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We show some new Sobolev’s trace embedding that we apply to prove that the fourth-
order nonlinear boundary conditions Af,u +|ulP~2u=0in Qand —(9/0n)(|AulP2Au) =
AplulP~2u on 9Q possess at least one nondecreasing sequence of positive eigenvalues.

1. Introduction and notations

Let Q be a bounded domain of class C* in R, N > 2,1 < p < +o0,and p € L"(9Q) a weight

function which can change its sign, with » = r(N, p) satisfying
N1 for N > 2,
2p—-1 p

(1.1)

r=1 forN<2.
p

We assume that [(0Q)"] # 0, where (0Q)" = {x € 0Q, p(x) >0} and A € R. We consider
the following problem:

Af,u+|u\P_2u=0 in Q,
—%(IAMIP_ZAu)=Ap(x)|ulp_2u on 0Q), (1.2)
ue wrtQ).

Af, := A(]Au|P~2Au) is the operator of fourth order, so-called the p-biharmonic (or
p-bilaplacian) operator. For p = 2, the linear operator A3 = A> = A - A is the iterated
Laplacian that to a multiplicative positive constant appears often in the equations of
Navier-Stokes as being a viscosity coefficient, and its reciprocal operator noted (A?)~!
is the celebrated Green’s operator (see [8]).

Existence results for nonlinear boundary problem have only been considered in recent
years. For the second-order p-Laplacian with nonlinear boundary conditions of different
type, see [5], see also [3]. For a fourth-order elliptic equation with the ordinary boundary
conditions, we cite [2] and with nonlinear boundary conditions, see [4].
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1526  Problem involving the p-Laplacian

In this paper, we study in Theorem 2.5 the Sobolev’s trace embedding WP (Q)) —
L1(9Q), where Q C RN is a bounded domain of class C™, N > 2, q € [1, p,5[ such that

=(N-1)p/(N —mp) ift mp <N and p,;, = +o if mp > N. This embedding leads
to a nonlinear eigenvalue problem (1.2), where the eigenvalue appears at the nonlinear
boundary condition. Other main objective of this work, formulated by Theorem 3.3, is to
show that problem (1.2) has at least one nondecreasing sequence of positive eigenvalues
(Ak)k=1, by using some technical lemmas and the Ljusternick-Schnirelmann theory on
C'-manifolds, see [9]. So we give a direct characterization of A involving a minimax
argument over sets of genus greater than k.

We set

b= inf Sy, we W2P(Q) | pGolulrdx =1, (13)

where [lull2,, = (llull5 + | Aull5)"? is the norm of W>P(Q).

This paper is organized as follows. In Section 2, we establish the Sobolev’s trace em-
bedding in the general case, that is, for any m € N. In Section 3, we use a variational
technique to prove the existence of a sequence of the positive eigenvalues of problem
(1.2).

2. The Sobolev’s trace embedding

We begin with the following definition and lemmas that will be helpful to prove the
Sobolev’s trace embedding.

Definition 2.1. A domain Q is of class C¥ if 9Q can be covered by bounded open sets ©);
such that there is a mapping f; : ®; — B, where B is the unit ball centered at the origin
and
fi(®;nQ)=BnRY,
f;(®;naQ) =BnaRY, (2.1)
fieCH(Q),  fi'eCB).

LemMMA 2.2, Letu € WP(RN), N > 1. Forall y € R, v(X) := u(x,y) € L'(RN"!) and

Wil ey < llullp @) + (2.2)

Hﬂ
aXN

Ll([RN).

