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We study strong solutions u : R → X, a Banach space X, of the nth-order evolution equa-
tion u(n) −Au(n−1) = f , an infinitesimal generator of a strongly continuous group A :
D(A) ⊆ X → X, and a given forcing term f : R → X. It is shown that if X is reflexive, u
and u(n−1) are Stepanov-bounded, and f is Stepanov almost periodic, then u and all deriva-
tives u′, . . . ,u(n−1) are strongly almost periodic. In the case of a general Banach space X, a
corresponding result is obtained, proving weak almost periodicity of u, u′, . . . ,u(n−1).
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1. Introduction. In this paper, we are concerned with an nth-order evolution equa-

tion of the form

u(n)−Au(n−1) = f . (1.1)

Here A : D(A) ⊆ X → X is an infinitesimal generator of a strongly continuous group,

f :R→X a given forcing term,X a Banach space with scalar field C ,n a positive integer,

and R denotes the set of reals. We will give suitable assumptions to ensure that almost

periodicity of the forcing term f carries over to the solution u and its derivatives up

to order (n−1).
The reason for studying this rather special evolution equation may be classified as

a first pilot study of the issue of higher-order evolution equations, which probably has

not been studied before.

We first recall the relevant concepts. A continuous function f : R→ X is said to be

strongly (or Bochner) almost periodic if, for every given ε > 0, there is an r > 0 such

that any interval in R of length r contains a point τ for which

sup
t∈R

∥∥f(t+τ)−f(t)∥∥≤ ε. (1.2)

Here ‖·‖ denotes the norm in X.

A function f :R→X is called weakly almost periodic if x∗f(·) :R→ C is continuous

and almost periodic for every x∗ in the dual space X∗ of X.

We will call a function f ∈ L1
loc(R,X) Stepanov-bounded or briefly S-bounded if

‖f‖S := sup
t∈R

∫ t+1

t

∥∥f(s)∥∥ds <∞. (1.3)
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We will call a function f ∈ L1
loc(R,X) Stepanov almost periodic or briefly S-almost

periodic if, for every given ε > 0, there is an r > 0 such that any interval in R of length

r contains a point τ for which

sup
t∈R

∫ t+1

t

∥∥f(s+τ)−f(s)∥∥ds ≤ ε. (1.4)

We denote by L(X,X) the set of all bounded linear operators on X into itself. An

operator-valued function T :R→ L(X,X) will be called a strongly continuous group if

T
(
t1+t2

)= T(t1)T(t2) ∀t1, t2 ∈R, (1.5)

T(0)= I = the identity operator on X, (1.6)

T(·)x :R→X is continuous for every x ∈X. (1.7)

We recall (e.g., from Dunford and Schwartz [4]) that the infinitesimal generator A :

D(A) ⊆ X → X of a strongly continuous group T : R → L(X,X) is a densely defined,

closed linear operator.

An operator-valued function T : R → L(X,X) is said to be strongly (weakly) almost

periodic if T(·)x :R→X is strongly (weakly) almost periodic for every x ∈X.

Suppose A :D(A)⊆X →X is a densely defined, closed linear operator, and f :R→X
is a continuous function. Then a strong solution of the evolution equation

u(n)(t)−Au(n−1)(t)= f(t) a.e. for t ∈R (1.8)

is an n times strongly differentiable function u : R→ X with u(n−1)(t) ∈ D(A) for all

t ∈R, and satisfies problem (1.8).

Our first result is as follows (see Zaidman [7, 8] for first-order evolution equations).

Theorem 1.1. Let X be reflexive, f : R → X continuous, S-almost periodic, A infini-

tesimal generator of a strongly almost periodic group T :R→ L(X,X). In this case, if, for

the strong solution u : R→ X of problem (1.8), both u and u(n−1) are S-bounded on R,

then u, u′, . . . ,u(n−1) are all strongly almost periodic.

Our second result refers to a weak variant of our first theorem in the case of a

general—not necessarily reflexive—Banach space X.

Theorem 1.2. Suppose f :R→X is an S-almost periodic (or a weakly almost periodic)

continuous function, A an infinitesimal generator of a strongly continuous group T :R→
L(X,X) such that the conjugate operator group T∗ : R → L(X∗,X∗) is strongly almost

periodic. If, for the strong solution u : R → X of problem (1.8), both u and u(n−1) are

S-bounded on R, then u, u′, . . . ,u(n−1) are all weakly almost periodic.

