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The main aim of this paper is to provide a construction of the Banaschewski compactification
of a zero-dimensional Hausdorff topological space as a structure space of a ring of ordered
field-valued continuous functions on the space, and thereby exhibit the independence of the
construction from any completeness axiom for an ordered field. In the process of describing
this construction we have generalized the classical versions of M. H. Stone’s theorem, the
Banach-Stone theorem, and the Gelfand-Kolmogoroff theorem. The paper is concluded with
a conjecture of a split in the class of all zero-dimensional but not strongly zero-dimensional
Hausdorff topological spaces into three classes that are labeled by inequalities between
three compactifications of X, namely, the Stone-Cech compactification X, the Banaschewski
compactification X, and the structure space Wy r of the lattice-ordered commutative ring
C(X,F) of all continuous functions on X taking values in the ordered field F, equipped with
its order topology. Some open problems are also stated.

2000 Mathematics Subject Classification: 54D80, 54D35, 12]J15, O6F25.

1. Introduction. The main thrust in the area of rings of real-valued continuous func-
tions defined over a topological space X was provided by the three historical papers due
to Stone [29], Gelfand and Kolmogoroff [14], and Hewitt [18]. Stone initially assumed
a metric structure on the underlying space and his study was confined to bounded
real-valued continuous functions only, that is, C* (X, R) in the notation used by Hewitt;
Gelfand and Kolmogoroff dropped the metric structure for the first time from the un-
derlying space and replaced it by the more general topological space, thereby paving the
way for a study of €(X, R). Finally Hewitt introduced his almost omnipresent Q-spaces,
presently called the realcompact topological spaces, providing the final shape to the re-
search work for the subsequent years. All this culminated in the classic textbook [15].

Of the many areas of research that were influenced by this textbook, some of those
relevant to the main theme of this paper are the following.

1.1. Other topological algebras as range. (1) Paper [19] considers the rings of con-
tinuous functions with values in a topological ring.

(2) Paper [24] considers the rings of continuous functions with values in the ring 7.

(3) Paper [3] considers the rings of continuous functions with values in a topological
field whose topology is derived from a complete ultrametric.

(4) In [37], the author considers the rings of continuous functions with values in a
topological skew field.

(5) In [39], the author provides a historical sketch and a wide-ranging survey of the
problem of associating with every topological space X an algebraic structure A(X), in
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such a way that when two spaces X and Y are homeomorphic the algebraic structures
A(X) and A(Y) are isomorphic. The author then describes how this gives rise to the
descriptions of topological spaces that are determined by a kind of algebraic structures.
In [40], the algebraic aspects of the theory of rings of continuous functions are nicely
surveyed.

(6) Papers [1, 2] consider the hemiring of continuous functions with values in the
hemiring R.( of nonnegative reals.

1.2. The problem of determining topological spaces. (1) The first determination
of a class of topological space by an algebraic structure was in the papers [30, 31]
which solved the problem of determining compact Hausdorff spaces using the ring of
bounded real-valued continuous functions. This was followed by [18], with the problem
of determining the realcompact spaces by the rings of real-valued continuous functions.
Generalizations of Hewitt’s results appear in [27, 28].

(2) In [8, 20], it was shown that the multiplicative semigroup structure on the semi-
group of real-valued continuous functions on a topological space determines the class
of completely regular spaces, while [33] generalizes the range to a topological nonasso-
ciative division ring which is either locally compact or totally disconnected, and proves
a similar result for a class of T; spaces satisfying quite natural regularity conditions.

(3) Paper [16] shows that the rings of real-valued continuous functions on two com-
pletely regular topological spaces are isomorphic if and only if the two are isomorphic
as lattices or as multiplicative semigroups.

1.3. Ideal structure. (1) Apart from the study of the structure spaces in the pioneer-
ing papers of Hewitt and Stone, an attempt to study the ideal structure of the rings of
continuous functions with values in a non-Archimedean ordered field was done in [11]
where the residue class fields are investigated.

(2) In [34, 35, 38], the projective and injective ideals of the rings of continuous func-
tions are studied.

(3)In[41, 42, 44], the maximal and prime spectra of the rings of continuous functions
taking values in a Hausdorff topological field are investigated.

(4) The connections with sheaf theory are discussed in [32, 43, 45].

1.4. f-rings. The generalization of the rings of continuous functions into f-rings has
provided great impetus towards obtaining properties for these rings in recent years.
A good survey of the investigations in this area can be obtained in [17] and a brief
introduction to this area can be found in [5]. It is only once that the notions of f-rings
will be referred to in this paper, for purposes which the papers [4, 6, 7] suffice.

The present paper deals with the following question of how much of the present
theory of rings of continuous functions depends on the first-order properties of the or-
dered field. Thus we want to investigate the results of [15] that can be extended to our
situation, where the range field R is replaced by a linearly ordered field F equipped with
its order topology. The investigation shows that while many results can be extended,
some can only be partially extended—in the sense that one requires some more reg-
ularity properties on the order of the field, like Dedekind completeness or countable
cofinality, to hold good for the extension to be true, and some possibly would yield
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completely new results—the split in Section 4, when the ordered field is not that of
the reals.

Throughout this paper the term order refers to a linear order and an ordered field
is always equipped with its order topology; all topological spaces that appear here are
at least Hausdorff. The paper is organized as follows.

