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The number of representations of positive integers by quadratic forms F1 = x2
1 +x1x2+

12x2
2 and G1 = 3x2

1 +x1x2+4x2
2 of discriminant −47 are given. Moreover, a basis for the

space S4(Γ0(47),1) are constructed, and the formulas for r(n;F4), r(n;G4), r(n;F3⊕G1),
r(n;F2⊕G2), and r(n;F1⊕G3) are derived.
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1. Introduction. A real binary quadratic form F is a polynomial in two variables x1

and x2 of the shape F = F(x1,x2)= ax2
1+bx1x2+cx2

2 with real coefficients a, b, c. The

discriminant of F is defined by the formula b2−4ac and is denoted by ∆(F), where F is

an integral form if and only if a,b,c ∈ Z, and is positive definite if and only if ∆(F) < 0

and a,c > 0. If gcd(a,b,c)= 1, then F is called primitive.

Let F1 = ax2
1 + bx1x2 + cx2

2 and G1 = dx2
1 + ex1x2 + fx2

2 be two positive definite

quadratic forms with discriminant ∆(F1) and ∆(G1), respectively. For each k � 1, let

Fk and Gk denote the direct sum of k-copies of F1 and G1, respectively, where F1 and

G1 have two variables, F2 and G2 have four variables, and therefore Fk and Gk have 2k
variables.

Let

Q=Q(x1,x2, . . . ,xk
)= ∑

1≤r≤s≤k
brsxrxs (1.1)

be a positive definite quadratic form of discriminant ∆ in k (k is even) variables with

integral coefficients brs . Consider the quadratic form

2Q=
k∑

r ,s=1

arsxrxs,
(
arr = 2brr , ars = asr = brs, r < s

)
(1.2)

of discriminant Ď. Then ∆ = (−1)k/2Ď. Let Ars be the algebraic cofactors of elements

ars in Ď, let δ = gcd(Arr /2,Ars), (r ,s = 1,2, . . . ,k), let N = Ď/δ be the level of the

form Q, and let χ(d) be the character of the form Q, that is, χ(d)= 1 if ∆ is a perfect

square, but if ∆ is not a perfect square and 2 � ∆, then χ(d) = (d/|∆|) for d > 0 and

χ(d)= (−1)k/2χ(−d) for d< 0, where (d/|∆|) is the generalized Jacobi symbol.
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A positive definite quadratic from in k variables of level N and character χ(d) is

called a quadratic form of type (−k/2,N,χ). Let Pv = Pv(x1,x2, . . . ,xk) be the spherical

function of order v with respect to the quadratic form Q. Furthermore, let q denote an

odd prime number.

Let Γ(1) denote a full modular group and let Γ denote any subgroup of a finite index

in Γ(1). In particular,

Γ0(N)=



 a b
c d


∈ Γ(1) : c ≡ 0mod(N)


,

Γ1(N)=



 a b
c d


∈ Γ0(N) : a≡ d≡ 1mod(N)


,

Γ(N)=



 a b
c d


∈ Γ1(N) : b ≡ 0mod(N)


,

(1.3)

for N ∈N.

Let Gk(Γ ,χ) and Sk(Γ ,χ) denote the space of entire modular and cusp forms, re-

spectively, of type (k,Γ ,χ). If F(τ)∈ Gk(Γ ,χ), then in the neighbourhood of the cusps

ζ = i∞;

F(τ)=
∞∑

m=m0�0

amzm, am0 ≠ 0. (1.4)

The order of an entire modular form F(τ)≠ 0 of type (k,Γ ,χ) at the cusps ζ = i∞ with

respect to Γ is

ord
(
F(τ),i∞,Γ)=m0. (1.5)

Let

℘
(
τ ;Q(X),Pv(X),h

)= ∑
ni≡hi(modN)

Pv
(
n1, . . . ,nk

)
z(1/N)Q(n1,...,nk)
N ,

℘
(
τ ;Q(X),Pv(X)

)=
∞∑
n=1


 ∑
Q(X)=n

Pv(X)


zn,

(1.6)

where Q(X) = 1/2,
∑k
r ,s=1arsxrxs is a quadratic form of type (k/2,N,χ), Pv(X) is a

spherical function of order v with respect to the Q(X), n1, . . . ,nk are integers, and

h= (h1, . . . ,hk), where hi are integers such that

k∑
s=1

arshs ≡ 0(modN), (r = 1, . . . ,k). (1.7)

As well known, to each positive definite quadratic form Q, there corresponds the

theta series

℘(τ ;Q)= 1+
∞∑
n=1

r(n;Q)zn, (1.8)
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where r(n;Q) is the number of representations of a positive integer n by the quadratic

form Q.