Proof. WHL(RN) = C»(RN). So, it suffices to prove the lemma for u € C*(RY). Thus,

Y.
[RNI N-

RN-1

(x t) ‘ dtdx
(2.3)

(x t) ' dtdx,
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that is,

ou
ox N

ou

< +lullp®y). 2.4
. ‘axN (RY) (2.4)

LI(RN)

Il < '

LemMA 2.3. Letu € WYP(RN), p< N. Forall y € R, v(X) := u(x, y) € L'(RN"1), where

(N-1p (p—1N
N=p =1+ N—p (2.5)

and there exists a positive constant depending only on p and N such that
VIl ry-1) < cllully,pry. (2.6)

Proof. WHP(RN) = C»(RN). So it suffices to prove the lemma for u € C®(RN). If we set
w = |ul!, then w € WH(RN) and

-1
Iwllzy) < el Vull o llull ey,
' w

an
Indeed, let g = p/(p — 1), (t — 1)qg = Np/(N — p) and by using the Sobolev inequalities,
see [6],

(2.7)

< clVullpy gy
LI(RY)

Np/(N
[l oy < €l Vull o 7. (2.8)
By Holder and (2.8),
wlly =JR |l Vluldx < llullp |11V, < cllull, |Vl g (2.9)

On the other hand, ow/dx; = +t[u*~V|(du/0x;). By Holder and (2.8),

al u

< tlull V| pamy || 5— <clVulll, gy 2.10
' axj LI(RN) 1(RN) aX] LPRN) LP(RN) ( )
where ¢ is a positive constant.
Now, applying (2.9), (2.10), and Lemma 2.3, we find
lull a1y < c(llullo@yy + | Vullpwyy) < cllullypry. (2.11)
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LEMMA 2.4, Letu € W™P(RN), N>1, m € R, and mp < N. Forall y € R, v(x) := u(x, y)
€ LPn(RN-Y), with p = (N — 1) p/(N — mp) and there exists a positive constant ¢ depend-
ing only on p and N such that

HVHLPV’;,([RI\FI) =< C”””m,p,[RN- (212)

Proof. By applying Sobolev inequality [6] to du/dxj, 1 < j < N, we obtain that u €
WLNp/(N=(m=Dp)(RN), By Lemma 2.3, we deduce that v € LPn(RN~1) with p} = (N —
1)p/(N —mp). O

THEOREM 2.5. Let QO C RN, N > 2, be a bounded domain of class C™. For allu € W™F(Q),
mp < N. The restriction of u to 0Q denoted also by u belongs to L1(0Q)), for all q € [1,p ],

(N-Dp
= 2.13
" N-mp (2.13)
and there exists a positive constant ¢ depending only on p, m, and Q such that
lull pz00) < clltllmp0. (2.14)

Proof. There exists a continuous linear operator P that operates from W™?(Q) to
wmp(RN), (cf. [1, 6]), such that to every u element of W™P(Q) is associated an ele-
ment P(u) € W>P(RY). By density, it is sufficient to study the properties of the trace on
0Q of the function C*(RY).

Let 6; and f; be as in the definition (2.2). dQ) is compact, therefore we can suppose
that there exists a finite 6]-, 1 < j <k, which covers 9Q. Let (P;, 1 < j < k) be a parti-
tion of unity of dQ subordinate to this covering, see, for example, [1]. If u € C*(RY),
then Pjuofj’l € CJ'(B). We extend Pjuofj’1 to Cf'(RN). By Lemma 2.4, the trace w; of
Pjuof]-_1 on the hyperplane {(x;,x2,...,x8-1,0), x; € R} satisfies the inequality

||Wj||Lm¢,(u§N—1) = C||Pj”0fj_l||m,p,3 < cjllullmp,ry, (2.15)

where ¢; is a positive constant. We estimate the trace v; := w;of; of the function P;u on
F]- = 9]‘ N 0Q. Then

it e |, Tl Pod, (.16)

1

where ¢; is a positive constant. We combine (2.15) and (2.16) as follows:

||V]| LPV;(Fj) SM]‘”M”m)pJRN. (217)
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On the other hand, u = Z;iju = Z;ilfvj, where v; = Pju, and suppv; C T}, 0Q C
U;illc Fj. So

Wi = 3l = 3l Q.18
- j=
From (2.18),
Null o a0y < (i ) 2l m,p, - (2.19)
On the other hand, dQ) is bounded, so u € L1(0Q2), for all g € [1, p,; ]. O

By using Theorem 2.5, the next corollary follows exactly as in the classical compact
Sobolev embedding established in [1, 6].

