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We study strong solutions u : R — X, a Banach space X, of the nth-order evolution equa-
tion u™ — Au-1 = £, an infinitesimal generator of a strongly continuous group A :
D(A) € X — X, and a given forcing term f : R — X. It is shown that if X is reflexive, u
and 11 are Stepanov-bounded, and f is Stepanov almost periodic, then u and all deriva-
tives u’,...,u™ b are strongly almost periodic. In the case of a general Banach space X, a
corresponding result is obtained, proving weak almost periodicity of u, u/,...,u™ 1,
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1. Introduction. In this paper, we are concerned with an nth-order evolution equa-
tion of the form

u™ - Ay = £, (1.1)

Here A:D(A) € X — X is an infinitesimal generator of a strongly continuous group,
f:R — X agiven forcing term, X a Banach space with scalar field C, n a positive integer,
and R denotes the set of reals. We will give suitable assumptions to ensure that almost
periodicity of the forcing term f carries over to the solution u and its derivatives up
to order (n—1).

The reason for studying this rather special evolution equation may be classified as
a first pilot study of the issue of higher-order evolution equations, which probably has
not been studied before.

We first recall the relevant concepts. A continuous function f : R — X is said to be
strongly (or Bochner) almost periodic if, for every given & > 0, there is an » > 0 such
that any interval in R of length  contains a point T for which

Stum?||f(t+T)—f(t)|\55- (1.2)

Here || - || denotes the norm in X.

A function f : R — X is called weakly almost periodic if x* f(-) : R — C is continuous
and almost periodic for every x* in the dual space X* of X.

We will call a function f € L} (R, X) Stepanov-bounded or briefly S-bounded if

t+1
£l = supj [|f(s)]|ds < 0. (1.3)
teR Jt
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We will call a function f € L} (R, X) Stepanov almost periodic or briefly S-almost
periodic if, for every given ¢ > 0, there is an » > 0 such that any interval in R of length
¥ contains a point T for which

t+1
Supj Ilf(s+T)=f(s)||ds <e. (1.4)
teR Jt

We denote by L(X,X) the set of all bounded linear operators on X into itself. An
operator-valued function T : R — L(X, X) will be called a strongly continuous group if

T(t1+t2) =T(t1)T(t2) Vi, € R, (1.5)
T(0) = I = the identity operator on X, (1.6)
T(-)x:R — X is continuous for every x € X. (1.7)

We recall (e.g., from Dunford and Schwartz [4]) that the infinitesimal generator A :
D(A) € X — X of a strongly continuous group T : R — L(X,X) is a densely defined,
closed linear operator.

An operator-valued function T : R — L(X,X) is said to be strongly (weakly) almost
periodic if T(-)x : R — X is strongly (weakly) almost periodic for every x € X.

Suppose A: D(A) < X — X is a densely defined, closed linear operator, and f: R — X
is a continuous function. Then a strong solution of the evolution equation

u™ ) —Au V() = f(t) ae. forteR (1.8)

is an n times strongly differentiable function u : R — X with u™-Y(t) € D(A) for all
t € R, and satisfies problem (1.8).
Our first result is as follows (see Zaidman [7, 8] for first-order evolution equations).

THEOREM 1.1. Let X be reflexive, f : R — X continuous, S-almost periodic, A infini-
tesimal generator of a strongly almost periodic group T : R — L(X, X). In this case, if, for
the strong solution u : R — X of problem (1.8), both u and u™-Y are S-bounded on R,
thenu, w,...,u™V are all strongly almost periodic.

Our second result refers to a weak variant of our first theorem in the case of a
general—not necessarily reflexive—Banach space X.

THEOREM 1.2. Suppose f : R — X is an S-almost periodic (or a weakly almost periodic)
continuous function, A an infinitesimal generator of a strongly continuous group T : R —
L(X,X) such that the conjugate operator group T* : R — L(X*,X*) is strongly almost
periodic. If, for the strong solution u : R — X of problem (1.8), both w and u™V are
S-bounded on R, then u, u’,...,u™bY are all weakly almost periodic.

