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We establish inequalities between the Ricci curvature and the squared mean curvature,
and also between the k-Ricci curvature and the scalar curvature for a slant, semi-slant,
and bi-slant submanifold in a locally conformal almost cosymplectic manifold with arbi-
trary codimension.

1. Preliminaries

Let M bea 2m + 1)-dimensional almost contact manifold with almost contact structure
(¢,&,1), that is, a global vector field €, a (1,1) tensor field ¢, and a 1-form 7 on M such that
P*X = =X +n(X)&, n(&) = 1 for any vector field X on M. We consider a product manifold
M x R, where R denotes a real line. Then a vector field on M X R is given by (X, f(d/dt)),
where X is a vector field tangent to M, t the coordinate of R, and f a function on M x
R. We define a linear map J on the tangent space of M x R by J(X, f(d/dt)) = (¢X —
fEn(X)(d/dt)). Then we have J> = —I, and hence ] is an almost complex structure on
M x R. The manifold M is said to be normal (see [6]) if the almost complex structure J
is integrable (i.e., J arises from a complex structure on M x R). Let g be a Riemannian
metric on M compatible with (¢,¢, r1 ), that is, g(@X,@Y) = (X Y) - n(X)n(Y) for any
vector fields X and Y tangent to M. Thus, the manifold M is almost contact metric,
and (¢,&,7,¢) is its almost contact metric structure. Clearly, we have n(X) = g(X,§) for
any vector field X tangent to M. Let ® denote the fundamental 2-form of M defined by
D(X,Y) = g(¢X,Y) for any vector fields X and Y tangent to M. The manifold M is said to
be almost cosymplectic if the forms # and ® are closed. Thatis, diy = 0 and d® = 0, where d
is the operator of exterior differentiation. If M is almost cosymplectic and normal, then it
is called cosymplectic (see[1]). It is well known that the almost contact metric manifold is
cosymplectic if and only if V¢ vanishes identically, where V is the Levi-Civita connection
on M. An almost contact metric manifold M is a locally conformal almost cosymplectic
manifold if and only if there exists a 1-form w such that d® = 2w A @, dy = w A 1, and
dw =0.

On the other hand, it is wellknown that the Riemannian curvature tensor R on a locally
conformal almost cosymplectic manifold M (m > 2) of pointwise constant ¢-sectional
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curvature c satisfies (see[6])

g(RX,Y)Z,W)

_ 2
= 2 g0, Wig(v,2) - g%, 2)g(Y, W)
2
+ L +4f {g(X,oW)g(Y,0Z) — g(X,0Z)g(Y, W) — 2¢(X,9Y)g(Z,oW)}
2
—<—C+4f +f’>{g<X,W>n(Y>r;(Z)—g(X,Z)n<Y);7(W>+g<y,z);1(xm(w)

-g(Y,WinXom(2)}, X,Y,Z,W € T,M,
(1.1)

where f is the function such that w = f, f" =& f.

In [5], Lotta has introduced the following notion of slant submanifolds into almost
contact metric manifolds. A submanifold M tangent to & in locally conformal almost
cosymplectic manifold M is said to be slant if for any p € M and any X € T,M, linearly
independent of &, the angle between ¢X and T, M is a constant 0 € [0,7/2], called the
slant angle of M in M. Invariant and anti-invariant submanifolds of M are slant subman-
ifolds with slant angles 6 = 0 and 6 = /2, respectively.

We say that a submanifold M tangent to £ is a bi-slant submanifold in M if there exist
two orthogonal distributions %, and %, on M such that

(1) TM admits the orthogonal direct decomposition TM = %; & %@, & {£};
(2) for any i = 1,2, 9; is slant distribution with slant angle 6;.
On the other hand, CR-submanifolds of M are bi-slant submanifolds with 6, = 0, 6, =
/2.
Let 2d; = dAim %, and 2d; = dim%,.

Remark 1.1. If either d; or d, vanishes, the bi-slant submanifold is a slant submanifold.
Thus, slant submanifolds are particular cases of bi-slant submanifolds.