In Section 2, the rings of continuous functions, bounded functions, and functions
with compact codomain from a topological space to an ordered field are introduced
and some basic properties of these function rings are established. Theorem 2.5 char-
acterizes the real field R and Theorem 2.7 characterizes ordered fields with countable
cofinality character, and seems to be new. Furthermore, the topological property of
complete F-regularity (F is an ordered field) is defined and it is shown that this is the
right kind of spaces that one can study using an ordered field F; see Theorem 2.15.
Indeed this is exactly the generalization of M. H. Stone’s theorem; see [15, Theorem 3.9,
page 41]. Also, various obvious characterizations of F-regular topological spaces are
provided in Theorems 2.10 and 2.14.

In Section 3, we describe the structure space of the function rings described in Section
2. Most of the results in this section seem to be new. Generalizations of the classical
Banach-Stone theorem (Theorem 3.3) and the Gelfand-Kolmogoroff theorem (Theorem
3.5) are obtained. The main results of the paper appear in this section—Theorems 3.10
and 3.12, which provide a plethora of ways to construct the Banaschewski compactifi-
cation BoX of a zero-dimensional Hausdorff topological space. Theorem 3.11 is stated
as a separate result; it is an immediate consequence of the observations made before
and helps in conjecturing the split in Section 4.

In Section 4, we finally summarize the results of Section 3 which culminates in the de-
scription of the split. There are some questions that remain unsolved and are proposed
at the end.

2. Preliminaries. Throughout this section, X is a topological space and F is an or-
dered field. We start with various definitions.

DEFINITION 2.1.

C(X,F) = {f € F*: f is continuous on X},

BX,F) = {feC(X,F):(AteF) (VxeX)(~t=<f(x)<t)},
C*(X,F) = {f € C(X,F) :clp(f(X)) is compact}, (2.1)
xr(f)={xeX:f(x)=0}, forfeCX,F),

5(X,F) = {Zxr(f): f € CX, P}

A subset A < X is said to be a zero set in X with respect to F if and only if there exists
an f € C(X,F) such that A = % ¢(f); the complement of a zero set in X with respect
to F is called a cozero set in X with respect to F. The cozero set in X with respect to F
of f € C(X,F) will be denoted by cozy ¢ (f).

One can easily see that F < C*(X,F) =< B(X,F) c €(X,F), if one identifies the mem-
ber t € F with the constant function X LF, where t : x — t. Also, if one assigns
the operations of addition, multiplication and maximum and minimum pointwise on
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the functions, then one easily gets €(X,F) to be a lattice-ordered commutative ring
with unity, and gets B(X,F) and C*(X,F) to be lattice-ordered commutative subrings
of C(X,F).

It is easy to see that if X has at least two points, then no lattice-ordered subring of
C*(X,F) containing F, other than F itself, can be a field, so that the rings in question
always have divisors of zero. The following results are useful in the sequel.

THEOREM 2.2. (1) Any topological field is either connected or totally disconnected (see
[46, page 213]).

(2) An ordered field either is isomorphic to R, the field of real numbers, or is zero
dimensional.

PROOF. (1)Let K be a topological field and let W be the component of 0. Let, for any
x€Kandany H<c K, xH ={xh:h e H}.

If W = {0}, then the field is totally disconnected; if not, let x € W and x # 0. Then
x~1W is a connected subset of K that contains 1, and hence K = [, cx yx~'W. However,
since each of the sets yx~!'W are connected and 0 € yx~'W, it follows that the set
Uyex yx~'W is connected and hence K is connected.

(2) From (1), an ordered field is either connected or else totally disconnected. Since
an ordered set is connected if and only if it is Dedekind complete [15, Problem 30, page
52], it follows that if F as an ordered field is connected, then it is isomorphic to R.

Let F be an ordered field that is totally disconnected and let F* be the Dedekind
completion of F. Then it is clear that {(a*,b*)NF :a*,b* € F*} is a clopen base for
the topology of F. Hence F is zero dimensional. |

COROLLARY 2.3. Any ordered field, nonisomorphic to R, is neither locally connected
nor locally compact in its order topology.

It follows from Theorem 2.2(2) that F # R implies that C*(X,F) contains a noncon-
stant function if and only if X is disconnected. The case for F = R is settled in [15]
as follows: €* (X, R) possesses a nonconstant function if and only if €(X,R) possesses
a nonconstant function, and because every Tychonoff space with at least two points
always has a nonconstant continuous function. Hence €(X,R) has a nonconstant con-
tinuous function when X is a Tychonoff space with at least two points.

The following lemma shows that €(X,F) and 3(X,F) determine the same family of
zero sets in X with respect to F.

LEMMA 2.4. Given any f € C(X,F), there exists a positive unit u € C(X,F) such that
uf=(-1vy)nal.
If, further, f € »(X,F), then u can be chosen to be in%(X,F) too.

PROOF. For any f € C(X,F), define

1
——if > 1,
ulx) =1 |fx)] if[fe0] = (2.2)

1 otherwise.

Surely u is continuous and is a candidate required for the proof of the lemma. |
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Hence if one of the two rings €(X,F) and 3(X, F) possesses a nonconstant function,
the other also does.

The following shows the equality of 3(X,F) and €* (X, F) to be a characteristic prop-
erty of R.

THEOREM 2.5. For an ordered field F, F = R if and only if, for any topological space
X, C*(X,F) =5(X,F).

PROOF. If F = R, then the conclusion is trivially true. If F # R, then the function
F EX F, defined by f = min{g,1}, where

—-X if x <0,
g(x)=140 if0<x <1, (2.3)
x—-1 ifx=>1,

is a member of 3 (X, F), and since by Corollary 2.3 [0, 1] is not compact, it follows that
f is not a member of C* (X, F). 0

REMARK 2.6. Itis known that the Heine-Borel property for an ordered field is a char-
acteristic property for R. Thus, Theorem 2.5 is a latent exhibition of this equivalence.