Lemma 1.1. Any positive definite quadratic form Q of type (−k,q,1),k > 2, corre-

sponds to one and the same Eisenstein series

E(τ ;Q)= 1+
∞∑
n=1

(
ασk−1(n)zn+βσk−1(n)zqn

)
, (1.9)

where

α= ik

ρk
qk/2−ik
qk−1

, β= 1
ρk
qk−ikqk/2
qk−1

, ρk = (−1)k/2
(k−1)!
(2π)k

ζ(k), (1.10)

ζ(k) is the zeta function of Riemann, and σk−1(n)=
∑
d|n
dk−1 [1].

Lemma 1.2. If Q is a primitive quadratic form of type (−k,q,1), 2|k, then the differ-

ence ℘(τ ;Q)−E(τ ;Q) is a cusp form of type (−k,q,1) [1].

Lemma 1.3. The homogeneous quadratic polynomials in k variables

ϕrs = xrxs− 1
k
Ars
Ď

2Q, (r ,s = 1,2, . . . ,k) (1.11)

are spherical functions of second order with respect to the positive definite quadratic

form Q in k variables [1].

Lemma 1.4. If Q is a quadratic form of type (−k/2,N,χ) and Pv is the spherical

function of order v with respect to Q, then the generalized theta series

℘
(
τ ;Q,Pv

)=
∞∑
n=1


 ∑
Q=n

Pv


zn (1.12)

is a cusp form of type (−(k/2+v),N,χ) [1].

Lemma 1.5. If Q1 and Q2 are quadratic forms of types (k1,N,χ1) and (k2,N,χ2),
respectively, then the quadratic form Q1⊕Q2, direct sum of Q1 and Q2, is a quadratic

form of type (k1+k2,N,χ1χ2) [1].

Lemma 1.6. If Q is a quadratic form of type (k,N,χ), then

℘
(
τ ;Q(x),Pv(x)

)∈


Gv+k/2

(
Γ0(N),χ

)
; if v < 0,

Sv+k/2
(
Γ0(N),χ

)
; if v > 0,

(1.13)

see [1].

2. The number of representations of positive integers by quadratic forms. In this

note, we consider the quadratic forms F1 = x2
1 +x1x2+12x2

2 and G1 = 3x2
1 +x1x2+

4x2
2 of discriminant −47. Firstly, we investigate which positive integers can be repre-

sented by F1, G1, F2, G2, or F1⊕G1, and then we construct a basis for the cusp space
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S4(Γ0(47),χ). Moreover, we derive the formulas for r(n;F4), r(n;G4), r(n;F3 ⊕G1),
r(n;F2⊕G2), and r(n;F1⊕G3).

For the quadratic form F1 = x2
1+x1x2+12x2

2, b11 = 1, b12 = b21 = 1/2, and b22 = 12.

Therefore, a11 = 2, a12 = a21 = 1/2, and a22 = 24. Thus, A11 = 24 and A22 = 2. Here,

Ď = 47 since ∆= (−1)Ď. Also δ= 1 and N = Ď/δ. Therefore, F1 is a quadratic form of

type (−1,Γ0(47),χ). Similarly, for the quadratic form G1 = 3x2
1 +x1x2+4x2

2, b11 = 3,

b12 = b21 = 1/2, and b22 = 4. Therefore a11 = 6, a12 = a21 = 1/2, and a22 = 8. Thus

A11 = 8 and A22 = 6. For Ď = 47, since ∆= (−1)Ď, δ= 1, and N = 47, therefore, G1 is a

quadratic form of type (−1,Γ0(47),χ).
Let n be a positive integer. Then the equation

F1
(
x1,x2

)= x2
1+x1x2+12x2

2 =n (2.1)

(1) has two integral solutions (−1,0) and (1,0) for n= 1;

(2) has no integral solution for n= 2,3, and 5;

(3) has two integral solutions (−2,0) and (2,0) for n= 4.