A submanifold M tangent to £ is called a semi-slant submanifold in M if there exist
two orthogonal distributions %; and %, on M such that

(1) TM admits the orthogonal direct decomposition TM =%, & @, & {&};

(2) the distribution 9, is an invariant distribution, that is, (%) = %;

(3) the distribution 9 is slant with angle 6 # 0.

Remark 1.2. The invariant distribution of a semi-slant submanifold is a slant distribution
with zero angle. Thus, it is obvious that, in fact, semi-slant submanifolds are particular
cases of bi-slant submanifolds.

(1) If d, = 0, then M is an invariant submanifold.

(2) If d; = 0 and 0 = /2, then M is an anti-invariant submanifold.

For the other properties and examples of slant, bi-slant, and semi-slant submanifolds
in an almost contact metric manifold, we refer to [2, 3].

Let M be an n-dimensional submanifold of a locally conformal almost cosymplectic
manifold M equipped with a Riemannian metric g. The Gauss and Weingarten formulas
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are given, respectively, by
@XYZV)(Y-I—]’I(X,Y), @XNZ—ANX-I—V}J}N, (1.2)

for all X,Y € TM and N € T+ M, where V, V, and V+ are the Riemannian, induced
Riemannian, and induced normal connections in M , M, and the normal bundle T+ M of
M, respectively, and h is the second fundamental form related to the shape operator A by
g(h(X,Y),N) = g(AnX,Y). Also, let R be the Riemannian curvature tensor of M. Then
the equation of Gauss is given by

R(X,Y,Z,W) =R(X,Y,Z,W)+g(h(X,W),h(Y,Z)) —g(h(X,Z),h(Y,W)), (1.3)

for any vectors X, Y, Z, W tangent to M.

For any vector X tangent to M, we put ¢X = PX + FX, where PX and FX are the
tangential and the normal components of ¢X, respectively. Given an orthonormal basis
{e1,...,en} of M, we define the squared norm of P by

|P|? = Zg (Peive;) (1.4)
i,j=1

and the mean curvature vector H(p) at p € M is given by H = (1/n) >."_, h(e;,e;).
We put

hi;=g(h(ene;)e),  IIRlI* = Zg (einej),h(ene;)), (1.5)
i,j=1

where {e,11,...,€m+1} is an orthonormal basis of T;M andr=n+1,...,2m+ 1. A sub-

manifold M in M is called totally geodesic if the second fundamental form vanishes iden-
tically and totally umbilical if there is a real number A such that h(X,Y) = Ag(X,Y)H for
any tangent vectors X, Y on M.

For an n-dimensional Riemannian manifold M, we denote by K (7) the sectional cur-
vature of M associated with a plane section w C T, M, p € M. For an orthonormal basis
{e1,...,e,} of the tangent space T, M, the scalar curvature 7 is defined by

T= zKija (1~6)

i<j

where Kj; denotes the sectional curvature of the 2-plane section spanned by e; and e;.

Suppose that L is a k-plane section of T, M and X a unit vector in L. We choose an
orthonormal basis {ej,...,er} of L such that e; = X. Define the Ricci curvature Ric; of L
at X by

RICL(X) = K12 + .- +K1k. (17)
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We simply called such a curvature a k-Ricci curvature. The scalar curvature 7 of the k-
plane section L is given by

(L)= > Ki. (1.8)

I<i<j<k

For each integer k, 2 < k < n, the Riemannain invariant @ on an n-dimensional Rie-
mannian manifold M is defined by

1. .
®k(p)=k_11L{1)§Rch(X), pPEM, (1.9)

where L runs over all k-plane sections in T, M and X runs over all unit vectors in L.
Recall that for a submanifold M in a Riemannain manifold, the relative null space of
M at a point p € M is defined by

N, = {XeT,M|h(X,Y)=0VY e T,M}. (1.10)

2. Ricci curvature and squared mean curvature

Chen established a sharp relationship between the Ricci curvature and the squared mean
curvature for submanifolds in real space forms (see [4]). We prove similar inequalities for
slant, bi-slant, and semi-slant submanifolds in a locally conformal almost cosymplectic
manifold M. We consider submanifolds M tangent to &.

