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First, a new proof for the existence of an α-labeling of the quadratic graph Q(3,4k) is
presented. Then the existence of α-labelings of special classes of quadratic graphs with
some isomorphic components is shown.
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1. Introduction. In this paper, all graphs are finite without loops or multiple edges,

and all parameters are positive integers. The symbols |A|, Pn, and Cn denote the cardi-

nality of set A, a snake, and a cycle with n edges, respectively. A sequence of numbers

in parentheses or square brackets indicates the labels of vertices of a graph or subgraph

under consideration according to whether it is a snake or cycle, respectively.

Definition 1.1. A graceful labeling (or β-labeling) of a graph G = (V ,E), with m
vertices and n edges, is a one-to-one mapping Ψ of the vertex set V(G) into the set

{0,1,2, . . . ,n} with this property: if we define, for any edge e= {u,v} ∈ E(G), the value

Φ(e) = |Ψ(u)−Ψ(v)|, then Φ is a one-to-one mapping of the set E(G) onto the set

{1,2, . . . ,n}.
A graph is called graceful if it has a graceful labeling. Not all graphs are graceful. For

example, C5 and K5 are not graceful.

Definition 1.2. Anα-labeling of a graphG = (V ,E) is a graceful labeling ofG which

satisfies the following additional condition: there exists a number γ(0≤ γ|E(G)|) such

that, for any edge e ∈ E(G) with end vertices u,v ∈ V(G), min[Ψ(u),Ψ(v)] ≤ γ <
max[Ψ(u),Ψ(v)]. The values of an α-labeling Ψ which are less than or equal to γ are

referred to as “small values” and the remaining values of Ψ as the “large values” of the

given α-labeling.

The concepts of a graceful labeling and of an α-labeling were introduced by Rosa

[8]. Rosa proved that any graceful Eulerian graph G satisfies the condition |E(G)| ≡ 0

or 3(mod4). This implies that any Eulerian graph G with an α-labeling satisfies the

condition |E(G)| ≡ 0(mod4) (G is bipartite). It is also known that these conditions are

also sufficient if G is a cycle [8]. Abrham and Kotzig [3] proved that Rosa’s condition

is also sufficient for 2-regular graphs with two components. The author [4] proved the

similar result for 2-regular graphs with three components with the exception of one

special case.

A detailed history of the graph labeling problems and related results appears in

Gallian [6]. One of the results of Abrham and Kotzig should be mentioned here.
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Table 1.1. Some of the results about α-labelings of quadratic graphs.

Graph Graceful labeling α-labeling

Q(1,s)
It is graceful if and only if It has an α-labeling if and only if

s ≡ 0 or 3(mod4) [8] s ≡ 0(mod4) [8]

Q(2,s)
It is graceful if and only if It has an α-labeling if and only if

s is even and s > 2 [7] s is even and s > 2 [7]

Q(3,4k)
It is graceful for each It has an α-labeling for each

k≥ 1 [7] k > 1 [7]

Q(r ,3)
It is graceful if and only if

It has no α-labeling [7]
r = 1 [7]

Q(r ,4)
It is graceful for each It has an α-labeling for each

r ≥ 1 [2] r ≥ 1, r ≠ 3 [2]

Q(r ,5)
It is not graceful for any

It has no α-labeling [7]
r ≥ 1 [7]

Q(5,4k)
It is graceful for all It has an α-labeling for all

k≥ 1 [5] k≥ 1 [5]

Definition 1.3. If G is a 2-regular graph on n vertices and n edges, which has

a graceful labeling Ψ , then there exists exactly one number x (0 < x < n) such that

Ψ(v) ≠ x for all v ∈ V(G); this number x is referred to as the missing value of the

graceful labeling [1].

In the work done here, the problem of existence of an α-labeling of a special class of

2-regular graphs, called quadratic graph, is investigated.

Definition 1.4. A quadratic graph Q(r ,s) is a 2-regular graph with r components,

each of which is a cycle of length s.

Some of the results about α-labelings of quadratic graphs published in the literature

are summarized in Table 1.1.

2. The existence of an α-labeling of Q(3,4k)

Theorem 2.1. A Q(3,4k)-graph has an α-labeling for each k > 1.

Proof. In this case we have a graph consisting of three cycles of length 4k. We know

that an α-labeling for this graph was constructed by Kotzig in [7]. We now present a

different construction of an α-labeling of 3C4k for k > 1; its advantage is that it makes

it possible to obtain certain results in Section 3.

