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q-RIEMANN ZETA FUNCTION
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We consider the modified g-analogue of Riemann zeta function which is defined by T4 (s) =
S—1 (@"¢~D/[n]%), 0 < q <1, s € C. In this paper, we give g-Bernoulli numbers which can
be viewed as interpolation of the above g-analogue of Riemann zeta function at negative
integers in the same way that Riemann zeta function interpolates Bernoulli numbers at
negative integers. Also, we will treat some identities of g-Bernoulli numbers using non-
Archimedean g-integration.

2000 Mathematics Subject Classification: 11580, 11B68.

1. Introduction. Throughout this paper, Z,, Q,, C, and C, will respectively denote
the ring of p-adic rational integers, the field of p-adic rational numbers, the complex
number field, and the completion of algebraic closure of Q,.

The p-adic absolute value in C, is normalized so that |p|, = 1/p. When one talks of
g-extension, g is considered in many ways such as an indeterminate, a complex number
q € C, or a p-adic number g € C,,. If g € C, we normally assume |g| < 1.1f g € C,, then
we normally assume |q— 1], < p~1/P=1 g0 that g* = exp(xlogq) for |x|, < 1. We use
the notation

1_qx 2 x-1
[x]=1[x:q]= p =l+q+q°+---+q* . (1.1)

Note that lim,_.;[x] = x for x € Z,, in the p-adic case.
Let UD(Z,) be denoted by the set of uniformly differentiable functions on Z,,.
For f e UD(Z,), we start with the expression

S

V] > oafGy= > fUu(i+pNzy) (1.2)

0<j<pN 0<j<pN

representing the analogue of Riemann’s sums for f (cf. [4]).
The integral of f on Z, will be defined as the limit (N — o) of these sums, which
exists. The p-adic g-integral of a function f € UD(Z,) is defined by (see [4])

1
[pN]

> fal. (1.3)

J fx)dpg(x) = lim
Ty N=eo 0<j<pN
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For d that is a fixed positive integer with (p,d) = 1, let

VA
X=X;=lim———, X| =17,
g

X*= |J a+dpzy, (1.4)
O<a<dp
(a,p)=1

a+dpNz, = {x € X |x =a(moddp")},

where a € Z liesin 0 < a < dp™N.

Let N be the set of positive integers. For m,k € N, the g-Bernoulli polynomials,
BY%™X (x,q), of higher order for the variable x in Cp are defined using p-adic g-integral
by (cf. [4])

Bi™k) (x,q)

m
= X+X]+Xp+ - +X
er, J,zr, sz[ P t] (1.5)
—f_/

k times
—x1(M+1)=x2(M+2)—-+ ._xk(m+k)duq (

-q x1)dpg(xz2) -+ - dug (xx).

Now, we define the g-Bernoulli numbers of higher order as follows (cf. [2, 4, 7]):
Bl ™ (= Bi™ (@) = Bi™(0,). (1.6)
By (1.5), it is known that (cf. [4])
pN-1 pN-1

B( m,k) _},lm k Z X1+ +Xk]mq—xlmfxz(m+1)+---—xk(m+k71)
- x1=0 xk=0

Ji—m)i—m—1)---(i—-m—k+1)
- q)mz( )<—> . . ,

(1.7)

[i-m]li-m-1]---[i-m—-k+1]

where ( ) are the binomial coefficients.

Note that lim,; ., ( mik) Bm , where Bn’i) are ordinary Bernoulli numbers of order k
(cf. [2, 3,5, 7, 9]). By (1.5) and (1.7), it is easy to see that

™V (x,a) = 3. ("f) a*iB; ™ X1
‘:O L om _ (1.8)
_ L S (M) dmm
a2 (j>( "m

We modify the g-analogue of Riemann zeta function which is defined in [1] as follows:
forge Cwith0< g <1, s € C, define

o _
q(s n

Cal9) = 2 T

n=1

(1.9)
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The numerator ensures the analytic continuation for R (s) > 1. In (1.9), we can consider
the following problem.

“Are there g-Bernoulli numbers which can be viewed as interpolation of C,(s) at
negative integers in the same way that Riemann zeta function interpolates Bernoulli
numbers at negative integers?”

In this paper, we give the value C,;(—m) for m € N, which is the answer of the above
problem, and construct a new complex g-analogue of Hurwitz’s zeta function and g-L-
series. Also, we will treat some interesting identities of g-Bernoulli numbers.

2. Some identities of g-Bernoulli numbers Biﬁ ml)
with [1 -4, < p~ V=1 By (1.5), we have

. Inthis section, we assume g € C,,

By ™Y (x,q) = Jﬂ*”“”bc +t]"dpy ()

a-1 ) x+i n (21)
_ [d]n—l Z qu ) qf(n+1)dx|: v :qd:| dﬂqd(X).
Thus, we have
al X+i
BV (x,q) = [d]"! > a By "”( 3 qd), (2.2)
i=0
where d, n are positive integers.
If we take x = 0, then we have
m-1 —
[n1By™Y —nln]™ Bl (q") = 3 <m> [n1*g ™" (a Z Smepkjymok
K .
k=0 j=
(2.3)

It is easy to see that lim, ., By ™"

(ct. [7]).

= B, where B, are ordinary Bernoulli numbers

REMARK 2.1. By (2.3), note that

m—1 m n-1
n(1-n")Bym = > (k>nkBk > jmk (2.4)
k=0 j=1
Let F,;(t) be the generating function of Bn b as follows:
Fo(t) = ZE l 2.5)
By (1.7) and (2.5), we easily see that
(&) (o) tm
Fot)y=-> (m > q-m"[n]m-1> ol (2.6)
m=0 = )
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Through differentiating both sides with respect to t in (2.5) and (2.6), and comparing
coefficients, we obtain the following proposition.

