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This is a sequel to our paper (Lett. Math. Phys. (2000)), triggered from a question posed by
Marcel, Ovsienko, and Roger in their paper (1997). In this paper, we show that the multi-
component (or vector) Ito equation, modified dispersive water wave equation, and modified
dispersionless long wave equation Eﬂhe geodesic flows with respect to an L2 metric on the
semidirect product space Diff*(S1) x C®(S1)k, where Diff*(S!) is the group of orientation
preserving Sobolev H* diffeomorphisms of the circle. We also study the projective structure
associated with the matrix Sturm-Liouville operators on the circle.
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1. Introduction. It is known that the periodic Korteweg-de Vries (KdV) and the
Camassa-Holm equation [5] can be interpreted as geodesic flow of the right invari-
ant metric on the Bott-Virasoro group, which at the identity is given by the L? and the
Sobolev metric H!-inner product, respectively, [25, 26, 28, 29].

With the advancement of the integrable systems, physicists and mathematicians dis-
covered many new multicomponent versions of the existing integrable nonlinear PDEs
[1, 2,9, 22]. In the theory of integrable systems, these multicomponent generalizations
have been sporadically used. There are several two-component generalizations of KdV
equations, namely, Hirota-Satsuma equation [16], Wilson equation [30], and Ito equa-
tion [18] are notables among them. Almost all the integrable systems of these classes
share a common property. These are all bi-Hamiltonian systems which enjoy a com-
patible pair of Hamiltonian structure. These systems belong to an infinite-dimensional
hierarchy of bi-Hamiltonian systems. The resulting Hamiltonian flows can be mapped
into each other by the recursion operator, which is formally defined as the “quotient”
of the two Hamiltonian structures. Several of the well-known bi-Hamiltonian systems
fall into two-component case are actually tri-Hamiltonian. There are a few disparate
examples of tri-Hamiltonian systems. The classical dispersive water equation and the
long waves equation [22] belong to this class of integrable systems.

In our earlier papers [10, 11], we have shown that the Ito equation, modified disper-
sive water wave equation, and modified dispersionless long waves equation arise in a
unified geometric setting, all of them are integrable systems which describe geodesic
flows. Thus, we unify the Ito equation, the dispersive water wave equation, and the
long wave equation through a common construction, all are integrable systems which
describe geodesic flows with respect to L? on the extension of the Bott-Virasoro group.
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Recently, there has been a growing interest in the multicomponent integrable sys-
tems. These systems are far less known than ordinary integrable systems. It was pre-
sented in [1, 2] that an N-component system has a remarkable property of possessing
(N +1) local Hamiltonian structure. Antonowicz and Fordy showed that these systems
were isospectral to an energy-dependent Schrodinger operator and gave a systematic
derivation of the Hamiltonian from knowledge of the generalized Lax representation.

Using the extension of the Bott-Virasoro group with an L? metric, we will show how
the multicomponent KdV-type equation arise from a geodesic flow.

Following Ebin and Marsden [8], we enlarge Diff (S!) to a Hilbert manifold Diff*(S!),
the diffeomorphism of Sobolev class H*. This is a topological space. If s > /2, it makes
sense to talk about an H® map from one manifold to another. Using local charts, one
can check whether the derivation of order < s is square integrable.

The Lie algebra of Diff*(S') x C*(S!) has a three-dimensional extension (explained
in the next section), namely,

Vect! (S1)x C*(S!) @ R3. (1.1)

Then, a typical element of this algebra would be

a a 1 w (ol 3
(f(x)dx,u(x),tx>, f(x)dx € Vect (§1), u(x) e C*(sh), x € R3. (1.2)

—

The Diff* (S1) x C*(S1) is the nontrivial extension of Diff*(S!) x C*(S1).
In this paper, we will extend our previous results [10]. We will study the geodesic

flows on Diff* (S1) x C*(S1)X. The Lie algebra of Diff*(S1) x C*(S1)¥ also has a three-
dimensional extension