As usual the zero sets in X with respect to F are closed subsets of X. However, we
have the following.

THEOREM 2.7. LetF be any ovdered field with cofinality character w . Then, the zero
sets in X with respect to F are intersections of an w sequence of cozero sets in X with
respect to F.

In particular, for any topological space X, the zero sets in X with respect to F are
Gs-subsets of X if and only if o« = 0.

PROOF. For any f € C(X,F), ¥xr(f) = Nyerix € X : |f(x)| < r~'}, where each
of the sets on the right-hand side are clearly cozero sets in X with respect to F and
T<cF.o={x€eF:x>0}is cofinal in F.

The “if” part of the final statement follows from the first; for the “only if” part, if
« > 0, then f(x) = |x| is a member of C(X,F), Zxr(f) = {0}, and {0} is not a Gs-set.

O

However, the following example shows that countable cofinality of an ordered field
does not, in general, imply it to be Archimedean, and thus by the above proposition
Gs-ness of the zero sets may also occur for many other ordered fields other than R or
its subfields.

EXAMPLE 2.8. Consider the real field R and consider the polynomial ring R[x]. For
f=ap+aix+ax%+---+apx" € R[x], define f > 0 if and only if a,, > 0. Clearly this
definition yields a positive cone, so that with the order f < g if and only if g— f > 0 or
g = f itis easy to see that R[x] is an ordered ring.
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Now consider the field R(x) of rational polynomials, f/g, f,g € R[x], and g > 0,
and extend the order on R[x] as follows: for f, f’, g,g" € R[x] with g,g’ > 0, define
flg<f'/g if and only if fg' < f'g in R[x]. It is easy to see that this makes R(x) an
ordered field.

However, for any natural number n € N, x > n and thus one has that the poly-
nomial x is infinitely larger than every constant polynomial n. Hence R(x) is not an
Archimedean ordered field. But for any member f/g € R(x), there exists a natural
number n € N, namely, n = deg(f) —deg(g) + 1, such that f/g < x". Thus the set
{1,x,x2,...} is cofinal in R(x), showing that the cofinality character of R(x) is wy.

DEFINITION 2.9. (1) A,B € X are said to be completely F-separated if and only if
there exists an f € €(X,F) such that f(x) =0on A and f(x) =1 on B.

(2) X is said to be completely F-regular if and only if, for every closed subset A of X
and every x € X \ A, the sets {x} and A are completely F-separated.

This is the clear analog of the Tychonoff property when F = R. We first provide some
equivalent descriptions of this property, in general.

THEOREM 2.10. For any topological space X the following are equivalent:
(1) X is completely F-regular;

(2) 3(X,F) is the base for the closed subsets of X;

(3) X has the weak topology induced by C(X,F);

(4) B(X,F) separates points and closed subsets of X;

(5) €*(X,F) separates points and closed subsets of X.

PROOF. (1)=(2). Immediate from Definition 2.9(2).

(2)=(3). Let V < X be an open subset of X and x € V. Then G = X\ V is closed and
X & G, so that from the hypothesis there exists an f € €(X,F) such that G < %x r(f)
and f(x) # 0. Hence x € cozyr(f) < V and thus the class of cozero sets in X with
respect to F yields a base for the topology for X. But the equations

S ((=e0,a)) = cozx r((f Aa)—a),
f((a,0)) = (=f)" ((=0,-a)), (2.4)
S ((a,b)) = f((=0,b)) N f~ ((a,))

show that the family of cozero sets in X with respect to F is precisely the family of all
finite intersections of inverse images of open intervals under maps in €(X,F). Hence
the topology of X is the weak topology induced by C(X,F).

(3)=(4). The hypothesis equivalently states that €C(X,F) separates points and closed
subsets of X and Lemma 2.4 implies that €(X,F) separates points and closed subsets
of X if and only if (X, F) separates points and closed subsets of X.

(4)=(1). This is just a translation of Definition 2.9(2).

If (5) holds, then surely (4) holds. If F = R, from Theorem 2.5, (4) surely implies (5);
the nontrivial part of the proof of (4) implying (5) when F # R is deferred until we have
proved Theorem 2.11. O
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Surprisingly, if F + R, there are simpler ways to recognize the property of complete
F-regularity, and we will provide a couple of them in Theorems 2.11 and 2.14.

THEOREM 2.11. For F + R, a topological space X is completely F-regular if and only
if it is zero dimensional.

PrROOF. If X is completely F-regular, then from Theorem 2.10(3) X has the weak
topology induced by €(X,F), and from Theorem 2.2(2) it follows that X has a base for
its topology of clopen sets, and hence is zero dimensional. Conversely, if X is zero
dimensional, then for any closed subset A € X and any point x € X \ A there exists a
clopen set W such that x ¢ W 2 A. However, since W is clopen, the characteristic map
X 2, {0,1} = F is continuous and is therefore a member of €(X,F) separating A and
x. Hence X is completely F-regular. O

Note that the “if” part of the proof of Theorem 2.11 uses the fact that the space is
zero dimensional to construct the separating function xy from €* (X, F). This produces
the deferred proof.

PROOF ((4)=(5) in Theorem 2.10 when F # R). Since (4) holds, it follows from the
proved equivalence in Theorem 2.10 that X is completely F-regular; also, since F # R, it
follows from Theorem 2.11 that X is zero dimensional, and the proof of Theorem 2.11
shows that €* (X, F) separates points and closed subsets of X. |

COROLLARY 2.12. F is completely F-regular.