Remark 1.3. For some examples of first-order and higher-order evolution equations

with strongly almost periodic solutions, the reader may wish to consult Cooke [3] and

Zaidman [9].
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2. Lemmas

Lemma 2.1. If A is the infinitesimal generator of a strongly continuous group G :R→
L(X,X), then the (n−1)th derivative of any solution of (1.8) has the representation

u(n−1)(t)=G(t)u(n−1)(0)+
∫ t

0
G(t−s)f (s)ds for t ∈R. (2.1)

Proof. For an arbitrary but fixed t ∈R, we have

d
ds
[
G(t−s)u(n−1)(s)

]=G(t−s)[u(n)(s)−Au(n−1)(s)
]

=G(t−s)f (s) a.e. for s ∈R, by (1.8).
(2.2)

Now, integrating (2.2) from 0 to t, we obtain

∫ t
0

d
ds
[
G(t−s)u(n−1)(s)

]
ds =

∫ t
0
G(t−s)f (s)ds, (2.3)

which gives the desired representation, by (1.6).

Lemma 2.2. If g :R→X is a strongly almost periodic function, and G :R→ L(X,X) is

a strongly (weakly) almost periodic operator-valued function, then G(·)g(·) :R→X is a

strongly (weakly) almost periodic function.

For the proof of Lemma 2.2, see [6, Theorem 1] for weak almost periodicity.

Lemma 2.3. If g : R → X is an S-almost periodic continuous function, and G : R →
L(X,X) is a weakly almost periodic operator-valued function, then x∗G(·)g(·) : R→ C
is an S-almost periodic continuous function for every x∗ ∈X∗.

Proof. By our assumption, for an arbitrary but fixedx∗∈X∗, the functionx∗G(·)x :

R → C is almost periodic, and so is bounded on R, for every x ∈ X. Hence, by the

uniform-boundedness principle,

sup
t∈R

∥∥x∗G(t)∥∥=K <∞. (2.4)

We note that the function x∗G(·)g(·) is continuous on R (see [6, proof of Theorem 1]).

Consider the functions gη given by

gη(t)= 1
η

∫ η
0
g(t+s)ds for η > 0, t ∈R. (2.5)

Since g is S-almost periodic from R to X, gη is strongly almost periodic from R to X
for every fixed η > 0. Further, as shown for C-valued functions in [2, pages 80-81], we

can prove that gη→ g as η→ 0+ in the S-sense, that is,

sup
t∈R

∫ t+1

t

∥∥g(s)−gη(s)∥∥ds �→ 0 as η �→ 0+ . (2.6)

Now we have

x∗G(s)g(s)= x∗G(s)[g(s)−gη(s)]+x∗G(s)gη(s) for s ∈R, (2.7)
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and, by (2.4) and (2.6),

sup
t∈R

∫ t+1

t

∣∣x∗G(s)[g(s)−gη(s)]∣∣ds

≤K sup
t∈R

∫ t+1

t

∥∥g(s)−gη(s)∥∥ds �→ 0 as η �→ 0+ .
(2.8)

By Lemma 2.2, the functions x∗G(·)gη(·) are almost periodic from R to C . Therefore,

it follows from (2.7)-(2.8) that x∗G(·)g(·) is S-almost periodic from R to C .

Lemma 2.4. If g : R → X is an S-almost periodic continuous function, and G : R →
L(X,X) is a strongly almost periodic operator-valued function, then G(·)g(·) : R→ X is

an S-almost periodic continuous function.

The proof of this lemma parallels that of Lemma 2.3 and may therefore be safely

omitted.

Lemma 2.5. In a reflexive space X, assume h :R→X is an S-almost periodic continu-

ous function, and

H(t)=
∫ t

0
h(s)ds for t ∈R. (2.9)

If H is S-bounded, then it is strongly almost periodic from R to X.

For the proof of Lemma 2.5, see [5, Notes (ii)].

Lemma 2.6. For an operator-valued function G : R → L(X,X), suppose G∗(t) is the

conjugate (adjoint) of the operator G(t) for t ∈ R. If G∗ : R → L(X∗,X∗) is strongly

almost periodic, and g :R→X is weakly almost periodic, then G(·)g(·) :R→X is weakly

almost periodic.

For the proof of Lemma 2.6, see [6, Remarks (iii)].

3. Proof of Theorem 1.1. By (2.1), we have

T(−t)u(n−1)(t)=u(n−1)(0)+
∫ t

0
T(−s)f (s)ds for t ∈R. (3.1)

Evidently, T(−·) :R→ L(X,X) is a strongly almost periodic group. Therefore, T(−·)x :

R→X is strongly almost periodic, and so is bounded on R, for every x ∈X. Hence, by

the uniform-boundedness principle,

sup
t∈R

∥∥T(−t)∥∥<∞. (3.2)

Consequently, T(−·)u(n−1)(·) is S-bounded on R (by our assumption, u(n−1) is S-

bounded on R).