COROLLARY 2.6. Under the same hypotheses at the last theorem, W™P(Q) is compactly
embedding in L1(0Q)) for all g € [1,p .

THEOREM 2.7. Let QO C RN, N > 2, be a bounded domain of class C™. For allu € W™?(Q),
mp = N. The restriction of u to 0Q denoted also by u belongs to L1(0Q), for all q € [1,+oo.

Proof. Let an arbitrary q € [1, co[. We can find g such that
(a) mg < N
(b)g=Ngq/(N—-1+mgq).
From (b), g =g, = (N —1)q/(N — mq). Since mq < N, then g < p (because mp = N).
So
(1) W™P(Q) is continuously embedding in W™4(Q}).
Since g = g,, and mg < N, thus from Theorem 2.5,
(2) Wmd(Q)) is continuously embedding in L'(9Q) for all ¢ € [1,4],
and from Corollary 2.6,
(3) Wm4(Q)) is compactly embedding in L!(dQ) for all € [1,¢][.
By combining (1), (2), and (3), we conclude that
(i) W™P(Q) is continuously embedding in L'(9Q) for all t € [1,4],
(ii) W™P(Q) is compactly embedding in L(9Q) for all t € [1,¢].
q being arbitrary, then we have the desired result. O

THEOREM 2.8. Let Q C RN, N > 2, be a bounded domain of class C™, mp > N. W™P(Q) is
compactly embedding L* (0Q)) N C(0Q)).

Proof. By using the Sobolev embedding, WP (Q}) is compactly embedding in L*(Q) N
C(Q). So the functions of W™P(Q) are continuous on Q and bounded, therefore their
traces are well defined, continuous, and bounded. So we have
(%) W™P(Q) is compactly embedding in L (Q) N C(Q),
(%) L*®(Q) N C(Q) is continuously embedding in L% (9Q)) N C(0}).
By () and (> * ), we have the desired result. O
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3. Main results

Through this paper, all solutions are weak, that is, u € WP (Q) is a solution of (1.2), if
for all v € W2P(Q), we have

(81) (Aju,v) + [ lul?"2uv = 0;

(S2) = [;0(0/0n)(|1AulP2Au)v = A [, p(x) [ulP~2uv.
If we replace S; in (S;), then we deduce that

J IAulpszuAv+J Iulpfzuv=/lj plulP2uvdo. (3.1)
Q Q 30

If u e W>P(Q) — {0}, then u is called the eigenfunction of (1.2) associated to the eigen-
value A.

We will use the Ljusternick-Schnirelmann theory on C!-manifolds [9].

Consider the following two functionals defined on W2?(Q):

1 1
Aw) = llhwere, B = LQp(x)lulde, (32)

where ||ullw2e ) = (lull, + IIAullp)l/P. We set
M= {uec W (Q); pB(u) = 1}. (3.3)

Lemma 3.1. (i) A and B are even and of class C' on W>P(Q)).
(ii) M is a closed C'-manifold.

Proof. (i) It is clear that A and B are even and of class C' on W>#(Q), A’ (u) = A
lu|P~2u, and B’ (u) = plu|P~2u.

(ii) M = B~'{1/p}, so B is closed. Its derivative operator B’ satisfies B’ (u) # 0, for all

u € J (i.e., B'(u) is onto for all u € Jl), so B is a submersion, then Jl is a C'-manifolds.

O

2
pu-f—

The following lemma is the key to show the existence.

LemMmA 3.2. (i) B': W2P(Q) — (W>P(Q))’ is completely continuous.
(ii) The functional A satisfies the Palais-Smale condition on M, that is, for {u,} C M, if
A(uy) is bounded and

€n:=A"(uy) —guB (uy) — 0 asn — +oo, (3.4)

where g, = (A" (un),uy)/{B'(u,),u,). Then {u,},=1 has a convergent subsequence in
W2P(Q).