PROOF. If F = R, the proposition is known to be true; if F + R, then from Theorem
2.2(2) it follows that F is zero dimensional, and then using Theorem 2.11 the statement
is proved. O

COROLLARY 2.13. The property of complete F -regularity is productive and hereditary.

PROOF. ForF = R, thisis awell-known result; for F + R, this is a well-known property
of zero-dimensional spaces. O

THEOREM 2.14. A topological space X is completely F-regular if and only if it is home-
omorphic to a subspace of a product of F.

PROOF. The “if” part of the proposition follows directly from Corollary 2.13. Con-
versely, let X be completely F-regular and P = F¢XF) equipped with the product topol-
ogy, and let X L. P be the evaluation map, thatis, p(x) = {f(x)} rec(x,F), for any x € X.

Since X is completely F-regular, it follows that p is one-to-one; also being a map into
a product space with continuous projections, p is continuous. Let x € U < X where
U is an open subset of X. Then from the complete F-regularity of X there exists a
continuous map xZ [0,1] € F such that g(x) =1 and X \U < #x,r(g) if and only if
x €g((1/2,2)) € U.Hence, p(x) € p(X) N1y~ ((1/2,2)) < p(U), where P 1, Fis the
gth projection map. This shows that p(U) is open in p(X). Hence, p is a topological
embedding of X to a product of F, so that X is homeomorphic to a subspace of a
product of F. |
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At this point we can recollect that, given a topological space E, a topological space X
is said to be E-completely-regular if and only if X is homeomorphic to a subspace of a
product of the space E (see [13] and cf. [36]). Thus the summary of Theorems 2.14 and
2.11 is that for a topological space X, the following three conditions are equivalent:

(1) X is zero dimensional,

(2) X is completely F-regular for any ordered field F + R,

(3) X is F-completely-regular, for any ordered field F + R.

We will now show that for the purposes of our study of a topological space in terms
of the function ring € (X, F), it will be enough to restrict ourselves to the class of com-
pletely F-regular topological spaces only.

THEOREM 2.15. For any topological space X, there exists a completely F-regular topo-
logical space 'Y such that C(X,F) is isomorphic to C(Y,F) as lattice-ordered commutative
rings with unity.

Furthermore, the restriction of this isomorphism to the subring %(X,F) or C*(X,F)
define isomorphisms onto the corresponding subrings®(Y,F) and C* (Y ,F), respectively,
of C(Y,F).

PROOF. For x,y € X, let x = y if and only if, for all f € C(X,F), f(x) = f(»).
Clearly this is an equivalence relation on X and partitions X. Let, for any x € X, [x]
denote the =-equivalence class of X, and let Y be the set of all =-equivalence classes of
X. Let X 2 Y be the quotient map defined by v(x) = [x].

For any f € €(X,F), x,x" € X, if [x] = [x'], then f(x) = f(x). Thus for f € C(X,F)

one has a function Y EN F defined by f([x]) = f(x). Hence f = fov.

Taking C' = {f . f € C(X,F)}, we endow Y with the weak topology induced by C’.
Then X 2 Y is a continuous map, and if Y % Fis any continuous map, then the equation
@ = g implies that C' = C€(Y,F). Hence, from Theorem 2.10(3) it follows that Y is
completely F-regular.

Finally, the map €(X,F) < €(Y,F) defined by o (f) = f is the required isomorphism
of lattice-ordered commutatlve rings w1th unity.

From the definition of f itis clear that f is bounded or has a precompact range if and
only if f is bounded or has a precompact range, respectively. Hence the isomorphism
o restricts to an isomorphism of %(X,F) and (Y, F) and an isomorphism of €* (X, F)
and C*(Y,F), completing the proof. o

REMARK 2.16. In the case F = R, the last part of the statement was an obvious
consequence of the fact that the positive cone of R consists precisely of perfect squares,
see [15, Theorems 1.6, 1.7, Corollary 1.8, Theorem 1.9, pages 12-14]. However, this is
not true in any arbitrary ordered field:

(1) for the field Q of the rationals, the positive cone contains many elements that
are not perfect squares, or
(2) in Example 2.8, x > 0 but is not a perfect square.

However, the proof of Theorem 2.15 does not require this specific property of the

reals, as exhibited in the argument.

Let k denote any of the three rings €(X,F),%(X,F), or C*(X,F). Anideal I of & is said
to be fixed if and only if N, %xr(f) = @ and free otherwise. For the special case of
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k = C(X,F), we have a very special kind of an ideal which will be of much importance
in this paper.

DEFINITION 2.17. Anideal I of C(X,F) is said to be a 3g-ideal if and only if, for any
g e C(X,F),%xr(g) € %xp(I) implies that g € I.

REMARK 2.18. One can view Zx ¢ as a function defined on the set C(X,F) and with
3(X,F) as its range, taking f € C(X,F) to its set of zeros, namely, Zx r(f). Thus,
Definition 2.17 essentially says that an ideal I of C(X,F) is a zg-ideal if and only if
U xr (ZExr)) =1.

Since 3(X,F) is a lattice of subsets of X, one can define filters and ultrafilters, and
these are called 3-filters and 3¢-ultrafilters on X, respectively. We complete this section
with a list of properties for different kinds of ideals.

THEOREM 2.19. (1) The class of 3r-ideals is closed under arbitrary meets.

