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We define the notion of radical in BCH-algebra and investigate the structure of [X;k], a
viewpoint of radical in BCH-algebras.
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1. Introduction. In 1966, Imai and Iséki [8] and Iséki [9] introduced two classes of
abstract algebras: BCK-algebras and BCl-algebras. It is known that the class of BCK-
algebras is a proper subclass of the class of BCl-algebras. In 1983, Hu and Li [5, 6]
introduced a wide class of abstract algebras: BCH-algebras. They have shown that the
class of BCI-algebras is a proper subclass of the class of BCH-algebras. They have studied
some properties of these algebras.

As we know, the primary aim of the theory of BCH-algebras is to determine the struc-
ture of all BCH-algebras. The main task of a structure theorem is to find a complete
system of invariants describing the BCH-algebra up to isomorphism, or to establish
some connection with other mathematics branches. In addition, the ideal theory plays
an important role in studying BCI-algebras, and some interesting results have been ob-
tained by several authors [1, 2, 3, 4, 11, 14, 15]. In 1992, Huang [7] introduced nil ideals
in BCI-algebras. In 1999, Roh and Jun [13] introduced nil ideals in BCH-algebras. They
introduced the concept of nil subsets by using nilpotent elements, and investigated
some related properties.

In this note, we define the notion of radical in BCH-algebra, and some fundamental
results concerning this notion are proved.

2. Preliminaries. A BCH-algebra is a nonempty set X with a constant 0 and a binary
operation “x” satisfying the following axioms:

(1) xxx=0,

(2) x*ky=0and y*xx =0imply x =y,

(3) (xxy)kz=(x*xz)*xy
for all x, v,z € X. A BCH-algebra X satisfying the identity ((x * )% (x*z))* (z*xy) =
0 and O x x = 0 for all x,y,z € X is called a BCK-algebra. We define the relation < by
x <y if and only if x xy = 0.

In any BCH-algebra X, the following hold: for all x,y € X,

4) (x*x(x*xy)) <y,

(5) x <0 implies x =0,

(6) Ox(x*xy)=(0%x)*(0x*y),
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(7) xx0=x,

(8) 0% (0% (0xx))=0%x.

A nonempty subset S of BCH-algebra X is called a subalgebra of X if x xy € S
whenever x,y € S.

Anonempty subset I of BCH-algebra X is called an ideal of X if 0 e Tandif x*xy,y €1
imply that x € I. It is possible that an ideal of a BCH-algebra may not be a subalgebra.

3. Main results. In what follows, the letter X denotes a BCH-algebra unless otherwise
specified.

DEFINITION 3.1. For any x € X and any positive integer n, the nth power x™ of x
is defined by

x'=x, x"=x%(0%xx""1). (3.1)

Clearly 0™ = 0.

THEOREM 3.2. For any x € X and any positive integer n,
(0xx)" =0%xx". (3.2)

PROOF. We argue by induction on the positive integer n. For n = 1 there is nothing
to prove. Assume that the theorem is true for some positive integer n. Then using (6)
we have

(0% x)™ ! = (0% x) % (0% (0%x)™)
= (0%x) % (0% (0xx")) (3.3)
=0% (x* (0% x™)) = 0% x"*L O
DEFINITION 3.3. [10] In a BCH-algebra X, the set A" := {x € X | 0 < x} is called a

positive part of X and the set A(X) := {x € X | 0% (0% x) = x} is called an atom part
of X. Further an element of A(X) will be called an atom of X.

In the following theorem we give some properties of BCK-algebras.

THEOREM 3.4. If X is a BCH-algebra, then the positive part A* of X is a subset of the
set {x e X|x%=x}.

PROOF. Let x € A*. Then we have x2 = x % (0% x) = x *0 = x, and hence A* c {x €
X | x2% =x}. O

COROLLARY 3.5. If X is a BCK-algebra, then X = {x € X | x° = x}.

In [10], Kim and Roh proved A(X) = {0x (0% x) | x € X} = {0*xx | x € X}.

Note that A(X) is a subalgebra of X and ((x * y) * (x x z)) x (z* y) = 0 for all
x,Vy,z € A(X), and hence A(X) is a p-semisimple BCI-algebra. Thus by [12] we have the
following property: for any a,b € A(X) and any positive integer n, we have (a x b)" =
a xb".

Hence the following corollary is an immediate consequence of Theorem 3.2.
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TABLE 3.1

o O Qo
OQ O Q0

O T Q O %
RIS el o]
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COROLLARY 3.6. For any x in a BCH-algebra X and any positive integer n,
(i) Oxx" e A(X),
(i) O* (xxy)" = (0xx™) % (0% y™m).

DEFINITION 3.7. Let R be a nonempty subset of a BCH-algebra X and k a positive
integer. Then define

[R;k]:={x e R | x* =0}, (3.4)
which is called the radical of R.

We know that, in general, the radical of an ideal in X may not be an ideal.

EXAMPLE 3.8. Let X = {0,a,b,c} be a BCH-algebra in which x-operation is defined
as in Table 3.1. Taking an ideal R = X, then [R;3] = {0,a,c} is not an ideal of X since
bxa=ce[R;3]and b ¢ [R;3].

THEOREM 3.9. Let S be a subalgebra of a BCH-algebra X and k a positive integer. If
x €[S;k], then0xx € [S;k].

PROOF. Let x € [S;k]. Then x*¥ = 0 and x € S. Thus by Theorem 3.2 we have
Oxx)*=0xx¥=0, 0xxes, (3.5)

and hence O x € [S;k]. O

This leaves open question, if R is a subalgebra of X and 0 * x € [R;k], then is x in
[R;k]? The answer is negative. In Example 3.8, [X;3] is a subalgebra of X and 0% b €
[X;3], but b & [X;3].

DEFINITION 3.10 [10]. For e € A(X), the set {x € X | e x = 0} is called the branch
of X determined by e and is denoted by A(e).

THEOREM 3.11. Let k be a positive integer and A(X) = X. Then
Ale)N[X;k] + O = A(e) < [X;k]. (3.6)

PROOF. Suppose that A(e) N[X;k] # &, then there exists x € A(e) N[ X;k]. Thus by
Theorem 3.9, we have

e=0x(0%xx) e[X;k]. 3.7)

Let v € A(e), then y € [X;k] since 0 (0% y) = e € [X;k], and hence A(e) < [X;k].
|
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THEOREM 3.12. For any positive integer k and A(X) = X,

[X;k]= U A(0*x(0*xx))= U A(e) = U Ale). (3.8)
xe[X;k] ecA(X)N[X;k] e€[A(X);k]

PROOF. A(X)nN[X;k] = [A(X);k] is obvious. By Theorem 3.11, we have x € A(0 %
(0% x)) € [X;k] for all x € [X;k], and so there exists e = 0% (0k x) € A(X) Nn[X;k]
such that x € A(e) < [X;k]. Therefore we obtain

e) = U Ale). (3.9

[X;k]= U A(0*x(0*x))= U A(
x€e[X;k] ecA(X)N[X;k] ec[A(X);k] 0O
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