Proof. (i) Step 1 (definition of B").
First case. IEN/p >2,r > (N —1)/(2p — 1). Let u,v € WP (Q). By Holder’s inequality,
we have

[ o) " uivdo | < lpl ™ s, (3.5)
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where p; = (N —1)p/(N —2p), and s is given by

p-1 LI
s Py r
Therefore,
p—1_1_1_4L>1_2p—1_ N-2p p-1
s roopy N-1 (N-1)p Py

Then it suffices that
max(l,p—1)<s< p,

and B’ is well defined.
Second case. If N/p =2, r > (N — 1)/(2p — 1). In this case, from Theorem 2.7,

W2P(Q) — L1(9Q)

for any g € [1,+0co[. There is g = 1 such that

1 1 p-1 1 1 1
— -+ =+ 4+
q r p q v p

We obtain that

By Holder’s inequality, we arrive at

] anx)|u(x>|"‘2u<x)v(x>dx' < lpll Nl vl

for any u,v € W>P(Q). Then in this case, B’ is well defined.
Third case. If N/p < 2, r = 1. In this case, from Theorem 2.8,

W2P(Q) = C(0Q) N L®(9Q)).

1531

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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Therefore for any u,v € W>?(Q)), we have
‘J p(x |ux)|p v(xdx‘<oo (3.14)

with p € L1(Q), and B’ is well defined also in this case.
Step 2. B’ is completely continuous. Let (u,) C WP (Q) be a sequence such that u, — u
weakly in W2?(Q)). We must show that B’ (u,) — B’ (u) strongly in (W2?(Q)))’, that is,

sup J'aﬂp[|un|p72u,,—Iulpfzu]vdx — 0 asn— +co. (3.15)

vew2P (Q)
HVHZ,pSI

For this end, we distinguish three cases as in Step 1 above for N/p >2, and r > (N —
1)/(2p —1). Let s be as in (3.8). Then,

-2 _
sup J p[|un|p un — |ul? Zu]vdx'
vew2P(Q) 0Q
[Ivll2p=<1
) _
< sup [ Al ot | P 14 — Jul? zuH/( 71)|Iv||p2*] (3.16)
vewP (Q) sAp
H"Hz,pﬁl
)
< clipllllenll” “un = 1261?20y

where ¢ is the constant of Sobolev’s embedding [1].

On other hand, the Nemytskii’s operator u — |u|?~2u is continuous from L$(9€) into
LY/P=1(9Q), and u, — uweakly in W>P(Q). So, we deduce that u, — u strongly in L*(9Q)
because s < p5 . Hence,

H L | P20, — IuIP_ZuHS/(pil) — 0, asn— +oo, (3.17)

This completes the proof of the claim in this case.
IfN/p =2,

— -1
[ ol 72— 2] < =2l (3.18)

where q is given by (3.11). By Sobolev’s trace embedding, there exists ¢ > 0 such that

Ivllg <clivilap, Vve W»P(Q). (3.19)
Thus,
— _ p-1
sup J p[|un|‘p Zunf \ulp’zu]vdx‘ < |2 Zuy,f IuIP’ZuH
vew2P(Q) 0Q
HVHZ,pSl

(3.20)
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From the continuity of u — |u|?~'u from L?(9Q) into L? (dQ), and from the compact
embedding of W2#(Q) in L?(dQ2), we have the desired result.
IfN/p<2,r=1. W>P(Q) = C(9Q), we obtain

sup J p[|un |P_2un - Iulpfzu]vdx’ <cllpllysup ‘ |un|P_2un —ulP2ul,
vew2P(Q) 0Q
Ivllo,p<1
(3.21)
where c is the constant given by embedding of W22 (Q)) in C(9Q) N L*(9€).
It is clear that
sup ‘ |un|P72un —|ulP2u| — 0, asn— +oo. (3.22)
20

Hence B’ is completely continuous also in this case.

(ii) {u,} is bounded in W>#(Q). Hence without loss of generality, we can assume that
u, converges weakly in W2?(Q) to some function u € W>#(Q) and lttnll2,p — c. For the
rest, we distinguish two cases. If ¢ = 0, then u,, converges strongly to 0 in W>#(Q).