THEOREM 2.1. Let M be an n-dimensional 0-slant submanifold tangent to & intoa 2m+1)-
dimensional locally conformal almost cosymplectic manifold M. Then, the following hold.
(1) For each unit vector X € T,M orthogonal to &,

—

Ric(X) < —{( -1)(c-3f?) +§(c+f2)c0529—4(¥ +f’> +n2||H||2}. (2.1)

IS

(2) If H(p) = 0, then a unit tangent vector X orthogonal to & at p satisfies the equality
case of (2.1) ifand only if X € N,.

(3) The equality case of (2.1) holds identically for all unit tangent vectors orthogonal to &
at p if and only if p is a totally geodesic point.

Proof. (1) Let X € T,M be a unit tangent vector at p orthogonal to £. We choose an
orthonormal basis ey,...,e, = &,eps1,...,€2m+1, such that ey,...,e, are tangent to M at p
with e; = X. Then, from the equation of Gauss, we have

(n—1)(c=3f?)
4

cos?0+2(n— l)(c-zf2 +f'>.

n
n’|H|I> = 27+ [|hl1* -

3= D(e+ f) (22)
4



From (2.2), we get
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2m+1
RIHI? =21+ > [ (B4 H) 42 Y (h?j)z}
r=n+1 l<i<j=n
2m+1
L an=1)(c=3f?)
-2 Z Z hiihi; — 4

r=n+l 2<i<j<n

C3(n=1)(c+f?)

cos?0+2(n— ( f2+f)

4
2m+1 ) 5
=204 5 3 [yt )+ (B =By — -~ H,)]
r=n+1
2m+1 2m+1

+2 > >

r=n+l 1<i<j<n

n(n-1)(c—31?)

EREID YD W

r=n+12<i<j<n

C3(n=1)(c+f2)

4

By using the equation of Gauss, we have

2m+1

> K=Y > [mm—(

2<i<j<n r=n+l 2<i<j<n

3(n—

L 3=+ f?)

8

Substituting (2.4) in (2.3), we get

(n=1)(c=3f%)

4

)2 (n=1)(n—-2)(c-3f?%)
) ]+ S

080+ = ( +f2+f)(—2n+4).

1 .
EnzllHIIZZZRlc(X)— 5

or equivalently (2.1).
(2) Assume that H(P) =

r = s« = u
12 —

r
"+hnn’

hiy = hy, +

Then h{j =0forall j € {L,...

nhre{n+l,...

3(c+f2) c+f*
L o8 0+2<T+f>,

0. Equality holds in (2.1) if and only if

=hi, =0,

re{n+l1,....,2m+1}.

,2m+ 1}, that is, X € N,.
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cos*0+2(n— 1)<czf2 +f’).

(2.3)

(2.4)

(2.5)

(2.6)

(3) Then equality case of (2.1) holds for all unit tangent vectors orthogonal to £ at p if

and only if

LW+ -+h,—2h; =0,

i#jre{n+i,...
ie{l,...

2m+ 1},

nh re{n+1,...,2m+1}.

In this case, it follows that p is a totally geodesic point. The converse is trivial.

(2.7)

O



1626  Inequality for Ricci curvature

THEOREM 2.2. Let M be an n-dimensional bi-slant submanifold satisfying g(X,9Y) =0,
forany X € B, and any Y € D, tangent to & in a (2m + 1)-dimensional locally conformal
almost cosymplectic manifold M. Then, the following hold.
(1) For each unit vector X € T,M orthogonal to & and if
(1) X is tangent to P,

c+ f?

Ric(X) < i{(ﬂ—l(c—?)fz) 3(c+f2)c059—4( 3 +f’)+n2||H||2},
(2.8)

and if
(ii) X is tangent to D5,

c+ f?

Ric(X) < i{(n— D(c—3f2) + %(c+f2)cosz 6, —4( L ) +n2||H||2}. (2.9)

(2) If H(p) = 0, then a unit tangent vector X orthogonal to & at p satisfies the equality
case of (2.8) and (2.9) if and only if X € N,

(3) The equality case of (2.8) and (2.9) holds identically for all unit tangent vectors or-
thogonal to & at p if and only if p is a totally geodesic point.

