0)∗ f (0∗ a)
)∧ ( f (0)∗d f (0∗ a)

)

= (d f (0)∗ f (0∗ a)
)∧ (0∗d f (0∗ a)

)

= (0∗d f (0∗ a)
)∗ ((0∗d f (0∗ a)

)∗ (d f (0)∗ f (0∗ a)
))

= (0∗d f (0∗ a)
)∗ ((0∗ (d f (0)∗ f (0∗ a)

))∗d f (0∗ a
))

= 0∗ (0∗ (d f (0)∗ ( f (0)∗ f (a)
)))

= 0∗ (0∗ (d f (0)∗ (0∗ f (a)
)))

= d f (0)∗ (0∗ f (a)
)= d f (0) + f (a).

(2.23)

(iii) The proof follows directly from (ii).
(iv) Let a,b ∈ Lp(X). Note that a+ b∈ Lp(X), so from (ii), we note that

d f (a+ b)= d f (0) + f (a+ b)

= d f (0) + f (a) +d f (0) + f (b)−d f (0)= d f (a) +d f (b)−d f (0).
(2.24)

�

Proposition 2.12. Let d f be a (r, l)- f -derivation of a BCI-algebra X . Then,
(i) d f (a)∈G(X) for all a∈G(X);

(ii) d f (a)∈ Lp(X) for all a∈G(X);
(iii) d f (a)= f (a)∗d f (0)= f (a) +d f (0) for all a∈ Lp(X);
(iv) d f (a+ b)= d f (a) +d f (b)−d f (0) for all a,b ∈ Lp(X).

Proof. (i) For any a∈G(X), we have d f (a)= d f (0∗ a)= ( f (0)∗d f (a))∧ (d f (0)∗ f (a))
= (d f (0)∗ f (a))∗ ((d f (0)∗ f (a))∗ (0∗d f (a)))= 0∗d f (a), and so d f (a)∈G(X).

(ii) For any a∈ Lp(X), we get

d f (a)= d f
(
0∗ (0∗ a)

)= (0∗d f (0∗ a)
)∧ (d f (0)∗ f (0∗ a)

)

= (d f (0)∗ f (0∗ a)
)∗ ((d f (0)∗ f (0∗ a)

)∗ (0∗d f (0∗ a)
))

= 0∗d f (0∗ a)∈ Lp(X).

(2.25)

(iii) For any a∈ Lp(X), we get

d f (a)= d f (a∗ 0)= ( f (a)∗d f (0)
)∧ (d f (a)∗ f (0)

)

= d f (a)∗ (d f (a)∗ ( f (a)∗d f (0)
))= f (a)∗d f (0)

= f (a)∗ (0∗d f (0)
)= f (a) +d f (0).

(2.26)

(iv) The proof follows from (iii). This completes the proof. �
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Using Proposition 2.12, we know there is an (l,r)- f -derivation which is not an (r, l)-
f -derivation as shown in the following example.

Example 2.13. Let Z be the set of all integers and “−” the minus operation on Z. Then
(Z,−,0) is a BCI-algebra. Let d f : X → X be defined by d f (x) = f (x)− 1 for all x ∈ Z.
Then,

(
d f (x)− f (y)

)∧ ( f (x)−d f (y)
)= ( f (x)− 1− f (y)

)∧ ( f (x)− ( f (y)− 1
))

= ( f (x− y)− 1
)∧ ( f (x− y) + 1

)

= ( f (x− y) + 1
)− 2= f (x− y)− 1

= d f (x− y).

(2.27)

Hence, d f is an (l,r)- f -derivation of X . But d f (0)= f (0)−1=−1 
= 1= f (0)−d f (0) =
0−d f (0), that is, d f (0) /∈G(X). Therefore, d f is not an (r, l)- f -derivation of X by Propo-
sition 2.12(i).

3. Regular f -derivations

Definition 3.1. An f -derivation d f of a BCI-algebra X is said to be regular if d f (0)= 0.

Remark 3.2. We know that the f -derivations d f in Examples 2.5 and 2.7 are regular.

Proposition 3.3. Let X be a commutative BCI-algebra and let d f be a regular (r, l)- f -
derivation of X . Then the following hold.

(i) Both f (x) and d f (x) belong to the same branch for all x ∈ X .
(ii) d f is an (l,r)- f -derivation of X .

Proof. (i) Let x ∈ X . Then,

0= d f (0)= d f
(
ax ∗ x

)

= ( f (ax
)∗d f (x)

)∧ (d(ax
)∗ f (x)

)

= (d(ax
)∗ f (x)

)∗ ((d(ax
)∗ f (x)

)∗ ( f (ax
)∗d f (x)

))

= (d(ax
)∗ f (x)

)∗ ((d(ax
)∗ f (x)

)∗ ( fx ∗d f (x)
))

= fx ∗d f (x) since fx ∗d f (x)∈ LP(X),

(3.1)

and so fx ≤ d f (x). This shows that d f (x)∈V( fx). Clearly, f (x)∈V( fx).
(ii) By (i), we have f (x)∗ d f (y) ∈ V( fx ∗ fy) and d f (x)∗ f (y) ∈ V( fx ∗ fy). Thus

d f (x∗ y) = ( f (x)∗ d f (y))∧ (d f (x)∗ f (y)) = (d f (x)∗ f (y))∧ ( f (x)∗ d f (y)), which
implies that d f is an (l,r)- f -derivation of X . �

Remark 3.4. The f -derivations d f in Examples 2.5 and 2.7 are regular f -derivations but
we know that the (l,r)- f -derivation d f in Example 2.2 is not regular. In the following, we
give some properties of regular f -derivations.