If ¢ # 0, the claim is to prove that u, is of Cauchy in W2>?(Q).

Set

Gun,tt) = (A (up) — A" () sty — thn )
G (thns thn) = (At = Apthyy thy = Unm), (3.23)

G2(”m um) = < |un Ip_zun - | Um |P_2um) Up — ”m>-

We remark that

G(up, tt) = Gy (tp, thin) + G (U, ). (3.24)
On the other hand,
Glup,um) = (A" (uy) — A" (Um) s tty — th)
(3.25)
= <€n —€my Uy — um) + (hn =l tty — um>)
with €, defined as in (3.4), and h,, = ||u||§,pB’(u,,).
Gt tim) < ||€n = €ml| || — ”m”z,p |l = hon | |10 = ”m”z,p’ (3.26)

where || - ||« is the dual norm associated to || - [[2 .

This implies that h, converges, for a subsequence if necessary, in W>?(Q). Indeed,
from (i) of Lemma 3.2 B' : W>P(Q) — (W>P(Q))" is completely continuous. On the
other hand, for a subsequence if necessary, ||u,|l2,, — ¢ = 0. It follows that (h,,),=0 is con-
vergent in (W>?(Q))’. Then,

G(up, ) — 0, asn — +oo, (3.27)
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From [7], we have the inequality

n-nl? < (10170 161" 70) - (-6)} (1alP+16]) 7% Ga8)

forany t;,t, € R,withy = pif 1 < p<2andy = 2if p = 2. By applying Holder’s inequal-
ity, we deduce that

[|Atty = Att|? < c{Gr (1t 1) P72 ([ At |2+ 1 A2}, (3.29)
s~ el £ = (Gt 47 (It £+ [l 2) (3.30)

where c is a positive constant independent of n and m, y=pif 1< p<2,and y =2 if
p=2.
From [7], we have

| Uy — U | (—y+p+2)

(Tt | + [ )27
| Auy, — Auyy | Crip+2)

(| Attn| + | A )

(|Un|P72Un_ |um|p72um)(un—um) >c
(3.31)
(|Auy, |p72AuV, — |Aum|p72Aum) (Au, — Auy) =

where y = pif 1 < p<2andy =2 if p = 2. By integrating these two relations over ), we
find

Gi(up,thy) = 0, G (tnyum) = 0. (3.32)
On the other hand, G; < G and G, < G. Then from (3.27) and (3.32),
Gi(up,thyy) — 0 asn — oo, Gy (up,thyy) — 0 asn — oo, (3.33)
Then from (3.29) and (3.30),
|Auy = Au||,, — 0 asn — o, |t = i, — 0 asn— oo. (3.34)
So
[|un — um||§7p — 0 asn— co. (3.35)

Therefore (u,), is a Cauchy’s sequence in W>?(Q). This achieves the proof of the lemma.
O

Set
Iy = {K C M : K is symmetric, compact and y(K) > k}, (3.36)

where y(K) = k is the genus of K, that is, the smallest integer k such that there exists an
odd continuous map from K to R¥ — {0}.

Now, by the Ljusternick-Schnirelmann theory, see, for example, [9], we have our main
result.
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THEOREM 3.3. For any integer k € N*,

Ak = Igrelgkrglealg(pA(u) (3.37)

is a critical value of A restricted on JL. More precisely, there exists ux € Ki € yk such that

M = pA(uk) = sup pA(u) (3.38)

ueKy
and (A, ux) is a solution of (1.2) associated to the positive eigenvalue Ax. Moreover,
A — 400, ask — +oo. (3.39)

Proof. We need only to prove that for any k € N*, Ty # @ and the least assertion. In-
deed, since W>?(Q) is separable, there exists (e;);>1 linearly dense in W2?(Q)) such that
suppe; Nsuppe; = & if i #j. We can assume that ¢; € Jl. Let k € N*, denote Fx = spanf{e;,
€2,...,ek ). Fr is a vectorial subspace and dim Fy = k.

