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q-RIEMANN ZETA FUNCTION
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We consider the modified q-analogue of Riemann zeta function which is defined by ζq(s)=∑∞
n=1(qn(s−1)/[n]s), 0< q < 1, s ∈ C. In this paper, we give q-Bernoulli numbers which can

be viewed as interpolation of the above q-analogue of Riemann zeta function at negative
integers in the same way that Riemann zeta function interpolates Bernoulli numbers at
negative integers. Also, we will treat some identities of q-Bernoulli numbers using non-
Archimedean q-integration.
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1. Introduction. Throughout this paper, Zp , Qp , C, and Cp will respectively denote

the ring of p-adic rational integers, the field of p-adic rational numbers, the complex

number field, and the completion of algebraic closure of Qp .

The p-adic absolute value in Cp is normalized so that |p|p = 1/p. When one talks of

q-extension, q is considered in many ways such as an indeterminate, a complex number

q ∈ C, or a p-adic number q ∈ Cp . If q ∈ C, we normally assume |q|< 1. If q ∈ Cp , then

we normally assume |q−1|p < p−1/(p−1) so that qx = exp(x logq) for |x|p ≤ 1. We use

the notation

[x]= [x : q]= 1−qx
1−q = 1+q+q2+···+qx−1. (1.1)

Note that limq→1[x]= x for x ∈ Zp in the p-adic case.

Let UD(Zp) be denoted by the set of uniformly differentiable functions on Zp .

For f ∈UD(Zp), we start with the expression

1[
pN
] ∑

0≤j<pN
qjf (j)=

∑
0≤j<pN

f(j)µq
(
j+pNZp

)
(1.2)

representing the analogue of Riemann’s sums for f (cf. [4]).

The integral of f on Zp will be defined as the limit (N → ∞) of these sums, which

exists. The p-adic q-integral of a function f ∈UD(Zp) is defined by (see [4])

∫
Zp
f (x)dµq(x)= lim

N→∞
1[
pN
] ∑

0≤j<pN
f(j)qj. (1.3)
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For d that is a fixed positive integer with (p,d)= 1, let

X =Xd = lim←�����������������������������������
N

Z
dpNZ

, X1 = Zp,

X∗ =
⋃

0<a<dp
(a,p)=1

a+dpZp,

a+dpNZp =
{
x ∈X | x ≡ a(moddpN

)}
,

(1.4)

where a∈ Z lies in 0≤ a< dpN .

Let N be the set of positive integers. For m,k ∈ N, the q-Bernoulli polynomials,

β(−m,k)m (x,q), of higher order for the variable x in Cp are defined using p-adic q-integral

by (cf. [4])

β(−m,k)m (x,q)

=
∫
Zp

∫
Zp
···

∫
Zp︸ ︷︷ ︸

k times

[
x+x1+x2+···+xk

]m

·q−x1(m+1)−x2(m+2)−···−xk(m+k)dµq
(
x1
)
dµq

(
x2
)···dµq(xk).

(1.5)

Now, we define the q-Bernoulli numbers of higher order as follows (cf. [2, 4, 7]):

β(−m,k)m
(= β(−m,k)m (q)

)= β(−m,k)m (0,q). (1.6)

By (1.5), it is known that (cf. [4])

β(−m,k)m = lim
N→∞

1[
pN
]k

pN−1∑
x1=0

···
pN−1∑
xk=0

[
x1+···+xk

]mq−x1m−x2(m+1)+···−xk(m+k−1)

= 1
(1−q)m

m∑
i=0

(
m
i

)
(−1)i

(i−m)(i−m−1)···(i−m−k+1)
[i−m][i−m−1]···[i−m−k+1]

,

(1.7)

where
(
m
i

)
are the binomial coefficients.

Note that limq→1β
(−m,k)
m = B(k)m , where B(k)m are ordinary Bernoulli numbers of order k

(cf. [2, 3, 5, 7, 9]). By (1.5) and (1.7), it is easy to see that

β(−m,1)m (x,q)=
m∑
i=0

(
m
i

)
qxiβ(−m,1)i [x]m−i

= 1
(1−q)m

m∑
j=0

qjx
(
m
j

)
(−1)j

j−m
[j−m].

(1.8)

We modify the q-analogue of Riemann zeta function which is defined in [1] as follows:

for q ∈C with 0< q < 1, s ∈ C, define

ζq(s)=
∞∑
n=1

q(s−1)n

[n]s
. (1.9)
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The numerator ensures the analytic continuation for�(s) > 1. In (1.9), we can consider

the following problem.