(2) Every 3-ideal is an intersection of prime ideals.

(3) For any ideal I of C(X,F), #xr(I) is a 3p-filter on X, and for any 3-filter & on
X, Zx (%) is a 3p-ideal of C(X,F). In particular, there is a one-to-one correspondence
between the 3g-ideals of €(X,F) and the 3g-filters on X.

(4) Every maximal ideal of €(X,F) is a 3r-ideal of C(X,F).

(5) The correspondence stated in (3) restricts to a correspondence between the maximal
ideals of C(X,F) and the 3-ultrafilters on X.

(6) An ideal M of C(X,F) is maximal if and only if, for any f € C(X,F), if £xr(f) N
Fxr(g) + D forany g € M, then f € M.

(7) Letk € {C(X,F),B(X,F),C*(X,F)}. Then the fixed maximal ideals of k are precisely
given by My = {f €k: f(x) =0}, x € X.

Furthermore, if the space X is completely F-regular, then the map x — M, is one-to-
one.

(8) For f,g € C(X,F), if f belongs to every maximal ideal of C(X, F) to which g belongs,
then %xr(g) € %x,r(f).

(9) An ideal I of C(X,F) is a 3¢-ideal if and only if, for any f € C(X,F), if f belongs to
every maximal ideal of C(X,F) to which some member of I belongs, then f € I.

(10) Let F and G be ordered fields, let C(X,F) Z €(Y,G) be an isomorphism of com-
mutative lattice-ordered rings with unity, and let I be a 3g-ideal of C(X,F). Then o (I) is
a zg-ideal of C(Y,G).

(11) The following are equivalent for a zg-ideal I of C(X,F):

(a) I is a prime ideal;
(b) I contains a prime ideal;
(c) forall f e C(X,F) and g € C(X,F), fg =0 implies f €l org €1,
(d) forany f € C(X,F), there exists a Z € ¥x r(I) such that f does not change its
sign on Z.
(12) If X is a compact topological space, then C(X,F) cannot have any free ideals.
The converse is true under the additional hypothesis of complete F-regularity.

PROOF. (1) Follows immediately from the definition.
(2) In any commutative ring R with unity, given an ideal I, the intersection of all prime
ideals that contain I is {a € R : (3n € N) (a™ € I)}; see [15, Theorem 0.18, page 7].
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Applying this fact to the case of €(X,F) and using the observation that for any f €
C(X,F) and n € N, %x p(f) = Zxr(f™"), one concludes that a 3¢-ideal in €(X,F) is an
intersection of prime ideals containing it.

(3) Since Zx ¢ (f2+9°) = Zx,r(f) N%x,r(g) and Zx r(fg) = Zx,r (f) UZx,r(g), it fol-
lows that the image of any ideal I under the map %y r is a 3¢-filter. The converse that
given any zg-filter the inverse image is a 3r-ideal follows from the observation made in
Remark 2.18. The same observation helps in concluding the one-to-one correspondence
between the 3¢-ideals and the zg-filters.

(4) Let M be a maximal ideal and f € C(X,F). Then ¥x r(f) € %¥x (M) if and only if
fe%xr (Zxr(M)). Thus Zxr~ (¥xr(M)) is a 3¢-ideal containing M, from (3). There-
fore, from the maximality of M, M =%x r~ (¥xr(M)). Hence M is a 3¢-ideal.

(5) Immediate from (3) and (4).

(6) Let M be a maximal ideal and f € C(X,F) such that for any g € M, Zx r(f) N
Fxr(g) + D. Then%x p(M) U {Zxr(f)} is a 3¢-filter-base on X. Hence from (5), %x ¢ (f)
€ Zx r(M). Therefore from (4), f € M.

Conversely, if N is another ideal of € (X, F) containing M, then for any f € N,%x ¢ (f) N
Fxr(g) = @, for any g € M. Hence from the hypothesis, f € M implying N = M. This
proves the maximality of M.

(7) Choose and fix any x € X and consider the function § == F defined by o (f) =
f(x). Clearly this is an onto ring homomorphism with ker(oy) = {f €k: f(x) =0} =
M,. Since F is a field, it follows that M, is a maximal ideal of &, and indeed a fixed
maximal ideal of k.

If N is any fixed ideal of &, then there exists an x € X such that x € NfenZxr(f),
and thus N € M,. Thus, if N is a fixed maximal ideal, then N = M., for some x € X.

If X is completely F-regular and x,y € X are two distinct points of X, then there
exists an f € kK such that f(x) =0 = 1 = f(y), and thus f € My \M,, showing My # M,,.
Thus, in the case when X is completely F-regular, the map x — M, is one-to-one.

(8) If f,g € €C(X,F) such that for any maximal ideal M of €(X,F), f € M whenever
g € M, then for any x € ¥x r(g), one has g € My, which is a maximal ideal from (7).
Hence, from our assumption, f € M if and only if f(x) = 0 and x € x r(f), proving
%x,r(g) €%x.r(f).

(9) Let I be a 3p-ideal and let f € €(X,F) be such that for any maximal ideal M, f € M
whenever there exists a g € I such that g € M. Hence, ¥x r(g) € %x ¢ (f), from (8), and
hence %x ¢ (f) € Zx ¢ (I), from (3). Therefore f € I.

Conversely, if f € C(X,F) such that Zx ¢ (f) € %xr(I), then there exists a g € I such
that Zx r(f) = ¥xr(g), and thus for any maximal ideal M of C(X,F), f € M whenever
g € M. Hence from the hypothesis, f € I. Hence I is a zg-ideal.