Vect (S1) x €= (s1)* @ R¥+2. 1.3)

MOTIVATION OF THE PAPER. This paper is focused on a wide class of N-component
systems of nonlinear evolution equations with a hierarchy of compatible Hamiltonian
structures. The compatible Hamiltonian structures are related by an integrodifferential
recursion operator, but the first N + 1 Hamiltonian structures in the hierarchy are purely
differential. Examples included in this class are N-coupled KdV equations and, for N =
2, dispersive water waves, Ito’s equation, and the reduced shallow water wave equations
of Benney.

Our motivation is to reach how one can understand the multidimensional integrable
systems as some geodesic flows or Euler-Poincaré flows on some extended Bott-Virasoro
groups. This unifies several multicomponent integrable systems through a common
geometrical construction and symmetry.

ORGANIZATION OF THE PAPER. In Section 2, we will study the Lie algebra Vect(S!) x

Cc> (Sl)k of the extended Bott-Virasoro group Diff* (S1) x C°°(Sl)k. In Section 3, we de-
scribe the projective connections on the circle, in particular, we introduce the matrix
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projective connection related to Vect(S') x C®(S1! )k. In Section 4, we study the geodesic

flows on the Diff* (S1) x C*(S1! )k related to L? inner product, and this gives rise to sev-
eral multicomponent integrable systems corresponding to the different hyperplanes in
the dual space

ce(SHec®(SHe---C(S') ®R3. (1.4)

o

~

k

In Section 5, we study the geodesic flow of the right invariant inner metric on the

Diff* (S1) x C* (S 1)k“, which at the identity is given by the L? inner product.

THE RESULT OF THE PAPER

THEOREM 1.1. Lett — ¢ be a curve in the Diff* (S1) x C°°(Sl)k. Let ¢ = (e,e,0) be the
initial point, directing to the vector ¢(0) = (u(x)(d/dx),v(x),Iy), where Iy = (yé,%,
Y3) € R¥2 and v (x) = (v1(x),...,vk(x))t. Then, é(t) is a geodesic of the L? metric:

(A) to a hyperplane y} = —1, associated y3 = 0, y3 = 0 if and only if (u(x,t)(d/dx),

v (x,t),T) satisfies the multicomponent Ito-type system,

(B) associated to a hyperplane y3 = 1d, y} = yg = 0 if and only if (u(x,t)(d/dx),
v (x,t),T) satisfies modified multicomponent dispersive water wave equation,

(C) associated to a hyperplane y} = -1, ;75 =1d, y03 =0 ifand only if (u(x,t)(d/dx),
v (x,t),T) satisfies some generalized multicomponent integrable system (stated in
Section 4),

(D) associated to a hyperplane y = yg = yS =0 ifandonly if (u(x,t)(d/dx),v (x,t),
I') satisfies modified multicomponent dispersionless long wave equations.

Next, we derive the Euler-Poincaré flows on the dual space of Vect(S') x C ok+l A

fx)(d/dx)
typical element of this algebra is ( a(x) ), where f(x)(d/dx) € Vect(S!), a(x) €
14

C=(SY) and p € C=(sH*.
THEOREM 1.2. The geodesic flow of the right invariant inner product on the Diff (S') x

C=**1 which at the identity is given by the L? metric, yields the multicomponent Ito-type
systems.

2. Structure of Vect(S') x C*(S)*. Let Diff*(S') be the group of orientation pre-
serving Sobolev H* diffeomorphisms of the circle. It is known that the group Diff*(S!)
as well as its Lie algebra of vector fields on S!, Tiq Diff* (S') = Vect®(S1), have non-trivial
one-dimensional central extensions, the Bott-Virasoro group D/iffs (S1) and the Virasoro
algebra Vir, respectively, [19, 20, 21, 27, 28].