Hence according to (1.8), we have

℘
(
τ ;F1

)= 1+2z+2z4+··· . (2.2)

From (2.2), we get

℘
(
τ ;F2

)= ℘2(τ ;F1
)= 1+4z+4z2+4z4+8z5+··· . (2.3)

Similarly, the equation

G1
(
x1,x2

)= 3x2
1+x1x2+4x2

2 =n (2.4)

(1) has no integral solution for n= 1,2 and 5;

(2) has two integral solution (−1,0) and (1,0) for n= 3;

(3) has two integral solutions (0,1) and (0,−1) for n= 4.

Hence according to (1.8), we have

℘
(
τ ;G1

)= 1+2z3+2z4+··· . (2.5)

From (2.5), we get

℘
(
τ ;G2

)= ℘2(τ ;G1
)= 1+4z3+4z4+··· . (2.6)

From (2.2) and (2.5), we have

℘
(
τ ;F1⊕G1

)= ℘(τ ;F1
)
℘
(
τ ;G1

)= 1+2z+2z3+8z4+4z5+··· . (2.7)
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Moreover, we get

℘
(
τ ;F3

)= 1+6z+12z2+8z3+6z4+24z5+··· ;

℘
(
τ ;F4

)= 1+8z+24z2+32z3+24z4+48z5+ . . . ;
℘
(
τ ;G3

)= 1+6z3+6z4+··· ;

℘
(
τ ;G4

)= 1+8z3+8z4+··· ;

℘
(
τ ;F1⊕G3

)= 1+2z+6z3+20z4+12z5+··· ;

℘
(
τ ;F2⊕G2

)= 1+4z+4z2+4z3+24z4+40z5+··· ;

℘
(
τ ;F3⊕G1

)= 1+6z+12z2+10z3+20z4+60z5+··· .

(2.8)

Now consider the quadratic forms F2, G2, and F1⊕G1. From Lemma 1.5, they are of

type (−2,Γ0(47),1).

Theorem 2.1. For the quadratic form F2,

(1) ϕ11 = x2
1−(12/47)F2 is a spherical function of second order with respect to F2;

(2) ℘(τ ;F2,ϕ11)= (1/47)(46z+116z2+184z4+460z5+···)∈ S4(Γ0(47),1);
(3) ord(℘(τ ;F2,ϕ11),i∞,Γ0(47))= 1.

Proof. If we take k = 4, Q = F2, and r = s = 1, then from Lemma 1.3 we have

ϕ11 = x2
1−(12/47)F2, which is a spherical function of second order with respect to F2.

The equation

F2
(
x1,x2,x3,x4

)=n (2.9)

(1) has four integral solutions(±1,0,0,0) and (0,0,±1,0) for n= 1;

(2) has four integral solutions (1,0,±1,0) and (−1,0,±1,0) for n= 2;

(3) has no integral solutions for n= 3;

(4) has four integral solutions (±2,0,0,0) and (0,0,±2,0) for n= 4;

(5) has eight integral solutions (−2,0,±1,0), (−1,0,±2,0), (1,0,±2,0), and (2,0,±1,
0) for n= 5.

So we have from Lemma 1.4,

℘
(
τ ;F2,ϕ11

)= 1
47

{
(47.1.2−12.1.4)z+(47.1.4−12.2.4)z2

+(47.4.2−12.4.4)z4+(47.4.4+47.1.4−12.5.8)z5+···}

= 46
47
z+ 116

47
z2+ 184

47
z4+ 460

47
z5+··· ∈ S4

(
Γ0(47),1

)
.

(2.10)

From (1.5) we have ord(℘(τ ;F2,ϕ11),i∞,Γ0(47))= 1.

Theorem 2.2. For the quadratic form G2,

(1) ϕ11 = x2
1−(4/47)G2 and ϕ22 = x2

2−(3/47)G2 are spherical functions of second

order with respect to G2;

(2) ℘(τ ;G2,ϕ11)= (1/47)(46z3−64z4+···)∈ S4(Γ0(47),1);
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(3) ℘(τ ;G2,ϕ22)= (1/47)(−36z3+46z4+···)∈ S4(Γ0(47),1);
(4) ord(℘(τ ;G2,ϕ11),i∞,Γ0(47))= ord(℘(τ ;G2,ϕ22),i∞,Γ0(47))= 3.