(10) Follows from (9) and the fact that maximal ideals of a ring are algebraic invari-
ants.

(11) The implications (a)=(b)=(c) are immediate, and we only prove (c)=(d)=(a).

(¢)=(d). For any f € C(X,F), (f A0)(fV0) =0, implying either fAO I or fVvOel.
Hence (d) follows.

(d)=(a). Let f,g € C(X,F) such that fg € I. Let h = | f| —|g|. By the hypothesis, there
exists a Z € #x,r(I) such that h does not change sign on Z. Let h be nonnegative on Z.
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Then Zn%x r(f) = %xr(g) implies ZN%x r(fg) € %x r(g) which implies ¥x r(g) €
%x,r(I), using (3). Hence g € I.

(12) If I is a free ideal of C(X,F), then Zx r(I) is a family of closed subsets of X with
the finite intersection property and having an empty intersection. Hence X cannot be
compact.

Conversely, let X be completely F-regular and noncompact. Then, there exists a fam-
ily ¥ of closed subsets of X with the finite intersection property and having an empty
intersection. By complete F-regularity, from Theorem 2.10(2) it follows that we might
as well consider ¥ to be a family of zero sets in X with respect to F. Then % is a
ze-filter-base for a free zg-filter. O

Note that it follows from Theorem 2.19(11) that any prime ideal P of €(X,F) can be
extended to a unique maximal ideal, so that each of the rings €(X,F)/P is a local ring.

3. Compactifications. Given a commutative ring K with unity, let the set of all its
maximal ideals be denoted by ), and let, for any a e K, W, = {M e M :a € M}. It
is easy to see that {), : a € K} yields a base for the closed subsets of some unique
topology on ), often referred to as the Stone topology or as the hull-kernel topology. 2)
equipped with the hull-kernel topology is called the structure space of the commutative
ring K. The following facts are true for the structure space.

(1) For any x € 2, cly(x) = {M € 20 : M = (x}(the name hull-kernel topology is
derived from this property).

(2) For any x =€, x is dense in W if and only if (x = M.

(3) M is a compact T; space.

(4) 20 is Hausdorff if and only if, for every pair of distinct maximal ideals M and N of
K, there exist points a,b € K such thata ¢ M, b ¢ N, and ab € (M. Thus, the structure
space of Z is not Hausdorff, while if X is completely F-regular, then the structure space
of €(X,F) is Hausdorff.

For a much more detailed account of structure spaces, see [15, Example 7A, page
108, Examples M and N, page 111].

We will denote by My r, YY)E(,F, and m;;F the structure spaces of the rings C(X,F),

b
PX.F

B(X,F),and €* (X, F), respectively. Also, we will have the maps X 2 My r, X )Y)%,F,

p*
and X =L 5% ¢ defined by similar rules, x — M. It is clear that if X is completely F-
regular, then each of these maps are embeddings of X into a compact T; space.
THEOREM 3.1. If X is a completely F-regular topological space, then Wx r is a Haus-
dorff compactification of X with X 29 x,F as the embedding.
Furthermore, if Y is any compact completely F -regular topological space and X EA Y is

Wx F
a continuous map, then there exists a unique map My ¢ £ Y such that f = f™XF py .

PROOF. The first part follows easily from the properties of a structure space and
complete F-regularity of X.

For the latter, let for any maximal ideal M of C(X,F), M= {geC(Y,F):g.f e M}. It
is clear that M is a prime ideal of €(Y,F), and hence from Theorem 2.19(11) it follows
that it is contained within a unique maximal ideal; also, as Y is compact, it follows that
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each of the maximal ideals is fixed. Hence there exists a unique v € Y such that McM .
Define f™xF (M) = y. The continuity of f%F and the proof of the factorization of f
through px r follow from a routine verification. O

Thus, Mx r enjoys a similar extension property as satisfied by the Stone-Cech com-
pactification BX of X. We will come back to this property after we have settled some
other small issues related to structure spaces.

REMARK 3.2. (1) In the classical case when F = R, one immediately concludes that
My r is completely R-regular, that is, Tychonoff, because any compact Hausdorff space
is known to be normal and hence Tychonoff. In the case when F = R, W5, » will be shown
to be completely F-regular; see Theorem 3.12. The complete F-regularity of Wx r or
m?m is yet to be decided and remains open.

(2) Since the rings C(X,F), B(X,F), and C*(X,F) are examples of f-rings with
bounded inversion, it follows from [4, Proposition 3.3 and Remark 3.5] that the struc-
ture spaces of these rings are Hausdorff (the last author is thankful to Professor Ba-
naschewski for showing him during a conversation that the maximal [-ideals of an
f-ring with bounded inversion are precisely the maximal ideals, and/or drawing his
attention to one of his papers where this spectrum has been investigated).

From Theorem 2.15 it follows that there exists a compact completely F-regular topo-
logical space Y such that the rings C(MWx ¢, F) and C(Y,F) are isomorphic as lattice-
ordered commutative rings with unity. Indeed the following theorem tells us that there
cannot exist more than one such space, up to homeomorphism.

THEOREM 3.3. If
(1) F, G are ordered fields,
(2) X is a compact completely F-regular topological space,
(3) Y is a compact completely G-regular topological space,
(4) theringsC(X,F) and C(Y,F) are isomorphic as lattice-ordered commutative rings
with unity,
then the spaces X and Y are homeomorphic.