REMARK 1.3. For some examples of first-order and higher-order evolution equations
with strongly almost periodic solutions, the reader may wish to consult Cooke [3] and
Zaidman [9].
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2. Lemmas
LEMMA 2.1. If A is the infinitesimal generator of a strongly continuous group G : R —
L(X,X), then the (n— 1)th derivative of any solution of (1.8) has the representation

t
u™b() = G(t)u(”’l)(0)+J G(t—s)f(s)ds forteR. (2.1)
0

PROOF. For an arbitrary but fixed t € R, we have

i _ (n-1) _ _ (n) _ (n—-1)
’E [G(t—)u™V(s)] =G(t—s)[u™(s) - AuV(s)] (2.2)
=G(t—s)f(s) a.e. forseR,by(1.8).

Now, integrating (2.2) from O to t, we obtain

Jti[G(t—s)u(”‘”(s)]ds=ItG(t—s)f(5)ds (2.3)
ods 0 ’ '

which gives the desired representation, by (1.6). O

LEMMA 2.2. Ifg:R — X is a strongly almost periodic function, and G : R — L(X,X) is
a strongly (weakly) almost periodic operator-valued function, then G(-)g(-) :R - X isa
strongly (weakly) almost periodic function.

For the proof of Lemma 2.2, see [6, Theorem 1] for weak almost periodicity.

LEMMA 2.3. If g: R — X is an S-almost periodic continuous function, and G : R —
L(X,X) is a weakly almost periodic operator-valued function, then x*G(-)g(-) :R - C
is an S-almost periodic continuous function for every x* € X*.

PROOF. By our assumption, for an arbitrary but fixed x* € X*, the function x*G(-)x :
R — C is almost periodic, and so is bounded on R, for every x € X. Hence, by the
uniform-boundedness principle,

sup||x*G(t)|| =K < co. (2.4)
teR

We note that the function x*G(-)g(-) is continuous on R (see [6, proof of Theorem 1]).
Consider the functions g, given by

1 (n
gn(t)=ﬁj gt+s)ds forn>0,teR. (2.5)

0
Since g is S-almost periodic from R to X, g, is strongly almost periodic from R to X

for every fixed n > 0. Further, as shown for C-valued functions in [2, pages 80-81], we
can prove that g, — g as n — 0+ in the S-sense, that is,

t+1
supJ llg(s)—gn(s)||ds — 0 asn—0+. (2.6)
teR Jt
Now we have

xX*G($)g(s) =x*G(s)[g(s) —gn(s)|+x*G(s)gy(s) forseR, (2.7)
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and, by (2.4) and (2.6),

t+1

sup [Xx*G(s)[g(s)—gn(s)]|ds
teR Jt (2.8)

t+1

sKsupJ [lg(s)—gn(s)||ds — 0 asn—0+.
teR Jt

By Lemma 2.2, the functions x*G(-)g,(-) are almost periodic from R to C. Therefore,
it follows from (2.7)-(2.8) that x*G(-)g(-) is S-almost periodic from R to C. O

LEMMA 2.4. If g: R — X is an S-almost periodic continuous function, and G : R —
L(X,X) is a strongly almost periodic operator-valued function, then G(-)g(-) :R — X is
an S-almost periodic continuous function.

The proof of this lemma parallels that of Lemma 2.3 and may therefore be safely
omitted.

LEMMA 2.5. In a reflexive space X, assume h : R — X is an S-almost periodic continu-
ous function, and

t
H(t) = JO h(s)ds forteR. (2.9)

If H is S-bounded, then it is strongly almost periodic from R to X.
For the proof of Lemma 2.5, see [5, Notes (ii)].

LEMMA 2.6. For an operator-valued function G : R — L(X,X), suppose G*(t) is the
conjugate (adjoint) of the operator G(t) fort € R. If G* : R — L(X*,X*) is strongly
almost periodic, and g : R — X is weakly almost periodic, then G(-)g(-) : R — X is weakly
almost periodic.

For the proof of Lemma 2.6, see [6, Remarks (iii)].
3. Proof of Theorem 1.1. By (2.1), we have
t
T(-Hu™ V) =um(0) +J T(-s)f(s)ds forteR. (3.1)
0

Evidently, T(--) : R — L(X, X) is a strongly almost periodic group. Therefore, T(—-)x :
R — X is strongly almost periodic, and so is bounded on R, for every x € X. Hence, by
the uniform-boundedness principle,

sup||T(~t)]| < . (3.2)
teR

Consequently, T(—-)u™1(.) is S-bounded on R (by our assumption, u"1 is S-
bounded on R).