Proof. Similarly, if we take k = 4, Q = G2, r = s = 1, and r = s = 2, then from

Lemma 1.3 we have ϕ11 = x2
1−(4/47)G2 and ϕ22 = x2

2−(3/47)G2, which are spherical

functions of second order with respect to G2. The equation

G2
(
x1,x2,x3,x4

)=n (2.11)

(1) has no integral solutions for n= 1,2 and 5;

(2) has four integral solutions (±1,0,0,0) and (0,0,±1,0) for n= 3;

(3) has four integral solutions (0,±1,0,0) and (0,0,0,±1) for n= 4.

So we have from Lemma 1.4,

℘
(
τ ;G2,ϕ11

)= 1
47

{
(47.1.2−4.3.4)z3+(47.0.4−4.4.4)z4+···}

= 46
47
z3− 64

47
z4+··· ∈ S4

(
Γ0(47),1

)
,

℘
(
τ ;G2,ϕ22

)= 1
47

{
(47.0.4−3.3.4)z3+(47.1.2−3.4.4)z4+···}

=−36
47
z3+ 46

47
z4+··· ∈ S4

(
Γ0(47),1

)
.

(2.12)

By definition ord(℘(τ ;G2,ϕ11),i∞,Γ0(47))= ord(℘(τ ;G2,ϕ22),i∞,Γ0(47))= 3.

Theorem 2.3. For the quadratic form F1⊕G1,

(1) ϕ11 = x2
1 −(12/47)(F1⊕G1) and ϕ22 = x2

2−(1/47)(F1⊕G1) are spherical func-

tions of second order with respect to F1⊕G1;

(2) ℘(τ ;F1⊕G1,ϕ11)= (1/47)(70z−72z3+274z4−52z5+···)∈ S4(Γ0(47),1);
(3) ℘(τ ;F1⊕G1,ϕ22)= (1/47)(−2z−6z3−32z4−20z5+···)∈ S4(Γ0(47),1);
(4) ord(℘(τ ;F1⊕G1,ϕ11),i∞,Γ0(47))= ord(℘(τ ;F1⊕G1,ϕ22),i∞,Γ0(47))= 1.

Proof. If we take k= 4, Q= F1⊕G1, r = s = 1, and r = s = 2, then from Lemma 1.3

we have ϕ11 = x2
1 − (12/47)F1⊕G1 and ϕ22 = x2

2 − (1/47)F1⊕G1, which are spherical

functions of second order with respect to F1⊕G1. The equation

F1⊕G1(x1,x2,x3,x4)=n (2.13)

(1) has two integral solutions (±1,0,0,0) for n= 1;

(2) has no integral solutions for n= 2;

(3) has two integral solutions (0,0,±1,0) for n= 3;

(4) has eight integral solutions (±2,0,0,0), (1,0,±1,0), (0,0,0,±1), and (−1,0,±1,0)
for n= 4;

(5) has four integral solutions (1,0,0,±1) and (−1,0,0,±1) for n= 5.
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So we have

℘
(
τ ;F1⊕G1,ϕ11

)

= 1
47

{
(47.1.2−12.1.2)z+(47.0.2−12.3.2)z3+(47.4.2+47.1.6−12.4.8)z4

+(47.1.4−12.5.4)z5+···}

= 70
47
z− 72

47
z3+ 274

47
z4− 52

47
z5+··· ∈ S4

(
Γ0(47),1

)
,

(2.14)

℘
(
τ ;F1⊕G1,ϕ22

)

= 1
47

{
(47.0.2−1.1.2)z+(47.0.2−1.3.2)z3+(47.0.8−1.4.8)z4

+(47.0.4−1.5.4)z5+···}

=− 2
47
z− 6

47
z3− 32

47
z4− 20

47
z5+··· ∈ S4

(
Γ0(47),1

)
.

(2.15)

From (1.5), ord(℘(τ ;F1⊕G1,ϕ11),i∞,Γ0(47)) = ord(℘(τ ;F1⊕G1,ϕ22),i∞,Γ0(47)) = 1.

The system of theta series in (2.10), (2.12), (2.14), and (2.15) are linearly independent

since the fifth order determinant of the coefficients in the expansions of these theta

series is different from zero. Since |S4(Γ0(47),1)| = 5, we proved Theorem 2.4.