The vertices of the first C4k are successively labeled as follows: [0,12k,1,12k −
1,2,12k−2, . . . ,k−1,11k+1,k+1,11k,. . . ,2k−1,10k+2,2k,10k+1]. The resulting edge

values of the first C4k are then 12k,12k−1,12k−2, . . . ,10k+2,10k,. . . ,8k+2,8k+1,

and 10k+1.
The vertices of the second C4k are consecutively labeled by the numbers [4k,8k,4k+

1,8k − 1,4k + 2,8k − 2, . . . ,5k − 1,7k + 1,5k + 1,7k,. . . ,6k − 1,6k + 2,6k,6k + 1]. The
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Table 2.1. An α-labeling of Q(3,4k) for 2≤ k≤ 5.

k Q(3,4k) An α-labeling of Q(3,4k)

5 Q(3,20)

[0,51,10,52,9,53,8,54,7,55,6,56,4,57,3,58,2,59,1,
60],[20,31,30,32,29,33,28,34,27,35,26,36,24,37,

23,38,22,39,21,40,20],[5,44,17,43,14,42,18,41

16,50,19,49,11,48,12,47,25,46,13,45]

4 Q(3,16)
[0,41,8,42,7,43,6,44,5,45,3,46,2,47,1,48],[16,25,

24,26,23,27,22,28,21,29,19,30,18,31,17,32],[4,

35,15,40,11,38,20,37,9,39,13,34,10,33,14,36]

3 Q(3,12)
[0,31,6,32,5,33,4,34,2,35,1,36],[12,19,18,20,17,

21,16,22,14,23,13,24],[3,26,10,25,8,30,11,29,15,

28,7,27]

2 Q(3,8)
[0,21,4,22,3,23,1,24],[8,13,12,14,11,15,9,16],[2,

17,5,19,10,20,7,18]

resulting edge values of the second C4k are then 4k,4k−1,4k−2, . . . ,2k+2,2k,2k−
1, . . . ,3,2,1, and 2k+1. The missing value of the first C4k is equal to k and the missing

value of the second C4k is equal to 5k. The missing value of the main graph is equal to

3k and γ = 6k.

Now we construct the third cycle C4k. First suppose that k ≥ 6. Next we construct

three snakes. The vertices of the first snake are successively labeled as 10k−1,2k+
1,10k−2,2k+2, . . . ,3k−4,9k+3,3k−3, and 9k+2. The resulting edge values of this

snake are then 8k−2,8k−3,8k−4, . . . ,6k+7,6k+6, and 6k+5. The vertices of the

second snake are consecutively labeled by the numbers 9k−5,3k−1,9k−2,3k+1, and

9k−1; this yields the edge values 6k−4,6k−1,6k−3, and 6k−2. Finally the vertices

of the third snake are labeled as 9k−1,k,9k,3k−2,9k+1,5k, and 9k+2; this yields

the edge values 8k−1,8k,6k+2,6k+3,4k+1, and 4k+2. Now we generate the edge

labels 6k+4,6k+1, and 6k by connecting the following pairs of vertices to each other

respectively: 4k−4 and 10k; 4k−1 and 10k; 4k−1 and 10k−1. In order to generate

the rest of the edge labels, we need to use a special type of transforming of vertex

labels, described in the appendix as “transformation of labels procedure.” Therefore,

in the next step, we apply the transformation of labels procedure to the remaining

vertex labels, that is, (3k+2,3k+3, . . . ,4k−4,4k−3,4k−2) and (8k+1,8k+2, . . . ,9k−
5,9k−4,9k−3) by considering the two vertices 4k−4 and 9k−5 as end vertices. This

transformation generates the rest of the edge labels and the construction of the last

C4k is completed. The construction of an α-labeling ofQ(3,4k) with x = 3k and γ = 6k
for 2≤ k≤ 5 is illustrated in Table 2.1.

3. Existence of α-labelings of general classes of quadratic graphs. The following

concept presented in [5] is very useful for further considerations in this section.

Definition 3.1. The graph C4k has a standard labeling if the values of the vertices

of C4k can be generated from an α-labeling of C4k by adding constant factor(s) to the

small or large values (or both) of an α-labeling of C4k.
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0 19 1 18

20 4 17 3

2 14 8 15 7 16

13 9 12 10 11 6

Figure 3.1. An α-labeling of the graph C8∪C12.

0 7 1 6

8 4 5 3

0 19 1 18

20 4 17 3

Figure 3.2. Transformations of an α-labeling of the graph C8 to a standard labeling.

0 6 3 5 0 18 3 17

8 1 7 4 20 1 19 4

0 18 3 17 2 14 8 15 7 16

20 1 19 4 13 9 12 10 11 6

Figure 3.3. An α-labeling of C12∪Q(2,4).

Example 3.2. In Figure 3.1, an α-labeling of the graph C8∪C12 is presented. This

graph consists of the disjoint union of two cycles and has 20 vertices. According to the

results presented in [1], we know that in this graph the missing value is 5 and γ = 10.