Definition 3.5. Let X be a BCI-algebra. Then define kerd f = {x ∈ X | d f (x) = 0 for all
f -derivations d f }.
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Proposition 3.6. Let d f be an f -derivation of a BCI-algebra X . Then the following hold:
(i) d f (x)≤ f (x) for all x ∈ X ;

(ii) d f (x)∗ f (y)≤ f (x)∗d f (y) for all x, y ∈ X ;
(iii) d f (x∗ y)= d f (x)∗ f (y)≤ d f (x)∗d f (y) for all x, y ∈ X ;
(iv) kerd f is a subalgebra of X . Especially, if f is monic, then kerd f ⊆ X+.

Proof. (i) The proof follows by Proposition 2.10(ii).
(ii) Since d f (x)≤ f (x) for all x ∈ X , then d f (x)∗ f (y)≤ f (x)∗ f (y)≤ f (x)∗d f (y).
(iii) For any x, y ∈ X , we have

d f (x∗ y)= ( f (x)∗d f (y)
)∧ (d f (x)∗ f (y)

)

= (d f (x)∗ f (y)
)∗ ((d f (x)∗ f (y)

)∗ ( f (x)∗d f (y)
))

= (d f (x)∗ f (y)
)∗ 0= d f (x)∗ f (y)≤ d f (x)∗d f (y),

(3.2)

which proves (iii).
(iv) Let x, y∈kerd f , then d f (x)=0=d f (y), and so d f (x∗ y) ≤ d f (x)∗ d f (y) = 0∗

0= 0 by (iii), and thus d f (x∗ y)= 0, that is, x∗ y ∈ kerd f . Hence, kerd f is a subalgebra
of X . Especially, if f is monic, and letting x ∈ kerd f , then 0= d f (x)≤ f (x) by (i), and so
f (x)∈ X+, that is, 0∗ f (x)= 0, and thus f (0∗ x)= f (x), which implies that 0∗ x = x,
and so x ∈ X+, that is, kerd f ⊆ X+. �

Theorem 3.7. Let f be monic of a commutative BCI-algebra X . Then X is p-semisimple if
and only if kerd f = {0} for every regular f -derivation d f of X .

Proof. Assume that X is p-semisimple BCI-algebra and let d f be a regular f -derivation
of X . Then X+ = {0}, and so kerd f = {0} by using Proposition 3.6(iv). Conversely, let
kerd f = {0} for every regular f -derivation d f of X . Define a self-map d f of X by d∗f (x)=
fx for all x ∈ X . Using Theorem 2.9, d∗f is an f -derivation of X . Clearly, d∗f (0) = f0 =
0∗ (0∗ f (0)) = 0, and so d∗f is a regular f -derivation of X . It follows from the hy-
pothesis that kerd∗f = {0}. In addition, d∗f (x) = fx = 0∗ (0∗ f (x)) = f (0∗ (0∗ x)) =
f (0) = 0 for all x ∈ X+, and thus x ∈ kerd∗f , which shows that X+ ⊆ kerd∗f . Hence, by
Proposition 3.6(iv), X+ = kerd∗f = {0}. Therefore X is p-semisimple. �

Definition 3.8. An ideal A of a BCI-algebra X is said to be an f -ideal if f (A)⊆A.

Definition 3.9. Let d f be a self-map of a BCI-algebra X . An f -ideal A of X is said to be
d f -invariant if d f (A)⊆ A.

Theorem 3.10. Let d f be a regular (r, l)- f -derivation of a BCI-algebra X , then every f -
ideal A of X is d f -invariant.

Proof. By Proposition 2.10(ii), we have d f (x) = f (x)∧ d f (x) ≤ f (x) for all x ∈ X . Let
y ∈ d f (A). Then y = d f (x) for some x ∈A. It follows that y∗ f (x)= d f (x)∗ f (x)= 0∈
A. Since x ∈ A, then f (x)∈ f (A)⊆ A as A is an f -ideal. It follows that y ∈ A since A is
an ideal of X . Hence d f (A)⊆A, and thus A is d f -invariant. �

Theorem 3.11. Let d f be an f -derivation of a BCI-algebra X . Then d f is regular if and
only if every f -ideal of X is d f -invariant.



1684 On f -derivations of BCI-algebras

Proof. Let d f be a derivation of a BCI-algebra X and assume that every f -ideal of X is
d f -invariant. Then since the zero ideal {0} is f -ideal and d f -invariant, we have d f ({0})⊆
{0}, which implies that d f (0)= 0. Thus d f is regular. Combining this and Theorem 3.10,
we complete the proof. �
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