Moreover, by Lemma 2.4, T(−·)f (·) : R → X is an S-almost periodic continuous

function. So, by Lemma 2.5, T(−·)u(n−1)(·) is strongly almost periodic from R to X.

Hence, by Lemma 2.2, u(n−1)(·) = T(·)[T(−·)u(n−1)(·)] is strongly almost periodic

from R to X.
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Now consider a sequence (αk)k=1,2,... of infinitely differentiable nonnegative functions

on R such that

αk(t)= 0 for |t| ≥ 1
k
,

∫ 1/k

−1/k
αk(t)dt = 1. (3.3)

The convolution of u and αk is defined by

(
u∗αk

)
(t)=

∫
R
u(t−s)αk(s)ds =

∫
R
u(s)αk(t−s)ds for t ∈R. (3.4)

We set

Cαk = max
|t|≤1/k

αk(t). (3.5)

Then we have

∥∥(u∗αk)(t)∥∥=
∥∥∥∥
∫ 1

−1
u(t−s)αk(s)ds

∥∥∥∥≤ Cαk
∫ t+1

t−1

∥∥u(ρ)∥∥dρ
≤ 2Cαk‖u‖S for t ∈R, by (1.3).

(3.6)

That is, u∗αk is bounded on R.

We note that, for m= 1,2, . . . ,n−1 and k= 1,2, . . . ,

(
u∗αk

)(m)(t)= (u(m)∗αk)(t) for t ∈R. (3.7)

Further, sinceu(n−1) is strongly almost periodic fromR toX, (u∗αk)(n−1) = (u(n−1)∗αk)
is strongly almost periodic from R to X. Consequently, by [3, corollary to Lemma 5],

u∗αk,u′∗αk, . . . ,u(n−2)∗αk are all strongly almost periodic from R to X.

With u(n−1) being bounded on R, u(n−2) is uniformly continuous on R. Therefore, the

sequence of convolutions (u(n−2)∗αk)(t) → u(n−2)(t) as k → ∞, uniformly for t ∈ R.

Hence u(n−2) is strongly almost periodic from R to X. We thus conclude successively

that u(n−2), . . . ,u′,u are all strongly almost periodic from R to X, completing the proof

of the theorem.

4. Proof of Theorem 1.2. By our assumption, for an arbitrary but fixed x∗ ∈ X∗,

x∗T(·) = T∗(·)x∗ : R → X∗ is strongly almost periodic, and so x∗T(·)x : R → C is

almost periodic for every x ∈ X. Therefore, it follows that T : R→ L(X,X) is a weakly

almost periodic group.

By (3.1), we have

x∗T(−t)u(n−1)(t)= x∗u(n−1)(0)+
∫ t

0
x∗T(−s)f (s)ds for t ∈R. (4.1)

By Lemma 2.3, x∗T(−·)f (·) : R → C is an S-almost periodic continuous function. By

(2.4), x∗T(−·)u(n−1)(·) is S-bounded on R, and so, by Lemma 2.5, is almost periodic

from R to C . That is, T(−·)u(n−1)(·) is weakly almost periodic from R to X. Conse-

quently, by Lemma 2.6, u(n−1)(·) = T(·)[T(−·)u(n−1)(·)] is weakly almost periodic

from R to X.
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For the sequence (αk)k=1,2,... defined by (3.3), (x∗u∗αk)= x∗(u∗αk) is bounded on

R (by (3.6)). Further, for m= 1,2, . . . ,n−1 and k= 1,2, . . . , we have

(
x∗u∗αk

)(m)(t)= (x∗u(m)∗αk)(t) for t ∈R. (4.2)

Now the rest of the proof is obvious.

If f : R → X is weakly almost periodic, then by Lemma 2.6, T(−·)f (·) : R → X is

weakly almost periodic.

Remark 4.1. If T(t)≡ I for t ∈R, and so A= 0, then problem (1.8) reduces to

u(n)(t)= f(t) a.e. for t ∈R. (4.3)

(i) In a reflexive space X, suppose f is defined as in Theorem 1.1. If u :R→X is an S-

bounded strong solution of problem (4.3), then u,u′, . . . ,u(n−1) are all strongly almost

periodic from R to X.

(ii) Assume f : R→ X is a weakly almost periodic continuous function. If u : R→ X
is an S-bounded strong solution of problem (4.3), then u,u′, . . . ,u(n−1) are all weakly

almost periodic from R to X.

These statements are clearly special cases of Theorems 1.1 and 1.2 if we take into

account that the assumption u(n−1) S-bounded can be omitted, since, by (4.3), u(n) is

S-almost periodic, and so u(n−1) is strongly (weakly) uniformly continuous on R (by

Amerio and Prouse [1, Theorem 8, page 79]).
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