PROPOSITION 2.2. For m > 0, there exists

(-m,1) o
B q " n]m (2.7)

nzl

Moreover, B<0 = (g-1)/logq.

REMARK 2.3. Note that Proposition 2.2 is a g-analogue of € (1 —-2m) for any positive
integer m.

Let x be a primitive Dirichlet character with conductor f € N.
For m € N, we define

i) = [ a G XM dpg (), for m > 0. 28)
Note that
a-1
Byt =1d1m ' > x(a "™ By ’”“(d,q ) (2.9)
i=0

3. g-analogs of zeta functions. In this section, we assume g € C with |g| < 1. In [1],
the g-analogue of Riemann zeta function was defined by (cf. [1])

Z [n]s, R(s) > 0. (3.1)

Now, we modify the above g-analogue of Riemann zeta function as follows: for g € C
with 0 < |g| < 1, s € C, define

o _
q(s n

Cy(s) = z s

n=1

(3.2)

By (2.5), (2.6), and (2.7), we obtain the following proposition.

PROPOSITION 3.1. For m € N, there exists
(i) Cq(1=m)=—Bw"™" /m, form = 1;
(i) C4(s) having simple pole at s = 1 with residue (q—1) /logq.

By (1.7) and (1.8), we see that

([klg* +[x])" g %) where 0 < x < 1. (3.3)

h
Me

B (x,a) =~
k

0
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Hence, we can define g-analogue of Hurwitz C-function as follows: for s € C, define

(s—1)(n+x)

- 4
=S 4 T 3.4
Cals:X) = 2 Tl v Iol) G

Note that T, (s,x) has an analytic continuation in C with only one simple pole at s = 1.
By (3.3) and (3.4), we have the following theorem.
THEOREM 3.2. For any positive integer k, there exists

B (x,q)

Ca(1—k,x) = - X

(3.5)

Let x be Dirichlet character with conductor d € N. By (2.9), the generalized g-Bernoulli
numbers with x can be defined by

d-1 .
LM = [d]™ 1S x(i)g G (é,qd). (3.6)
i=0

For s € C, we define

o x(n)gls-bn
La(s,X) = Z (s (3.7)
n=1
It is easy to see that
d a
La(x,$) = 1] Y. x(@a® Ga(5,2). (3.8)
a=1
By (3.6), (3.7), and (3.8), we obtain the following theorem.
THEOREM 3.3. Let k be a positive integer. Then there exists
ﬁl((—k,l)
Lg(1—k,x) =— z ) (3.9)

Let a and F be integers with 0 < a < F.For s € C, we consider the functions H, (s, a, F)
as follows:

TR SR iy S (3.10)
Hy(s,a,F) = =[F] p(s,f). 3.10
m=a(F),m>0 [m]s ! F
Then we have
_ ! <—n,1>(ﬂ F)
Hs(1-n,a,F) = o 7a ) (3.11)

where 1 is any positive integer.
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Therefore, we obtain the following theorem.

THEOREM 3.4. Leta and F be integers with 0 < a < F. For s € C, there exists
(i) Hy(1-n,a,F) = —([F1""'/m)Bn ™" (a/F,qF);
(i) Hy(s,a,F) having a simple pole at s =1 with residue (1/[F1F)((gF-1)/logq).

In arecent paper, the g-analogue of Riemann zeta function was studied by Cherednik
(see [1]). In [1], we can consider the g-Bernoulli numbers which can be viewed as an
interpolation of the g-analogue of Riemann zeta function at negative integers. In this
paper, we have shown that the g-analogue of zeta function interpolates g-Bernoulli
numbers at negative integers in the same way that Riemann zeta function interpolates
Bernoulli numbers at negative integers (cf. [2, 5, 7]).

REMARK 3.5. Letg € C, with |1—ql, < p~!/?=1_Then the p-adic g-gamma function
was defined as (see [8])

Tam)=D" [ il (3.12)

l1<j<n,(j,p)=1

For all x € Z,, we have

Ipq(x+1) =€pq(x)pq(x), (3.13)
where €, ;(x) = —[x] for [x], = 1, and €, 4(x) = —1 for |x|, < 1, (see [8]). By (3.13), we
easily see that (cf. [6])

logl, 4(x +1) =logey 4(x) +1ogTy 4(x). (3.14)

By the differentiation of both sides in (3.14), we have (cf. [6])

[, ,(x+1) B I q(x)  €,,(x)

= . 3.15
Lra(x+1) Tpga(x)  €pq(x) G15)
By (3.15), we easily see that (cf. [6])
I ! 1
pa(X) _ S a’ loqur al ). (3.16)
[p,q(x) s jl1])a-1 rp,q(l)
Define
x—-1 e/ (J)
Lyg(x)="> 1= (3.17)
p.a lgo €pa (J)
It is easy to check that L, 4(1) = 0. By (3.15), we also see that
I, . (x) Ia
PAZ" = Lpalx)+ for x € Z,, (3.18)

Lpq(x) qu(l)
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where L, 4(x) denotes the indefinite sum of €}, ;(x)/€p 4(x). By using (3.18) after sub-
stituting x = 1, we obtain L, 4;(1) = 0. The classical Euler constant was known as y =
—I"(1)/T(1). In [8], Koblitz defined the p-adic g-Euler constant y, 4 = —T}, ;(1)/T} 4(1)
(cf. [6, 8]). By using (3.16) and the congruence of Andrews (cf. [3]), we obtain the follow-
ing congruence:

-1(5,,(p) -
(i ) B

logq \T,q(p)

—(q 1) (mod[p]). (3.19)
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