Proof. (1) Let X € T,M be a unit tangent vector at p orthogonal to £. We choose an
othonormal basis eq,...,en = &,€n115...,€2ms1 such that ej,... e, are tangent to M at p
with e; = X. Then, from the equation of Gauss, we have

n?|HII* =27+ ||hlI” -

n(n—1)(c=3f?)
4
(2.10)

2 2
- W(dl cos? 0y +d; cos’ 0,) +2(n— 1)(C+4f +f’>,

where 2d; = dim%; and 2d, = dim%,.
From (2.10), we get

2m+1
n*||H|* =21+ Z [ + (hh, + -+h:ln)2+2 Z (h;j)2:|
r=n+1 l<i<j<n
2m+1 hrhr ( 1)(C _ 3f2)
-2 Z Z i’ j 4

r=n+l2<i<j<n

- w(dl cos? 0y +d;cos?0,) +2(n — 1)(C+4f2 +f'>
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2m+1
r r r 2 r r r 2
=24 > (W kbt ) (B =By = = h)]
r=n+l
2m+1 2m+1
n(n—1)(c=3f?)
23 Y w2y S g e
r=n+l 1<i<j<n r=n+l2<i<j<n
_6(c+f?)

2
1 (d1c05291+d2c05292)+2(ﬂ—1)(C+4f "’f,)-

(2.11)

We distinguish two cases.
(1) If X is tangent to 9, then we have

2m+1

], (1= D= 2)(e=3f)
Z Kij = Z 2 [h,,h“ ') ]+ 8
2<i<j<n r=n+l2<i<j<n
2 2
+C+8f [6(d) cos? 0, +d; cos®0,) —3cos? 0, ] + 2<C+f +f> —2n+4).

(2.12)

Substituting (2.12) in (2.11), one gets

%nZIIHIIZ > 2Ric(x) - 1= 1)(;_3f2) - 3(sz2) c05201+2<# +f’), (2.13)

which is equivalent to (2.8).
(ii) If X is tangent to 9,, then we have

2m+1

(e (n—1)(n—2)(c—-3f?
Z K’J - Z Z [hllh]] )2] + 8 ( f )
2<i<j<n r=n+l 2<i<j<n
2 2
C+8f [6(d; cos? 0, +d; cos®0,) —3cos? 0, ] + 2( tf f’)(—2n+4).
(2.14)
Substituting (2.14) in (2.11), one gets
_ _2f2 2 2
L iR  2Ricx) - B3 3etf )C05262+2<ﬂ+f,>)
2 2 4 4
(2.15)
which is equivalent to (2.9).
(2) Assume that H(p) = 0. Equality holds in (2.8) and (2.9) if and only if
ly=---=h}, =0,
" ' (2.16)

W, =hy+---+h,, rein+l,..2m+1}

Then h{j =0forall j € {1,...,n},r € {n+1,...,2m+ 1}, thatis, X € N,.
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(3) Then equality case of (2.8) and (2.9) holds for all unit tangent vectors orthogonal
to & at p if and only if

b =0, i#j,re{n+l,....2m+1},

2.17
W+ +h,—-2h;=0, ie{l,...,n},re{n+l,....2m+1}. 2.17)

In this case, it follows that p is a totally geodesic point. The converse is trivial. O

CoROLLARY 2.3. Let M be an n-dimensional semi-slant submanifold in a (2m + 1)-
dimensional locally conformal almost cosymplectic manifold M. Then, the following hold.
(1) For each unit vector X € T,M orthogonal to & and if
(1) X is tangent to D,

Ric(X) < i{(n— D(c—3f?%) —4(”4—f2 +f’) +n2||H||2}, (2.18)
and if
(ii) X is tangent to D,

. 1 0,3 2 2 c+f* 2 2
Ric(X) < 1 (n—1)(c-3f )+§(C+f )cos* 0 —4 T+f +n?|H||I*¢. (2.19)
(2) If H(p) = 0, then a unit tangent vector X orthogonal to & at p satisfies the equality
case of (2.18) and (2.19) if and only if X € N.
(3) The equality case of (2.18) and (2.19) holds identically for all unit tangent vectors

orthogonal to & at p if and only if p is a totally geodesic point.