In the above α-labeling, C8 has a standard labeling because it can be generated from

an α-labeling of C8 only by increasing the large values of this construction by 12, see

Figure 3.2.

If a graph C4k has a standard labeling, it can be replaced by any α-labeling of the

disjoint union of cycles in the form of
⋃n
i=1C4ki by considering the constant factor(s) if

there is an α-labeling for
⋃n
i=1C4ki and k= k1+k2+···+kn.

Example 3.3. Since we know that Q(2,4) has an α-labeling, the standard labeling

of C8 in Figure 3.1 can be replaced by an α-labeling of Q(2,4) to form an α-labeling of

C12∪Q(2,4) if we increase the large values of anα-labelingQ(2,4) by 12, see Figure 3.3.

In the construction of an α-labeling of Q(3,4k), the first and second C4k have stan-

dard labelings because the first cycle can be generated by adding 8k to the large values

of an α-labeling of C4k with x = k, γ = 2k, and the second cycle can be generated by

adding 4k to the small and large values of an α-labeling of C4k with x = k, γ = 2k.
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In the following theorems, we use this property to extend the class of quadratic

graphs with isomorphic components that have α-labelings.

Theorem 3.4. The following graphs have α-labelings if k = 3k1, ki = 3ki+1, ki > 1,

i= 1,2,3, . . . ,n−1:

(i)
⋃n
i=1Q(2,4ki)∪Q(2,4k)∪C4kn ,

(ii)
⋃n
i=1Q(4,4ki)∪Q(2,4kn)∪C4k.

Proof. It is shown that in the construction of an α-labeling of Q(3,4k), two iso-

morphic components C4k have standard labelings. Now we apply the following trans-

formations in order to obtain the proof of each part of the theorem.

In the construction of an α-labeling ofQ(3,4k), substitute one of the components of

C4k with standard labeling by Q(3,4k1), k = 3k1. Then, since at least one component

of Q(3,4k1) still has a standard labeling, we are able to replace it again by Q(3,4k2),
k1 = 3k2. In the next stages, we continue to replace one component of each Q(3,4ki)
byQ(3,4ki+1), ki = 3ki+1, for i= 2,3, . . . ,n−1, to obtain an α-labeling of the first graph

of the theorem.

The proof of the second part is similar to the proof of the first part. This time we

use the replacements for both components with standard labelings in an α-labeling of

Q(3,4ki).

Example 3.5. The following classes of graphs haveα-labelings according to Theorem

2.1, for k= 6 and k1 = 2:

Q(3,8)∪Q(2,24), Q(6,8)∪C24. (3.1)

Theorem 3.6. The following graphs haveα-labelings if k=∑n
i=1ki and ki ≥

∑n
t=i+1kt

for i= 1,2,3, . . . ,n−1:

(i)
⋃n
i=1C4ki∪Q(2,4k),

(ii)
⋃n
i=1Q(2,4ki)∪C4k.

Proof. In the construction of an α-labeling ofQ(3,4k), at least two cycles C4k have

standard α-labelings. In order to obtain the different parts of Theorem 3.4, apply the

following replacements.

(i) Consider one of the standard labelings of C4k. First we replace it by C4k1∪C4q1 ,

where q1 ≤ k1 and k = k1+q1. Then, since C4q1
still has a standard labeling [3], it can

be replaced again by C4k2∪C4q2 , where q2 ≤ k2 and q1 = k2+q2. In the next stages, we

continue to replace each C4qi by C4ki+1 ∪C4qi+1
, qi+1 ≤ ki+1, where qi = ki+1+qi+1 for

i= 2,3, . . . ,n−2, and kn = qn−1.

(ii) We apply the replacement procedure of the first part for both C4k which have

standard labelings in an α-labeling of Q(3,4k).

Example 3.7. The following classes of graphs have α-labelings, for r ,t ≥ 1:

C4r ∪C4t∪Q
(
2,4(r +t)), C4(r+t)∪Q(2,4r)∪Q(2,4t). (3.2)
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Theorem 3.8. The following graphs have α-labelings if k = 3k1, ki = 3ki+1, k1 > 1,

i= 1,2,3, . . . ,n−1:

(i)
⋃n
i=1Q(2,4ki)∪Q(4,4k)∪C4kn ,

(ii)
⋃n
i=1Q(4,4ki)∪Q(2,4kn)∪Q(3,4k),

(iii)
⋃n
i=1Q(6,4ki)∪Q(3,4kn)∪Q(2,2k).

Proof. It has been shown that in the construction of an α-labeling of Q(5,4k), at

least three isomorphic components C4k have standard labelings [5].