Theorem 2.4. The system of generalized fourfold theta series

℘
(
τ ;F2,ϕ11

)= 1
47

∞∑
n=1


 ∑
F2=n

47x2
1−12n


zn,

℘
(
τ ;G2,ϕ11

)= 1
47

∞∑
n=1


 ∑
G2=n

47x2
1−4n


zn,

℘
(
τ ;G2,ϕ22

)= 1
47

∞∑
n=1


 ∑
G2=n

47x2
2−3n


zn,

℘
(
τ ;F1⊕G1,ϕ11

)= 1
47

∞∑
n=1


 ∑
F1⊕G1=n

47x2
1−12n


zn,

℘
(
τ ;F1⊕G1,ϕ22

)= 1
47

∞∑
n=1


 ∑
F1⊕G1=n

47x2
2−n


zn

(2.16)

is a basis of the space S4(Γ0(47),1), of cusp forms of type (−4,Γ0(47),1).

From Theorems 2.1, 2.2, and 2.3 we have following corollaries.

Corollary 2.5. Let Fk (Gk) be the direct sum of k-copies of F1(G1) of type (−k,Γ0(47),
1) and let ϕrs be the spherical function of second order with respect to Fk (Gk), then

(1) ord(℘(τ ;Fk,ϕrs),i∞,Γ0(47))= 1;

(2) ord(℘(τ ;Gk,ϕrs),i∞,Γ0(47))= 3.
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Corollary 2.6. Let Fi⊕Gj , i,j � 1, i+j = k be the direct sum of i-copies of F1 and

j-copies ofG1 of type (−k,Γ0(47),1) and letϕrs be the spherical function of second order

with respect to Fi⊕Gj , then

ord
(
℘
(
τ ;Fi⊕Gj,ϕrs

)
, i∞,Γ0(47)

)= 1. (2.17)

Now we give the formulas for r(n;F4), r(n;G4), r(n;F3 ⊕G1), r(n;F2 ⊕G2), and

r(n;F1⊕G3) by the following theorem.

Theorem 2.7. For the quadratic forms F4, G4, F3⊕G1, F2⊕G2 and F1⊕G3 we have

the following formulas:

r
(
n;F4

)= 24
221

σ∗3 (n)+
1272

29.221


 ∑
F2=n

47x2
1−12n




− 6498200
29.47.221


 ∑
G2=n

47x2
1−4n


− 8716584

29.47.221


 ∑
G2=n

47x2
2−3n




+ 17864
29.47.221


 ∑
F1⊕G1=n

47x2
1−12n


+ 811736

29.47.221


 ∑
F1⊕G1=n

47x2
2−n


,

r
(
n;G4

)= 24
221

σ∗3 (n)−
54

29.221


 ∑
F2=n

47x2
1−12n




− 1305584
29.47.221


 ∑
G2=n

47x2
1−4n


− 1742266

29.47.221


 ∑
G2=n

47x2
2−3n




+ 5046
29.47.221


 ∑
F1⊕G1=n

47x2
1−12n


+ 134592

29.47.221


 ∑
F1⊕G1=n

47x2
2−n


,

r
(
n;F3⊕G1

)= 24
221

σ∗3 (n)+
609

29.221


 ∑
F2=n

47x2
1−12n




+ 372911
29.47.221


 ∑
G2=n

47x2
1−4n


+ 416904

29.47.221


 ∑
G2=n

47x2
2−3n




+ 5046
29.47.221


 ∑
F1⊕G1=n

47x2
1−12n


− 52374

29.47.221


 ∑
F1⊕G1=n

47x2
2−n


,

r
(
n;F2⊕G2

)= 24
221

σ∗3 (n)+
167

29.221


 ∑
F2=n

47x2
1−12n




+ 1193705
29.47.221


 ∑
G2=n

47x2
1−4n


+ 1545330

29.47.221


 ∑
G2=n

47x2
2−3n




+ 5046
29.47.221


 ∑
F1⊕G1=n

47x2
1−12n


− 228953

29.47.221


 ∑
F1⊕G1=n

47x2
2−n


,
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r
(
n;F1⊕G3

)= 24
221

σ∗3 (n)−
54

29.221


 ∑
F2=n

47x2
1−12n




− 302460
29.47.221


 ∑
G2=n

47x2
1−4n


− 418656

29.47.221


 ∑
G2=n

47x2
2−3n




+ 8250
29.47.221


 ∑
F1⊕G1=n

47x2
1−12n


− 54491

29.47.221


 ∑
F1⊕G1=n

47x2
2−n


,

(2.18)

where

σ∗3 (n)=


σ3(n) if 47 �n,

σ3(n)+472σ3

(
n
47

)
if 47|n. (2.19)