Moreover, by Lemma 2.4, T(—-)f(-) : R — X is an S-almost periodic continuous
function. So, by Lemma 2.5, T(—-)u™"1(-) is strongly almost periodic from R to X.
Hence, by Lemma 2.2, u™ V() = T(-)[T(—-)u™ Y (.)] is strongly almost periodic
from R to X.
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Now consider a sequence (&x)k-1,2,... of infinitely differentiable nonnegative functions

on R such that

1 1/k
ox(t)=0 for|t| = —, J xp(t)dt =1. (3.3)
k “1/k

The convolution of u and « is defined by

(u* o) (t) = J ut—s)o(s)ds = J us)ox(t—s)ds fort eR. (3.4)
R R
We set
Cop = max o (t). (3.5)
It1=1/k

Then we have

1 t+1
[[(u*ou) (t)]| = ‘ J u(tfs)(xk(s)dsH < Ctka [[u(p)||ldp
-1 t-1 (36)
<2Cq llulls forteR, by (1.3).
That is, u* «y is bounded on R.
We note that, form=1,2,....n—-1and k=1,2,...,
(w* o) ™ (t) = (W™* ) (t) fort € R. (3.7)

Further, since u™~V is strongly almost periodic from R to X, (u* &) ®* 1 = (u"=D* )
is strongly almost periodic from R to X. Consequently, by [3, corollary to Lemma 5],
¥ o, oy, ..., u""2* . are all strongly almost periodic from R to X.

With u ™1 being bounded on R, u"2) is uniformly continuous on R. Therefore, the
sequence of convolutions (u™ 2*xy)(t) — u™ 2 (t) as k — oo, uniformly for t € R.
Hence u™=? is strongly almost periodic from R to X. We thus conclude successively
that u™=2 ... ', u are all strongly almost periodic from R to X, completing the proof
of the theorem.

4. Proof of Theorem 1.2. By our assumption, for an arbitrary but fixed x* € X*,
x*T(-) = T*(-)x* : R — X* is strongly almost periodic, and so x*T(-)x : R — C is
almost periodic for every x € X. Therefore, it follows that T : R — L(X,X) is a weakly
almost periodic group.

By (3.1), we have

t
X*T(—H)u™ D (t) = x*u™ b (0) +JO x*T(-s)f(s)ds forteR. 4.1)

By Lemma 2.3, x*T(—-)f(-) : R — C is an S-almost periodic continuous function. By
(2.4), x*T (= )u™-Y(.) is S-bounded on R, and so, by Lemma 2.5, is almost periodic
from R to C. That is, T(—-)u™ 1 (.) is weakly almost periodic from R to X. Conse-
quently, by Lemma 2.6, u®™ V() = T(:)[T(=-)u™ V()] is weakly almost periodic
from R to X.



3964 ARIBINDI SATYANARAYAN RAO

For the sequence (&x)k=1,2,.. defined by (3.3), (x*u*ax) = x* (u*xx) is bounded on
R (by (3.6)). Further, for m =1,2,...,n—1and k= 1,2,..., we have

(cFu* o) ™ (1) = (x*u™* o) (t) for ¢ € R. (4.2)

Now the rest of the proof is obvious.
If f:R — X is weakly almost periodic, then by Lemma 2.6, T(—-)f(-) : R — X is
weakly almost periodic.

REMARK 4.1. If T(t) =1 for t € R, and so A = 0, then problem (1.8) reduces to
u™(t) = f(t) ae.forteR. 4.3)

(i) In a reflexive space X, suppose f is defined as in Theorem 1.1.If u: R — X is an S-
bounded strong solution of problem (4.3), then u,u’,...,u™"Y are all strongly almost
periodic from R to X.

(ii) Assume f : R — X is a weakly almost periodic continuous function. If u: R — X
is an S-bounded strong solution of problem (4.3), then u,u’,...,u™ 1V are all weakly
almost periodic from R to X.

These statements are clearly special cases of Theorems 1.1 and 1.2 if we take into
account that the assumption u™ 1 S-bounded can be omitted, since, by (4.3), u™ is
S-almost periodic, and so w1V is strongly (weakly) uniformly continuous on R (by
Amerio and Prouse [1, Theorem 8, page 79]).
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