The Lie algebra Vect®(S!) is the algebra of smooth vector fields on S!. This satisfies
the commutation relations

a 7 L , , i
[F ] = (F0g (0 - f (g (x) = @.1)
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One parameter family of Vect®(S') that acts on the space of all tensor densities on
St of degree —u, a = a(x)(dx)™*, is given by

LY )a @(x) = £ (x) — pf (x)d(x), (2.2)
where
L = d ' 2.3
Foordjax) = X) 7= =pf (%) (2.3)
is the Lie derivative with respect to the vector field f(x)(d/dx) and
d=(ap,...,ar)" €(C>(s1))" (2.4)
The Lie algebra of Diff* (S!) x (C®(S'))¥ is the semidirect product Lie algebra

k

G = Vect® (S)xC®(Sh)". (2.5)

An element of ¢ is a pair (f(x)(d/dx),d(x)), where f(x)(d/dx) € Vect®*(S!).
It is known that this algebra has a three-dimensional central extension given by the
nontrivial cocycles

d = d - ’ "
i ((F40d). (9508)) = | £ 09" orax,
- d . d - " L o=
@ ((F40d).(945:8)) = |, £ 00Bx) - 9" (@G0 dx, (2.6
a . d ~\\ _ ot -,
WS((de,a),(gdx,b» = ZLIa (x)b' (x)dx.
The first cocycle w; is the well-known Gelfand-Fuchs cocycle, and the second cocycle

> takes its values in R¥. The Virasoro algebra is the unique nontrivial central extension
of Vect(S1!) via this w; cocycle. Hence, we define the Virasoro algebra

Vir = Vect® (S!) @ R. (2.7)

The space C*(S!) @ R is identified with a part of the dual space to the Virasoro algebra.
Itis called the regular part, and the pairing between this space and the Virasoro algebra
is given by

<(M(X),a),<f(x)i,(x)> :J u(x) f(x)dx +ac. (2.8)
dx st
Similarly, we consider an extension of %. This extended algebra is given by

G = Vect® (S) x (C*(s1))* @ R¥*2, (2.9)

The Lie algebra &, for k = 1, has been considered in various places [3, 15, 24]. It was
shown in [24] that the cocycles

H?(Vect (SY)x (C*(S'))) = R3 (2.10)

define the universal central extension the Lie algebra Vect®(S!) x C*(S1).
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DEFINITION 2.1. The commutation relation in 4 is given by

d d by d
f(X)E g(xza (fa jf 9
a || b =\ fo-ga | (2.11)
« B w

where & = (x1,%2,x3), B = (Bl,gz,ﬁg) € R3, w = (w,w>,w3) are the two cocycles.

The dual space of smooth functions

ce(sHec>(SHYe---Cc>(sh) (2.12)

k

is the space of distributions (generalized functions) on S!. Of particular interest are
the orbits in the regular dual 45,. In the case of current group, Gelfand, Vershik, and
Graev have constructed some of the corresponding representations.

DEFINITION 2.2. The regular part of the dual space 4* to the Lie algebra 4 is as
follows. Consider

Grg=C(SHeC™(SH) e - 0C>(S') @R® (2.13)

k

and fix the pairing between this space and 4, (-,-): G, % — R:
(a, f) = 1f(x)u(x)dx+J U xdx)dx + -y, (2.14)
s s

where i = (u(x),vt,y), f = (f(d/dx),d, ).

Extend (2.14) to a right invariant metric on the semidirect product space
Diff* (S1) x C*(S1)¥ by setting

(0, f)e = <déRgflayd$Ré—lf>L2 (2.15)

forany £ € and i, f € T¢%, where

&>
l
&>

(2.16)
is the right translation by é

3. Projective connections on the circle. In this section, we describe the matrix pro-
jective connection associated to Vect* (S1) x C*(S?! )k algebra. We start with some defi-
nitions of projective connections [12, 13, 14, 17].