Proof. By Lemma 1.5, F4, G4, F3⊕G1, F2⊕G2, F1⊕G3 are quadratic forms of type

(−4,Γ0(47),1). We know from Lemma 1.1 that there exist Eisenstein series which cor-

respond to each other. For k= 4, we have α= 24/221 for ρ4 = 1/240. Thus we get

E
(
τ ;F4

)= E(τ ;G4
)= E(τ ;F3⊕G1

)= E(τ ;F2⊕G2
)= E(τ ;F1⊕G3

)

= 1+
∞∑
n=1

(
ασ3(n)zn+βσ3(n)zqn

)

= 1+ 24
221

z+ 24.9
221

z2+ 24.28
221

z3+ 24.73
221

z4+ 24.126
221

z5+··· .

(2.20)

By Lemma 1.2, the difference℘(τ ;F4)−E(τ ;F4) is a cusp form of type (−4,Γ0(47),1). On

the other hand from Theorem 2.4, ℘(τ ;F2,ϕ11), ℘(τ ;G2,ϕ11), ℘(τ ;G2,ϕ22), ℘(τ ;F1⊕
G1,ϕ11), ℘(τ ;F1⊕G1,ϕ22) are bases of the cusp space S4(Γ0(47),1). Therefore, we can

find integers c1, . . . ,c5 such that

℘
(
τ ;F4

)−E(τ ;F4
)= c1℘

(
τ ;F2,ϕ11

)+c2℘
(
τ ;G2,ϕ11

)+c3℘
(
τ ;G2,ϕ22

)
+c4℘

(
τ ;F1⊕G1,ϕ11

)+c5℘
(
τ ;F1⊕G1,ϕ22

)
.

(2.21)

From (2.8) and (2.20), we have

℘
(
τ ;F4

)−E(τ ;F4
)= 1744

221
z+ 5088

221
z2+ 6400

221
z3+ 3552

221
z4+ 7584

221
z5+··· . (2.22)

From (2.21) and (2.22), we get

℘
(
τ ;F4

)= E(τ ;F4
)+ 1272

29.221
℘
(
τ ;F2,ϕ11

)− 6498200
29.221

℘
(
τ ;G2,ϕ11

)

− 8716584
29.221

℘
(
τ ;G2,ϕ22

)+ 17864
29.221

℘
(
τ ;F1⊕G1,ϕ11

)

+ 811736
29.221

℘
(
τ ;F1⊕G1,ϕ22

)
.

(2.23)
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Similarly, we obtain

℘
(
τ ;G4

)= E(τ ;G4
)− 54

29.221
℘
(
τ ;F2,ϕ11

)− 1305584
29.221

℘
(
τ ;G2,ϕ11

)

− 1742266
29.221

℘
(
τ ;G2,ϕ22

)+ 5046
29.221

℘
(
τ ;F1⊕G1,ϕ11

)

+ 134592
29.221

℘
(
τ ;F1⊕G1,ϕ22

)
,

℘
(
τ ;F3⊕G1

)= E(τ ;F3⊕G1
)+ 609

29.221
℘
(
τ ;F2,ϕ11

)+ 372911
29.221

℘
(
τ ;G2,ϕ11

)

+ 416904
29.221

℘
(
τ ;G2,ϕ22

)+ 5046
29.221

℘
(
τ ;F1⊕G1,ϕ11

)

− 52374
29.221

℘
(
τ ;F1⊕G1,ϕ22

)
,

℘
(
τ ;F2⊕G2

)= E(τ ;F2⊕G2
)+ 167

29.221
℘
(
τ ;F2,ϕ11

)+ 1193705
29.221

℘
(
τ ;G2,ϕ11

)

+ 1545330
29.221

℘
(
τ ;G2,ϕ22

)+ 5046
29.221

℘
(
τ ;F1⊕G1,ϕ11

)

− 228953
29.221

℘
(
τ ;F1⊕G1,ϕ22

)
,

℘
(
τ ;F1⊕G3

)= E(τ ;F1⊕G3
)− 54

29.221
℘
(
τ ;F2,ϕ11

)− 302460
29.221

℘
(
τ ;G2,ϕ11

)

− 418656
29.221

℘
(
τ ;G2,ϕ22

)+ 8250
29.221

℘
(
τ ;F1⊕G1,ϕ11

)

− 54491
29.221

℘
(
τ ;F1⊕G1,ϕ22

)

(2.24)

as desired.
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