If v € Fi, then there exist «ai,...,ar in R such that v = zle a;e;. Thus B(v) =
S leil?B(e;) = (1/p) S5 lay|?. 1t follows that the map v — (pB(v))"? := ||v|| defines
anorm on Fx. Consequently, there is a constant ¢ > 0 such that

1
cllullzp <Nl < Zllullz,p. (3.40)

This implies that the set
V=Fenfve W) B0) < %} (3.41)

is bounded. Thus V is a symmetric bounded neighborhood of 0 € Fy. By [9, Proposition
2.3(6)], y (Fx n M) = k because F N M is compact, and Ty # &.

Now we claim that Ay — +o0, as k — +00. Let (e,,,e;-|< )n,j be a biorthogonal system such
thate, € W»P(Q), ef € (W>P(Q))’, the e, are linearly dense in W>?(Q); and the e} are
total for (W22 (Q))’, see, for example, [9]. Set now, for k € N*,

Fi = span {ey,...,ex}, Fi = span{exi1,e,0,. }- (3.42)
By [9, Proposition 2.3(g)], we have for any A € T, AN F_, # &. Thus,

tr:=inf sup pA(u) — +oo. (3.43)

A€Ty ueAnF;
Indeed, if not, for k is large, there exists ux € F__; with [[uk|l, = 1 such that
f < pA(ug) <M (3.44)
for some M > 0 independent of k. Therefore,

lukll,,, = M. (3.45)
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This implies that (u)x is bounded in WP (Q). For a subsequence of {uy} if necessary, we
can assume that {ux} converges weakly in WP (Q) and strongly in L?(Q). By our choice
of Fi_;, we have uy — 0 weakly in W>?(Q) because (e, ex) = 0, for all k > n.

This contradicts the fact that [[ux|l, = 1 for all k. Since A = #, the claim is proved,
which completes the proof. U

COROLLARY 3.4. (i) A = inf{HVHg,p, v e W2P(Q); [30p(x)Iv|Pdx = 1}.
i) 0<A <A <--- <A, — 400,

Proof. (i) For u € M, we put Ky = {u, —u}, y(K;) = 1. A is even, so

PA(u) = n}(;lipr > I%gl mI?pr. (3.46)
Hence,
;gﬂfipA(u) > I%relgl rnlgpr =A. (3.47)

On the other hand, for all K € I'y, for all u € K,

sup pA = pA(u) = inf pA(u). (3.48)
K ue.l
So,
I%relgl mI?pr =\ > LzgﬁpA(u). (3.49)
Then,
A= LigﬂprA(u) = inf{llvllfyp, ve WP(Q); Lﬂp(x)\vlpdx = 1}. (3.50)

(i) For all i, j € N*, I'; C T';. From the definition of A;, i € N*, we have A; > 1;. A, —
+00 is already proved in Theorem 3.3. The proof is achieved. O

CoROLLARY 3.5. If it is supposed that I(BQ);I + 0 with BQ; = {x € 0Q; p(x) <0}, then
(1.2) has a decreasing sequence of the negative eigenvalues (A_,)(p)n=0 such that
im0 A_, = —o0.

Proof. First of all, we remark that (0Q), = (BQ)(*_p). So I(SQ)?_p)I =[(0Q), | # 0. From
Theorem 3.3, (1.2) has a nondecreasing sequence of the positive eigenvalues A,,(—p) such
that lim,, .4 Ay (—p) = +o0.

An(—p) satisfies —(9/0n)(|AulP2Au) = X, (—p)(—p)|ul? 2u = =L, (—p)plul?u, u €
W2P(Q)). We put

An(p) = =Au(=p). (3.51)

An(=p)u=0 is a nondecreasing positive sequence, so (A_,)(p),=0 is a negative decreasing
sequence.
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On the other hand, lim,—. ;o A4 (—p) = +0. So,

lim A_,(p) = —oo. (3.52)

n—-+oo
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