We denote Q*1/2 by the square root of the tangent and cotangent bundle of S!, re-
spectively.

Let A be a second-order differential operator.
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DEFINITION 3.1. A projective connection on the circle is a linear second-order dif-
ferential operator

A:T(Q7V?) —T(Q3?) (3.1)

such that
(1) the symbol of A is the identity,
(2)

,[31 (ASl)SZ = Jsl $1 (ASZ) (3.2)

for all s; e T(Q1/2).,

We take s = @ (x)dx 12 eT(Q12), then As € ['(Q3/2) is locally described by
As = (ay” +by’ +cy)dx3?. (3.3)

As discussed in [6], any differential equation of the form
() () ()
dx? _p3(dx tp| ) TP g ) TPo (3.4)

defines a projective structure.

From the definition of the projective connection condition (1) implies a = 1 and
condition (2) implies b = 0, hence projective connection can be identified with the Hill
operator

@ a?
A =A=W+M(X). (3.5)

Let L, be the Lie derivative with respect to the vector field v = f(x)(d/dx).

DEFINITION 3.2. A vector field is called projective vector field which keeps fixed a
given projective connection A

LuAs = A(Lys). (3.6)

Using the equation L,A® = A®@ L, we obtain the following proposition.

PROPOSITION 3.3. A projective vector field v = f(d/dx) € T(Q~1) satisfies
" +4f'u+2fu =0. (3.7)

If u; are periodic functions on the line, the operator

n n-1 dnfz

dxn +’un,1dxn71 +Up-2

dxn72 +ula+u01 (38)
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acting on periodic functions, is called an Adler-Gelfand-Dikii (or AGD) operator. We
consider a projective connection as defined by this nth-order operator on the circle
[12,13, 14].

DEFINITION 3.4 (extended projective connection). An extended projective connec-
tion on the circle is a class of differential (conformal) operators

A T (Q-(D2) . p(Qn+D)12) (3.9)

such that
(1) the symbol of A™ is the identity,
(2)

Ll (AMs))s = L‘l s1(AMsy) (3.10)

for all s; e T(Q--172),

It is known that the symbol of an nth-order operator from a vector bundle U to V is
a section of Hom(U,V ® Sym"T), where

U=qQ (bizy =iz, (3.11)
Since T = Q1, we get
Vesym"T =U, (3.12)

giving an invariant meaning to the first condition.

If s, e[(Q~™~D/2) then s1A™s, e ['(Q) is a one form to integrate.

The consequence of the first condition is that all the differential operators are monic,
that is, the coefficient of the highest derivative is always one, and the second condition
says that the term u,_; = 0.

3.1. Matrix projective connection. We first consider the projective connections
yielded by the Vect(S') x C*(S!). Consider the following matrix linear differential op-
erators on C*(S1) @ C*(S!):

2

d—+u(x) i+v(x)
A= | dx? dx , (3.13)

d
EJ”}(X) c

where c € R, u(x) = u(x+2m) and v(x) = v(x +21).
It defines a matrix projective connection.
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DEFINITION 3.5 (matrix projective connection). An extended projective connection
on the circle is a class of differential (conformal) operators

A:T(Q2)er(QY?) —T(Q3?) eI (QY?) (3.14)

such that
(1) the symbol of A is the identity,
(2)

J STAS, (3.15)
51

where §t = (s1 52), for s; e T(Q1/2) and s, € ['(Q1/2), is a one form which can be
integrated over the circle.

The second condition says that no choice of measure is necessary to make it invariant.
Hence, the definition of a projective connection requires no structure on the circle other
than a differentiable one. Thus, the space of matrix differential operator on a circle is
considered as a module over the group of diffeomorphisms. In other words, the group
of diffeomorphisms acts naturally on the projective structures.

The above construction can be easily generalized to the higher-dimensional matrix
linear differential operators acting on

c(sh)ecC=(s)e---aC(s"),

)

(3.16)

Akl = ’

where ¢; € R, ¢ € R¥, and u(x) = u(x+2m), (x) = (V1,..., V)t = U(x +2711).