PROOF. Since isomorphic rings have homeomorphic structure spaces, it follows that
the spaces My r and My ¢ are homeomorphic. Since X is compact and completely F-
regular, X and My r are homeomorphic; similarly, the spaces Y and My ; are homeo-
morphic. Hence X and Y are homeomorphic. 0

REMARK 3.4. Thisis a two-fold generalization of the classical Banach-Stone theorem:
on the one hand, it generalizes from the special case of real-valued continuous functions
and, on the other hand, the assumed hypothesis does not depend on the range field.

One can also obtain the familiar Gelfand-Kolmogoroff theorem in much the same
way as in the classical case as illustrated in the following.

THEOREM 3.5. For any completely F-regular topological space X, the maximal ideals
of C(X,F) are precisely M?, where

MP = {f e C(X,F):p € choy, (px,r(%xr ()}, pEWxr. (3.1)

Going back to the extension property, we give the following definition.
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DEFINITION 3.6. A Hausdorff compactification «X is said to satisfy the F-extension
property if and only if, for any compact completely F-regular topological space Y and

(o4
any continuous map X ER Y, there exists a map «X Eiik Y such that f = f*, «.

Since X is densely embedded in «X, it follows that the map f¢ is unique. Let & (X, F)
denote the class of all those Hausdorff compactifications of X which satisfy the F-
extension property. Also, the uniqueness of the extension forces an isomorphism C* (X,
F) Lo, (X, F) of lattice-ordered commutative rings with unity, defined by t, : f — f%.
This provides an alternative proof of the Hausdorffness of W5 ;.

The set £#(X, F) contains Wy r and BX. Also, if yX > aX € &A(X, F), then there exists a
yX 2 X such that o = h.y.Further, if Y is a compact completely F-regular topological
space and X ER Y is continuous, then, from the extension property enjoyed by «X,
one has f = f% «. Hence f = f% h.y, implying thereby that yX also enjoys a similar
extension property and f¥ = f%_h. Thus we have proved the following.

THEOREM 3.7. &(X,F) is a complete upper sub-semilattice of the complete join semi-
lattice % (X) of all Hausdorff compactifications of X.

We will now provide methods to construct completely F-regular members of £(X),
where X is a completely F-regular topological space. For any B < €* (X, F) which sepa-
rates points and closed subsets of X, let X 25, [1fepcle(f (X)) be the evaluation map,
that is, eg(x) = {f(x)}rep, and let egX be the closure of ep(X) in the space
[Tfepclp(f(X)). Clearly then epX is a completely F-regular member of &(X). Indeed, if
Ko (X) is the collection of all completely F-regular members of £(X), then we have the
following.

THEOREM 3.8. X € &g (X) if and only if there exists a B < C* (X, F) separating points
and closed subsets of X such that xX and egX are equivalent as compactifications.

PROOF. It is clear from the definition that if B = €*(X,F) such that B separates
points and closed subsets of X, then ezX is a member of &y (X). For the other part of
the proof we will require Lemma 3.9, which is an extension of a similar result in [10].

|

LEMMA 3.9. Let X be a completely F-regular topological space, By,B, = €* (X, F), both
separating points and closed subsets of X, and «X, yX € &o(X); also let Cx = {f €

C(X,F): (JaX ER F)(f= fo(x)}. Then the following statements are true.
(1) By < B> implies e, X < ep, X.
(2) By = Coy, -
(3) X < yX implies Cx < C,.
(4) xX and ec, X are equivalent compactifications.

PROOF. Itis clear that Cy < €* (X, F) and it separates points and closed subsets of X.
The proofs of (1) and (3) are simple computations.

.18
For (2),leteg X Tf lepX clr(f (X)) be the restriction of the projection map to ez X. Then
for any f € B itis clear that f = 1y 1e;x, €5.
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For (4), it is enough to prove that ec, X < «X. Since, for any f € Cq, fotx =f=
(TTf fecy X) ,€Cqr Where Trf 1o, x is the restriction of the projection map to ec, X, it fol-
lows that there exists a unique map «xX ER [1fec, clr (f (X)) such that for each projec-
tion Ty, TrfofN = f . Clearly then f((xX ) € ec, X, so that the required inequality follows.

O

The proof of the theorem immediately follows from Lemma 3.9(4). The proof of
Lemma 3.9 suggests an intimate connection between the poset of the subrings of
C*(X,F) that separate points and closed subsets of X and the poset of all completely
F-regular members of &(X), namely, £ (X); and the map &«X — C, turns out to be an
isomorphism. Hence, if F + R, &y (X) is precisely the class of all zero-dimensional Haus-
dorff compactifications of X, (%¢(X) is a complete upper sub-semilattice of &£(X), and
the greatest member of &y (X) is SoX, the Banaschewski compactification of X. It is de-
fined up to homeomorphism by an extension property similar to X: every continuous
function on X to a compact zero-dimensional Hausdorff topological space has a unique
extension to BypX.) So that we must have the following.

THEOREM 3.10. If F # R, the compactifications ecxx,r)X and BoX are equivalent
compactifications.

It is clear that BoX also has the F-extension property, if F + R, so that we also have
BoX € A(X,F). But then, as any two members of &(X,F) have isomorphic function
rings, it follows from Theorem 3.3 that there cannot be more than one member in
Ko(X) N&(X,F). Furthermore, from the definition of the F-extension property it fol-
lows that for any «X € &(X,F), Bo = B§.«, implying BoX < «X. Hence we have the
following.

THEOREM 3.11. Let F + R. Then the following are true.
(1) Ko(X)N&K(X,F) = {BoX}.

(2) BoX is the smallest member of &(X,F).