“Are there q-Bernoulli numbers which can be viewed as interpolation of ζq(s) at

negative integers in the same way that Riemann zeta function interpolates Bernoulli

numbers at negative integers?”

In this paper, we give the value ζq(−m) for m∈N, which is the answer of the above

problem, and construct a new complex q-analogue of Hurwitz’s zeta function and q-L-

series. Also, we will treat some interesting identities of q-Bernoulli numbers.

2. Some identities of q-Bernoulli numbersβ(−m,1)m . In this section, we assume q ∈ Cp
with |1−q|p < p−1/(p−1). By (1.5), we have

β(−n,1)n (x,q)=
∫
X
q−(n+1)t[x+t]ndµq(t)

= [d]n−1
d−1∑
i=0

q−ni
∫
Zp
q−(n+1)dx

[
x+i
d

: qd
]n
dµqd(x).

(2.1)

Thus, we have

β(−n,1)n (x,q)= [d]n−1
d−1∑
i=0

q−niβ(−n,1)n

(
x+i
d

,qd
)
, (2.2)

where d, n are positive integers.

If we take x = 0, then we have

[n]β(−m,1)m −n[n]mβ(−m,1)m
(
qn
)=m−1∑

k=0

(
m
k

)
[n]kβ(−m,1)k

(
qn
)n−1∑
j=1

q−(m−j)k[j]m−k.

(2.3)

It is easy to see that limq→1β
(−m,1)
m = Bm, where Bm are ordinary Bernoulli numbers

(cf. [7]).

Remark 2.1. By (2.3), note that

n
(
1−nm)Bm =m−1∑

k=0

(
m
k

)
nkBk

n−1∑
j=1

jm−k. (2.4)

Let Fq(t) be the generating function of β(−n,1)n as follows:

Fq(t)=
∞∑
k=0

β(−k,1)k
tk

k!
. (2.5)

By (1.7) and (2.5), we easily see that

Fq(t)=−
∞∑
m=0

(
m

∞∑
n=0

q−mn[n]m−1

)
tm

m!
. (2.6)
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Through differentiating both sides with respect to t in (2.5) and (2.6), and comparing

coefficients, we obtain the following proposition.

Proposition 2.2. For m> 0, there exists

−β
(−m,1)
m

m
=

∞∑
n=1

q−nm[n]m−1. (2.7)

Moreover, β(0,1)0 = (q−1)/logq.

Remark 2.3. Note that Proposition 2.2 is a q-analogue of ζ(1−2m) for any positive

integer m.

Let χ be a primitive Dirichlet character with conductor f ∈N.

For m∈N, we define

β(−m,1)m,χ =
∫
X
q−(m+1)xχ(x)[x]mdµq(x), for m≥ 0. (2.8)

Note that

β(−m,1)m,χ = [d]m−1
d−1∑
i=0

χ(i)q−miβ(−m,1)m

(
i
d
,qd

)
. (2.9)

3. q-analogs of zeta functions. In this section, we assume q ∈ C with |q|< 1. In [1],

the q-analogue of Riemann zeta function was defined by (cf. [1])

ζ∗q (s)=
∞∑
n=1

qns

[n]s
, �(s) > 0. (3.1)

Now, we modify the above q-analogue of Riemann zeta function as follows: for q ∈ C
with 0< |q|< 1, s ∈ C, define

ζq(s)=
∞∑
n=1

q(s−1)n

[n]s
. (3.2)

By (2.5), (2.6), and (2.7), we obtain the following proposition.

Proposition 3.1. For m∈N, there exists

(i) ζq(1−m)=−β(−m,1)m /m, for m≥ 1;

(ii) ζq(s) having simple pole at s = 1 with residue (q−1)/logq.

By (1.7) and (1.8), we see that

β(−n,1)n (x,q)=−n
∞∑
k=0

(
[k]qx+[x])n−1q−n(k+x), where 0≤ x < 1. (3.3)



q-RIEMANN ZETA FUNCTION 603

Hence, we can define q-analogue of Hurwitz ζ-function as follows: for s ∈ C, define

ζq(s,x)=
∞∑
n=0

q(s−1)(n+x)(
[n]qx+[x])s . (3.4)

Note that ζq(s,x) has an analytic continuation in C with only one simple pole at s = 1.

By (3.3) and (3.4), we have the following theorem.