3.2. Vect(S)xC=(S? )k-module structure and projective vector field. A one-param-
eter family of Vect(S1)xC>(S1)* modules on the space C*(S?) eC” SHe---eC>(S! )
is defined as follows: X

A
TA R m _ Lf(x)(d/dx)m (3.17)
Gooaanacn \ i ) Z\LYL oo i-Ad (0)m(x) ) '

where m(x) € C*(S!) and 7i(x) € C=(S1)*.

DEFINITION 3.6. The Vect(S!) x C®(S 1)k action on the space of operators Ak, is
given by

-1/2 1/2
[Tiro@iax)aon Bker] = Tpld ara aoo) © Bkt =Bkt © T poo wjany iy - (3-18)
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CLAIM.
A A _ 7TA
[Tf(x)(d/dx),d(x) ’ Tf(x)(d/dx)’g(x)] - T((fy'—f’g)(d/dx),fﬁ’—gd’)' (3.19)
SKETCH OF THE PROOF. It is easy to compute from (3.17) that
A A m
Tg(x)(d/dx),;}(x) Ty @raxaco ( ﬁ)
A A
_ ( - - fg(x)(d/dx)Lﬂx)(d/dwm o )
— — o -1 =7 7 )
Ly toyarae L oo @ra = Lgoajax) MG (X)M(x)) =AD" (X)L () (4 ax) M (X)
A A m
T o ajax) aco Tg(x)(d/dx),zS(x) ( 7 )
A A
_ ( . . . L oy arax Lo aran M o )
=\ a1 -1 = = , .
Loy asax) Lo @raxe) T Loy arax) (MA@ ()M(x)) = (A=1)D" (X)L () (4 /ax) M (X)
(3.20)
Our result follows from (3.20). |

A projective vector field in this case is a vector field v = f(x)(d/dx) which leaves
the projective connection invariant, that is,

A & A &
Tk o) gd),aoe Bke1S = Bkt T ) (ayax aon S (3.21)

for all § = (s1,82)t € T(QV2) ®T(Q/?).
PROPOSITION 3.7.

fuw s 2fus fUavtd cta’ fur +f’17+6f”+c1d’> L

T 0 Ars1] = RS !
[T (@/ax),aco, k1] ( FO 4 fO - eyd 0

(3.22)

PROOF. By direct calculation. |

4. Integrable geodesic flows on Diff (S1) x C* (S 1)k. Let G be a Lie group and g its
corresponding Lie algebra and its dual is denoted by g*.
The dual space g* to any Lie algebra g carries a natural Lie-Poisson structure [4, 7]:

{f!g}LP(IJ) = <[df!dg]yu> (41)

for any u € g* and f,g € C*(S1).

LEMMA 4.1. The Hamiltonian vector field on ¢* corresponding to a Hamiltonian func-
tion f, computed with respect to the Lie-Poisson structure, is given by

du

I = ad;fu. (4.2)
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PROOF. The proof follows from the following identities:

ledg|u :Lng|IJ = {flg}LP(U) = <[dg,df],[l> = <dgiad;f“> (43)

This implies that Xy = ad;fu. Thus, the Hamiltonian equation du/dt = Xy yields our
result. |

Let I be an inertia operator
I:g—g* (4.4)
and then u € g* evolve by

av _ 1.
T =(I"u)-u, (4.5)

where right-hand side denotes the coadjoint action of g on g*. This equation is called
the Euler-Poincaré equation corresponding to the Hamiltonian H (u) = (1/2) (I 'y, u).

The Euler-Poincaré equation is the Hamiltonian flow on the coadjoint orbits on the
dual of Bott-Virasoro algebra generated by the Hamiltonian

H(q0y,a) = %Ll q’dx +a?, (4.6)

where a is just a constant.