First consider one of the components of C4k with standard labeling in the construc-

tion of an α-labeling ofQ(5,4k). Then substitute it byQ(3,4k1), where k= 3k1, k1 > 1.

Since at least one component ofQ(3,4k1) still has a standard labeling, it can be replaced

again by Q(3,4k2), k1 = 3k2. In the next stages, we continue to replace one component

of eachQ(3,4ki) byQ(3,4ki+1), where ki = 3ki+1, for i= 2,3, . . . ,n−1. Finally we obtain

an α-labeling of the graph in the first part of the theorem.

The proof of the second (and third) part of the theorem can be easily obtained by

applying the above replacements to the second (and third) isomorphic component of

C4k with standard labelings in an α-labeling of Q(5,4k).

Example 3.9. The following classes of graphs have α-labelings according to

Theorem 3.8, for k= 18, k1 = 6, and k2 = 2:

Q(3,8)∪Q(2,24)∪Q(4,72),

Q(6,8)∪Q(4,24)∪Q(3,72),

Q(9,8)∪Q(6,24)∪Q(2,36).
(3.3)

Theorem 3.10. The following graphs have α-labelings if k = 5k1, ki = 5ki+1, i =
1,2,3, . . . ,n−1:

(i)
⋃n
i=1Q(4,4ki)∪Q(2,4k)∪C4kn ,

(ii)
⋃n
i=1Q(8,4ki)∪Q(2,4kn)∪C4k.

Proof. In the first part of the theorem, consider one of the components of C4k with

standard labeling in an α-labeling of Q(3,4k). Then substitute it by Q(5,4k1), k= 5k1.

We know that in the construction of an α-labeling ofQ(5,4k), at least three isomorphic

components C4k have standard labelings [5]. Then, since at least one component of

Q(5,4k1) still has a standard labeling, we are able to replace it again by Q(5,4k2),
k1 = 5k2. In the next stages, we continue to replace one component of each Q(3,4ki)
by Q(3,4ki+1), where ki = 5ki+1, for i = 2,3, . . . ,n−1. Finally we obtain an α-labeling

of the graph in the first part of the theorem.

The proof of the second part is similar to the proof of the first part. This time we use

the replacements for two isomorphic components of C4k with standard labelings in an

α-labeling of Q(5,4k).

Example 3.11. The following classes of graphs have α-labelings for r ≥ 1:

Q(5,4r)∪Q(2,20r), Q(10,4r)∪C20r . (3.4)
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0 1 2 · · · w = r · · · k− 1 k

2k+ 1 2k · · · z = k+ 1+ r · · · k+ 2 k+ 1

Figure A.1. Arrangement of vertex labels of snake P2k+1 according to Lemma A.1.

n n+ 1 n+ 2 · · · n+w · · · n+ k− 1 n+ k

m+ k m+ k− 1 · · · m− (k+ 1)+ z · · · m+ 1 m

Figure A.2. Arrangement of vertex labels in the transformation.

Theorem 3.12. The following classes of graphs have α-labelings for r ,t ≥ 1:

(i) C4r+2∪C4t+2∪Q(2,4(r +t+1)),
(ii) C4(r+t)∪Q(2,4r +2)∪Q(2,4t+2).

Proof. In the first part, we need to replace one of the standard labelings of C4k

in the construction of Q(3,4k) by C4r+2∪C4t+2, r ,t ≥ 1 and r + t+1 = k, because we

know that the graph C4r+2∪C4t+2 has an α-labeling for r ,t ≥ 1 [3]. In the second part

of the theorem, we replace both the standard α-labelings of C4k and the construction

of Q(3,4k) by C4r+2∪C4t+2, r ,t ≥ 1, and r +t+1= k, respectively.

Appendix

Transformation of labels procedure. The transformation presented below is used

in Theorem 2.1.

Lemma A.1 (Abrham and Kotzig [3]). Let r be a nonnegative integer and let s be an

odd integer, s = 2k+1≥ 2r +1. Then Ps has an α-labeling Ψ with endpoints labelled w
and z that satisfy the conditions z−w = k+1 and w = r . (Without loss of generality,

assume that w < z.)

Given any 0≤w ≤ k, k+1≤ z ≤ 2k+1, and z−w = k+1, we can always construct an

α-labeling for a bipartite snake P2k+1 with edge labels 1 through 2k+1 and endpoints

w and z, with γ = k, w = r , and z = k+r +1, see Figure A.1.

Now suppose we add n to the upper half and add m− (k+1) to the lower half for

any positive integers m and n, where m−1>n+k, see Figure A.2.

Then the edge labels increase by precisely m−(k+1)−n. The transformation pro-

duces the edge labels from [m−k−n] through [m+k−n] according to Lemma A.1.
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