CorOLLARY 2.4. Let M be an n-dimensional invariant submanifold in a (2m + 1)-
dimensional cosymplectic space form M(c). Then, the following hold.
(1) For each unit vector X € T,M orthogonal to &,

Ric(X) < i{(n— D(c—3f2) + %(H—fz) —4(# +f’> +n2||H||2}. (2.20)

(2) If H(p) = 0, then a unit tangent vector X orthogonal to & at p satisfies the equality
case of (2.20) if and only if X € N,.

(3) The equality case of (2.20) holds identically for all unit tangent vectors orthogonal to
& at p if and only if p is a totally geodesic point.

COROLLARY 2.5. Let M be an n-dimensional anti-invariant submanifold in a 2m+1)-
dimensional cosymplectic space form M(c). Then, the following hold.
(1) For each unit vector X € T,M orthogonal to &,

Ric(X) < i{(n— D(c—3f?%) —4(% +f’) +n2|H||2}. (2.21)

(2) If H(p) = 0, then a unit tangent vector X orthogonal to & at p satisfies the equality
case of (2.21) if and only if X € N,,.
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(3) The equality case of (2.21) holds identically for all unit tangent vectors orthogonal to
& at p if and only if p is a totally geodesic point.

3. k-Ricci curvature and squared mean curvature

In this section, we prove relationship between the k-Ricci curvature and the squared mean
curvature for slant, bi-slant, and semi-slant submanifolds in a locally conformal almost
cosymplectic manifold M. We state an inequality between the scalar curvature and the
squared mean curvature for submanifolds M tangent to the vector field &.

TaeOREM 3.1. Let M be an n-dimensional 6-slant submanifold tangent to & into a 2m+1)-
dimensional locally conformal almost cosymplectic manifold M. Then,

IHI? =

27 _1[n(c—3f2)+3(c+f2)60829—8<c+f2+f'>]’ (.1)

nn—1) 4n 4

equality holding at a point p € M if and only if p is a totally umbilical point.

Proof. Let p be a point of M. We choose an orthonormal basis {ej,es,...,e, = &} for
the tangent space T,M and {eu41,...,€2m+1} for the normal space T;M at p such that
the normal vector e, is in the direction of the mean curvature vector and ey, es,...,e,
diagonalize the shape operator A,;. Then, we have

a 0 0 ... 0
0 a, 0 .0
Ay = 0 0 as ... 0 ,
oo .o (3.2)
0 0 0 ... ay,
n
A, = (h), Zh{,-=0, n+2<r<2m+1.
i=1
From the equation of Gauss,
n 2m+1  n 2
-1)(c-3
n2||H||2 _ 2T+Za?+ Z Z (hl,])z . 7’1(7’! )(C f )
i=1 r=n+2i,j=1 4 (3 3)
3(n—1)(c+ f? + f?
_ wc0329+2(,¢_ 1) iﬂ—f’ .
4 4
On the other hand,
z(ai—aj)z:(n—l)Za%—ZZaiaj. (3.4)
i<j i=1 i<j
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Therefore, from the above equation, we have
n 2 n n
n*| H|? = (Zai) =>al+2> ajaj<n) al. (3.5)
i=1 i=1 i<j i=1

Combining (3.3) and (3.5),

2m+l  n
nn-DIHIP=2t+ > > ()’ - ”(n—l)ic—sz)
r=n+21i,j=1 (36)
_3n-Dletf?)

294 2m- [ L4
1 cos“0+2(n 1)< 2 +f>,
which implies inequality (3.1). If the equality sign of (3.1) holds at a point p € M, then
from (3.4) and (3.6) we get A, =0 (r =n+2,...,2m+1) and a; = - - - = a,,. Conse-
quently, p is a totally umbilical point. The converse is trivial. O

THEOREM 3.2. Let M be an n-dimensional bi-slant submanifold satisfying g(X,@Y) = 0, for
any X € Dy and any Y € X, tangent to & into a (2m + 1)-dimensional locally conformal
almost cosymplectic manifold M. Then,

I|H|* > n(nzi N 4n(nl— 0 [n(n 1)(c—3f%) +6(dicos® 0, +dycos?0;) (c+ f?)