PROPOSITION 4.2. Let QG be an infinite-dimensional Lie group equipped with a right
invariant metric. A curve t — c(t) in QG is a geodesic of this metric if and only if q(t) =
dctRCt—IC.(t) satisfies

%q(t) =—adjq(t). (4.7)

Given any three elements f , g, and 1,

f=(f%,zi,¢x), g=(g%,5,ﬁ>, a:(ui,ﬁ,c) 4.8)

in 4, where & = (o1, &, o3), B = (B1,B2,B3), € = (c1,C2,C3).
LEMMA 4.3.
2f () u(x) + fOu (x)+avix)—c f” +csa’

ad}‘a= FUx)+f(x)U (x)=Cf" (x)+2c3d (x) . 4.9)
0
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PROOF. This proof follows from
(ad:t,g),, = (@,[F,8]);
= ((ueo g2 oG ). o' o) s -gdw])
- | (g - x| (fE'—gd')vdx—clj F1(0g" (x)dx
st st

- L' (f" (x)b(x)—g" (x)d(x))dx —2c3 L] at(x)b' (x)dx.
(4.10)
Since f, g, u are periodic functions, integrating by parts we obtain our result. O

CASE 1 (the multicomponent Ito equation). The coadjoint action leaves the parame-
ter space invariant. We consider a hyperplane c¢; = -1, ¢> = ¢3 = 0.

LEMMA 4.4.

2F7 (Ou(x) + OO (x) +dt (x)v(x) +f"
n= fUx)+f(x)v'(x) . (4.11)
0

The Fuler-Poincaré equation is the Hamiltonian flow on the coadjoint orbit in *,
generated by the Hamiltonian

H(®) = H(u,v) = {((u(x),v(x)), (u(x),7(x))), (4.12)
given by
Z—I: = —adyu(t). (4.13)

Let V be a vector space and assume that the Lie group G acts on the left by linear
maps on V, thus G acts on the left on its dual space V* [for details, see, e.g., [7]].

PROPOSITION 4.5. Let G XV be a semidirect product space (possibly infinite dimen-
sional), equipped with a metric (-, -) which is right translation. A curvet — c(t) inGXV' is
a geodesic of this metric if and only if u(t) = d.)R,.,,-1¢(t) satisfies the Euler-Poincaré
equation.

c(t)

Thus, we obtain the multicomponent Ito equation

Ut + Uy +6UUL + 2T T, =0,
R . (4.14)
Ur+2(Uv) =0

The original Ito system admits a tri-Hamiltonian structure, hence, this multicompo-
nent Ito would exhibit the same property.

CASE 2 (modified multicomponent dispersive water wave equation). When we re-
strict to a hyperplane c; = 0, c3 = 0, we obtain the following lemma.
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LEMMA 4.6.
2F () u(x) + fu (x) +d (x)v(x) +cha”
ad}’iﬁ: fU(x)+f(x)V (x)=Cof" . (4.15)
0

Thus, by applying the Euler-Poincaré equation we obtain

U +6UUL + Zﬁtﬁx +€£ﬁxx =0,
Ottty 2UTUx (4.16)
Ut +2(VU)x — CoUxx = 0.

CASE 3 (the multicomponent new integrable system). When we restrict to a hyper-
plane ¢y = 1, c¢3 = 0, we obtain the following lemma.

LEMMA 4.7.

2f (x)u(x)+f(x)u'(x)+a’v(x)+a” + f""
ad}ii - Fo)+fx)v (x) - f" : (4.17)
0

Thus, by applying the Euler-Poincaré equation, we obtain another pair of integrable
Hamiltonian system

U+ 66Uy +2U Uy + 5 Txx +Uxxx = 0,
YT eV 4.18)
Uy +2(UU) x — Colhyx = 0.

CASE 4 (modified multicomponent dispersionless long wave equation). In this case,
we just set c; = ¢2 = c3 = 0, that is, non-centrally extended part.