Theorem 3.2. For any positive integer k, there exists

ζq(1−k,x)=−β
(−k,1)
k (x,q)

k
. (3.5)

Let χ be Dirichlet character with conductord∈N. By (2.9), the generalized q-Bernoulli

numbers with χ can be defined by

β(−m,1)m,χ = [d]m−1
d−1∑
i=0

χ(i)q−miβ(−m,1)m

(
i
d
,qd

)
. (3.6)

For s ∈ C, we define

Lq(s,χ)=
∞∑
n=1

χ(n)q(s−1)n

[n]s
. (3.7)

It is easy to see that

Lq(χ,s)= [d]−s
d∑
a=1

χ(a)q(s−1)aζqd
(
s,
a
d

)
. (3.8)

By (3.6), (3.7), and (3.8), we obtain the following theorem.

Theorem 3.3. Let k be a positive integer. Then there exists

Lq(1−k,χ)=−
β(−k,1)k,χ

k
. (3.9)

Let a and F be integers with 0<a< F . For s ∈C, we consider the functionsHq(s,a,F)
as follows:

Hq(s,a,F)=
∑

m≡a(F),m>0

qm(s−1)

[m]s
= [F]−sζqF

(
s,
a
F

)
. (3.10)

Then we have

Hq(1−n,a,F)=− [F]
n−1

n
β(−n,1)n

(
a
F
,qF

)
, (3.11)

where n is any positive integer.
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Therefore, we obtain the following theorem.

Theorem 3.4. Let a and F be integers with 0<a< F . For s ∈ C, there exists

(i) Hq(1−n,a,F)=−([F]n−1/n)β(−n,1)n (a/F,qF);
(ii) Hq(s,a,F) having a simple pole at s=1 with residue (1/[F]F)((qF−1)/logq).

In a recent paper, the q-analogue of Riemann zeta function was studied by Cherednik

(see [1]). In [1], we can consider the q-Bernoulli numbers which can be viewed as an

interpolation of the q-analogue of Riemann zeta function at negative integers. In this

paper, we have shown that the q-analogue of zeta function interpolates q-Bernoulli

numbers at negative integers in the same way that Riemann zeta function interpolates

Bernoulli numbers at negative integers (cf. [2, 5, 7]).

Remark 3.5. Let q ∈ Cp with |1−q|p < p−1/(p−1). Then the p-adic q-gamma function

was defined as (see [8])

Γp,q(n)= (−1)n
∏

1≤j<n,(j,p)=1

[j]. (3.12)

For all x ∈ Zp , we have

Γp,q(x+1)= εp,q(x)Γp,q(x), (3.13)

where εp,q(x)=−[x] for |x|p = 1, and εp,q(x)=−1 for |x|p < 1, (see [8]). By (3.13), we

easily see that (cf. [6])

logΓp,q(x+1)= logεp,q(x)+ logΓp,q(x). (3.14)

By the differentiation of both sides in (3.14), we have (cf. [6])

Γ ′p,q(x+1)
Γp,q(x+1)

= Γ
′
p,q(x)
Γp,q(x)

+ ε
′
p,q(x)
εp,q(x)

. (3.15)

By (3.15), we easily see that (cf. [6])

Γ ′p,q(x)
Γp,q(x)

=

x−1∑
j=1

qj

[j]


 logq
q−1

+ Γ
′
p,q(1)
Γp,q(1)

. (3.16)

Define

Lp,q(x)=
x−1∑
j=0

ε′p,q(j)
εp,q(j)

. (3.17)

It is easy to check that Lp,q(1)= 0. By (3.15), we also see that

Γ ′p,q(x)
Γp,q(x)

= Lp,q(x)+
Γ ′p,q(1)
Γp,q(1)

, for x ∈ Zp, (3.18)
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where Lp,q(x) denotes the indefinite sum of ε′p,q(x)/εp,q(x). By using (3.18) after sub-

stituting x = 1, we obtain Lp,q(1) = 0. The classical Euler constant was known as γ =
−Γ ′(1)/Γ(1). In [8], Koblitz defined the p-adic q-Euler constant γp,q =−Γ ′p,q(1)/Γp,q(1)
(cf. [6, 8]). By using (3.16) and the congruence of Andrews (cf. [3]), we obtain the follow-

ing congruence:

q−1
logq

(
Γ ′p,q(p)
Γp,q(p)

−γp,q
)
=
p−1∑
j=1

qj

[j]
≡ p−1

2
(q−1)

(
mod[p]

)
. (3.19)
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