(3) &(X,F) is a complete lattice in £(X).

Thus, if F # R, the rings €*(X,F) and €(BoX,F) are isomorphic as rings and hence
% r is homeomorphic to BoX, yielding the following.

THEOREM 3.12. For any F # R, W% ¢ is homeomorphic to foX and hence WY p is
completely F-regular.

REMARK 3.13. For F = R, 0} ;- is simply X, and thus completely F-regular, so that,
for any ordered field F, 0% ;. is always completely F-regular.

4. Conclusion. We recall that a topological space X is said to be strongly zero di-
mensional if and only if X is a nonempty Tychonoff space and every open cover of X
by cozero sets in X with respect to R has a finite open refinement of mutually disjoint
sets (see [12, Chapter 6, page 360]). Clearly, the refinement is also a cover by cozero
sets in X with respect to F, for any ordered field F, as each of the sets in the refine-
ment is a clopen set. The definition entails that every strongly zero-dimensional space
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TABLE 4.1. List of properties of the pair (X,F).

List of Properties

P | C(X,F) =%(X,F)

P | €*(X,F) and C(X,F) determine the same family of zero sets in X with respect to F

P | Mx F is completely F-regular

P TO%F is completely F-regular

P | &(X,F) has exactly two points

P | Given one X € A(X), aX =My r as compactifications

is zero dimensional, but the converse need not be true (see [12, Section 6.2.20, page
365]) and it is known that the Stone-Cech compactification of a Tychonoff space X is
zero dimensional if and only if X is strongly zero dimensional (see [12, Theorem 6.2.12,
page 362]).

Thus we have the following classification of a Tychonoff topological space X.

(1) X is not zero dimensional.

(2) X is strongly zero dimensional.

(3) X is zero dimensional and not strongly zero dimensional, and for any ordered

field F other than R, exactly one of the following conditions is satisfied:
(@) BoX =MWxr < BX;
(b) BoX <My r < BX;
(© BoX <Mxr=BX.

Thus it follows that & (X, F) is exactly a singleton if and only if either F = R or X is
strongly zero dimensional, and in all other cases it has at least two elements. No cardinal
estimates for £(X,F) could be ascertained, and none of the known examples of zero-
dimensional but not strongly zero-dimensional spaces (see [9, 21, 22, 23, 25, 26]) could
be classified in the exhibited three classes.

Before we complete this paper, we propose some questions that seem to be new. The
questions concern certain properties of the pair (X, F), where X is a topological space,
preferably a completely F-regular topological space, and F is an ordered field. For in-
stance, one such property is “& (X, F) is a singleton”, and it was shown that this property
holds if and only if either F = R or X is strongly zero dimensional. The properties are
listed in Table 4.1, and the questions for a property P are as follows.

QUESTION 4.1. Given a topological space X, is it possible to provide a construction
of an ordered field F such that P is satisfied?

QUESTION 4.2. Given an ordered field F, is it possible to provide a construction of
a topological space X such that P is fulfilled?

QUESTION 4.3. Is it possible to characterize all the pairs (X,F) such that P holds?
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Apart from these, another question remains unanswered.

QUESTION 4.4. To which of the classes of zero-dimensional but not strongly zero-
dimensional spaces discussed above do the spaces discussed in [9, 21, 22, 25] belong?
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As a multidisciplinary field, financial engineering is becom-
ing increasingly important in today’s economic and financial
world, especially in areas such as portfolio management, as-
set valuation and prediction, fraud detection, and credit risk
management. For example, in a credit risk context, the re-
cently approved Basel II guidelines advise financial institu-
tions to build comprehensible credit risk models in order
to optimize their capital allocation policy. Computational
methods are being intensively studied and applied to im-
prove the quality of the financial decisions that need to be
made. Until now, computational methods and models are
central to the analysis of economic and financial decisions.

However, more and more researchers have found that the
financial environment is not ruled by mathematical distribu-
tions or statistical models. In such situations, some attempts
have also been made to develop financial engineering mod-
els using intelligent computing approaches. For example, an
artificial neural network (ANN) is a nonparametric estima-
tion technique which does not make any distributional as-
sumptions regarding the underlying asset. Instead, ANN ap-
proach develops a model using sets of unknown parameters
and lets the optimization routine seek the best fitting pa-
rameters to obtain the desired results. The main aim of this
special issue is not to merely illustrate the superior perfor-
mance of a new intelligent computational method, but also
to demonstrate how it can be used effectively in a financial
engineering environment to improve and facilitate financial
decision making. In this sense, the submissions should es-
pecially address how the results of estimated computational
models (e.g., ANN, support vector machines, evolutionary
algorithm, and fuzzy models) can be used to develop intelli-
gent, easy-to-use, and/or comprehensible computational sys-
tems (e.g., decision support systems, agent-based system, and
web-based systems)

This special issue will include (but not be limited to) the
following topics:

e Computational methods: artificial intelligence, neu-
ral networks, evolutionary algorithms, fuzzy inference,
hybrid learning, ensemble learning, cooperative learn-
ing, multiagent learning

o Application fields: asset valuation and prediction, as-
set allocation and portfolio selection, bankruptcy pre-
diction, fraud detection, credit risk management

e Implementation aspects: decision support systems,

expert systems, information systems, intelligent
agents, web service, monitoring, deployment, imple-
mentation

Authors should follow the Journal of Applied Mathemat-
ics and Decision Sciences manuscript format described at
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Prospective authors should submit an electronic copy of their
complete manuscript through the journal Manuscript Track-
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