LEMMA 4.8.

2f () u(x) + fou' (x) +a@ (x)v(x)
ad;ii = U x)+f(x)0"(x) : (4.19)
0

Thus, we obtain

U+ 06Uy + 200, =0,
R R (4.20)
Ur+2(Vu) =0.

5. Second category of multiple-component integrable systems. In this section, we

consider the Euler-Arnold equation on the dual space of Vect(S1) x C®(S! )k“. We split

the space c=(SH*" into 2 (S x = (sH*. A typical element of Vect(S') x Co(s1H)F!

Fx)(d/dx)
is ( a(x) ) This type of construction has been discussed by Kupershmidt [23].
14
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We redefine the cocycles in the following form:

(15 ap) (9mp.d)) = | 10" xax,
(15 ap) (9450.d)) = | @b -g"atnax, G
am((f%,a,ﬁ), (g%,b,tj)) = stl a(x)b’ (x)dx.

This means
H?(Veet (S x C®(s1)*"") = R, (5.2)

DEFINITION 5.1. The commutation relation in 4 is given by

d d N |
f(x)dx 900~ (fg fg)dx
a(x) |[,| bx) =| JSfb'—ga |, (5.3)
14 q faq —gp’
« B w

where & = (1,02, x3), B = (Bl,ﬁ;,ﬁg) € R3, w = (w,wo>,w3) are the two cocycles.

DEFINITION 5.2. The regular part of the dual space 4* to the Lie algebra 4 is as
follows. Consider (2.13) and fix the pairing between this space and &, (-, -) : G, % — R:

(n,f) = Ll FOOu(x)dx + Ll Ax)T(x)dx+«-y, (5.4)

where @ = (u(x),v,w,y), f = (f(d/dx),a,p,®).

Again, from the coadjoint action, we obtain the following set of integrable Hamilton-
ian system:

Ut +6UUx +2VVUx + Vxx + Uxxx =0,
Vi +2(VU)x —Uxx =0, (5.5)

Wi +2(wWu)x = 0.

This is an avatar of the Ito equation. Similarly, we can derive the other sets of equa-
tions.
This equation admits a bi-Hamiltonian structure

D26Hy, =D16Hy, 1, (5.6)



3914 PARTHA GUHA

where

D3+4uD+2u, 2vD O D 0 O
D, = 2Vx +2vD D> 0|, D=|0 D 0 (5.7)
2W, +2wWD 0 0 0 0 D
with the Hamiltonian functionals
Hl[u,v,iJ]:%J(u2+v2+w2)dx,
(5.8)

1 1 -
Holu,v,w] = 5 J (u3 + UV — Eu,z(w +uv? +uw2)dx.
The recursion operator arising from a Hamiltonian pair

D?2+4u+2u,D! 2v 0
R =D2D1’1 = 2v,D 14+ 2v D O (5.9)
2w,yD" 42w 0O O

is a hereditary operator which yields infinitely many conserved quantities.

6. Conclusion and outlook. In this paper, we have continued to study a question
posed by Marcel, Ovsienko, and Roger “what are the integrable systems associated to
the coadjoint orbit of the extended Bott-Virasoro group?” In particular, in our earlier
paper, we have identified a large class of two-component integrable systems associated
to Diff (SWM\Coo (§1). These are mostly tri-Hamiltonian systems.

In this paper, we further extend the earlier group to Diff(S1)x C = (S1)%. We have
shown that a large class of multicomponent integrable systems can be derived as a
geodesic flow on this space. Some of the integrable systems have been already dis-
cussed by Marek Antonowicz and Allan Fordy and Kupershmidt. Thus, we study the
multicomponent integrable systems from this geometric point of view.

In this paper, we have left out two more generalizations of this construction. The
first one is the supersymmetric generalization to obtain the super multicomponent
integrable systems, and the second one is the H! counterpart of the multicomponent
integrable systems considered here.
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