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We present a family of congruences which hold if and only if a natural number n is prime.
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The subject of primality testing has been in the mathematical and general news re-

cently, with the announcement [1] that there exists a polynomial-time algorithm to

determine whether an integer p is prime or not.

There are older deterministic primality tests which are less efficient; the classical

example is Wilson’s theorem, that

(n−1)!≡−1modn (1)

if and only if n is prime. Although this is a deterministic algorithm, it does not provide

a workable primality test because it requires much more calculation than trial division.

This note provides another family of congruences satisfied by primes and only by

primes; it is a generalization of previous work. They could be used as examples of

primality tests for students studying elementary number theory.

In Guy [3, Problem A17], the following result due to Vantieghem [4] is quoted as

follows.

Theorem 1 (Vantieghem [4]). Let n be a natural number greater than 1. Then n is

prime if and only if

n−1∏

d=1

(
1−2d

)≡nmod
(
2n−1

)
. (2)

In this note, we will generalize this result to obtain the following theorem.

Theorem 2. Letm and n be natural numbers greater than 1. Then n is prime if and

only if

n−1∏

d=1

(
1−md)≡nmod

mn−1
m−1

. (3)

We note that these congruences are also much less efficient than trial division.

Proof. We follow the method of Vantieghem, using a congruence satisfied by cy-

clotomic polynomials.
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Lemma 3 (Vantieghem). Letm be a natural number greater than 1 and let Φm(X) be

the mth cyclotomic polynomial. Then

m∏

d=1
(d,m)=1

(
X−Yd)≡ Φm(X)modΦm(Y) in Z[X,Y]. (4)

Proof of Lemma 3. We can write

m∏

d=1
(d,m)=1

(
X−Yd)−Φm(X)= f0(Y)+f1(Y)X+f2(Y)X2+··· . (5)

(Here the fi are polynomials over Z.)

Let ζ be a primitive mth root of unity. Now, if Y = ζ, then we see that the left-hand

side of this expression is identically 0 in X.

This implies that the fi are zero at every ζ and every i. Therefore, we have fi(Y) ≡
0modΦm(Y), which is enough to prove the lemma.

Suppose that the natural number n in Theorem 2 is prime. Let p :=n. We have that

Φp(X)=Xp−1+Xp−2+···+X+1. Therefore, if we set m= p in Lemma 3, we find that

p−1∏

d=1

(
X−Yd)≡Xp−1+Xp−2+···+X+1mod

(
Yp−1+···+1

)
. (6)

We now set X = 1 and Y =m, to get

p−1∏

d=1

(
1−md)≡ pmod

mp−1
m−1

. (7)

This proves that if p is prime, then the congruence holds.

We now prove the converse, by supposing that the congruence (3) holds, and that p
is not prime. Therefore p is composite, and hence has a smallest prime factor q. We

write p = q ·a; now q ≤ a, and also p ≤ a2.

Now we have that ma−1 divides mp−1 and ma−1 divides the product
∏p−1
d=1(md−

1). By combining this with the congruence (3) in Theorem 2, this implies that (ma−
1)/(m−1) divides p. Therefore we have

2a−1≤ m
a−1

m−1
≤ p ≤ a2. (8)

The inequality 2a−1≤ a2 forces a to be either 2 or 3; this means that p ∈ {4,6,9} and

m ∈ {2,3}; one can check by hand that the congruence does not hold in this case, so

we have proved Theorem 2.

Guy also asks if there is a relationship between the congruence given by Vantieghem

and Wilson’s theorem. The following theorem gives an elementary congruence similar

to that of Vantieghem between a product over integers and a cyclotomic polynomial. It

is in fact equivalent to Wilson’s theorem.
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Theorem 4. Let m be a natural number greater than 2. Define the product F(X) by

F(X) :=
m−1∏

i=1
(i,m)=1

(X−i−1)+1. (9)

Then m is prime if and only if

Φm(X)≡ F(X)modm. (10)

Proof of Theorem 4. Firstly, we prove that ifm is not prime, the congruence (10)

in Theorem 4 does not hold.

Recall that φ(m) is defined to be Euler’s totient function; the number of integers in

the set {1, . . . ,m} which are coprime to m.

The coefficient of Xφ(m)−1 in F(X) is given by the sum

−
m−1∑

i=1
(i,m)=1

(i+1)=−φ(m)−
m−1∑

i=1
(i,m)=1

i. (11)

We find that the following congruence holds:

−φ(m)−
m−1∑

i=1
(i,m)=1

i≡−φ(m)modm. (12)

This follows from the following identity:

m−1∑

i=1
(i,m)=1

i= mφ(m)
2

. (13)

Becausem> 2,φ(m) is divisible by 2, the sum on the left-hand side of (12) is a multiple

of m. We now use some theorems to be found in a paper by Gallot [2, Theorems 1.1

and 1.4].

Theorem 5. Let p be a prime and m a natural number.

(1) The following relations between cyclotomic polynomials hold:

Φpm(x)=




Φm
(
xp
)

if p |m,
Φm
(
xp
)

Φm(x)
if p �m.

(14)

(2) If m> 1, then

Φn(1)=


p if n is a power of a prime p,

1 otherwise.
(15)
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From these results, we see that if m is not a prime power, we then have Φn(1) ≡
1modm, and F(1) is given by

1+
m−1∏

i=1
(i,m)=1

(−i). (16)

We see that this is not congruent to 1modm because the product is over those i which

are coprime to m, so the product does not vanish modulo m.

If m is a prime power pn, then we see from Theorem 5 that Φpn(x)= Φp(xpn−1); in

particular, we see that the coefficient of xφ(pn)−1 is 0, which differs from the coefficient

of xφ(pn)−1 in F(X).
Therefore, if m is not prime, then the congruence does not hold. We now show that

if m is prime, the congruence holds.

If m is prime, then Φm(x)= xm−1+xm−2+···+x+1. We consider the polynomials

Φm(X+1) and F(X+1). Now, modulo m we have

Φm(X+1)=Xm−1, F(X+1)=
m−1∏

i=1
(i,m)=1

(X−i)+1. (17)

Now if x �= 0modm, then we see that Φm(x+1)≡ 1 and that F(x+1)≡ 1, because the

product vanishes.

And if we have x = 0, then Φm(x)= 0 and, by Wilson’s theorem, F(0)≡ (m−1)!+1≡
0modm.

Therefore we have proved Theorem 4.
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