~8(n— 1)(C+4—fZ+f'>],

where 2d; = dim9; and 2d, = dim9D,.

(3.7)

TueoRrREM 3.3. Let M be an n-dimensional semi-slant submanifold tangent to & into a (2m +
1)-dimensional locally conformal almost cosymplectic manifold M. Then,

2T 1
IH| = nn—-1) 4n(n—1) [

n(n—1)(c—3f?)+6(d; +dycos*0) (c+ f?)

—8(n—1)<c+4—fz+f’>],

where 2d; = dim9; and 2d, = dim9,.

(3.8)

THEOREM 3.4. Let M be an n-dimensional 6-slant submanifold tangent to & intoa 2m+1)-
dimensional locally conformal almost cosymplectic manifold M. Then, for any integer k (2 <
k < n) and any point p € M,

IHIP = 0(p) — ﬁ [n(c— 312) +3(c+f2)c0326—8<¥ +f’>}. (3.9)
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Proof. Let {ey,...,e,} be an orthonormal basis of T,M. Denote by L; ...; the k-plane
section spanned by e;,,...,e;,. It follows from (1.7) and (1.8) that

1 .
T(Lil"-ik) = 2 Z Rchr'l---ik (6,‘),

i€ {i1 ik}

. (3.10)
T(p) = Tula\ Z T(Lil"'ik)'
(k—z) 1<ij<---<ix<n
Combining (1.9) and (3.10), we obtain
-1
7(p) = "(nz )@k(P)- (3.11)

Therefore, by using (3.1) and (3.11), we can obtain the inequality in Theorem 3.4. a

TuEOREM 3.5. Let M be an n-dimensional bi-slant submanifold tangent to & into a 2m +
1)-dimensional locally conformal almost cosymplectic manifold M. Then, for any integer
k (2 <k < n) and any point p € M,

1

IHI* = O(p) — -1

[n(n— 1)(c—3f%) +6(dicos’ 0, +dycos’ 0;) (c+ f?)
—8(n - 1)(621(2 +f’>],

where 2d; = dim9; and 2d, = dimD,.

(3.12)

THEOREM 3.6. Let M be an n-dimensional semi-slant submanifold tangent to & into a (2m +
1)-dimensional locally conformal almost cosymplectic manifold M. Then, for any integer
k (2 <k < n) and any point p € M,

4n(n—1)

8(n1)<clfz+f'>}

where 2d; = dim9, and 2d, = dimD,.

IHI1> > O(p) — L [n(n— 1)(c—3f%) +6(d +dacos?0) (c+ f?)
(3.13)

COROLLARY 3.7. Let M be an n-dimensional invariant submanifold tangent to & into a
(2m + 1)-dimensional locally conformal almost cosymplectic manifold M. Then, for any in-
teger k (2 < k < n) and any point p € M,

IHI? = (p) — ﬁ [n(c3f2) +3(c+ f?) - 8(”{2 +f’)]- (3.14)
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COROLLARY 3.8. Let M be an n-dimensional anti-invariant submanifold tangent to & into
a (2m + 1)-dimensional locally conformal almost cosymplectic manifold M. Then, for any
integer k (2 < k < n) and any point p € M,

2
|H||ZZ@k(P)—ﬁ|:n(C—3f2)—8(%*—]”)]. (3.15)

COROLLARY 3.9. Let M be an n-dimensional contact CR-submanifold tangent to & into
a (2m+ 1)-dimensional locally conformal almost cosymplectic manifold M. Then, for any
integer k (2 < k < n) and any point p € M,

1

IH|I> = Ok(p) — an(n-1)

[n(n— D(c—3f%) +6d,(c+ f*) —8(n— 1)<szz+f,>]-
(3.16)
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