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1. Introduction. An Orlicz function is a functionM : [0,∞)→ [0,∞) which is contin-

uous, nondecreasing, and convex with M(0)= 0, M(x) > 0 for x > 0, and M(x)→∞ as

x →∞. If the convexity of Orlicz function M is replaced by M(x+y) ≤M(x)+M(y),
then this function is called a modulus function, defined and discussed by Ruckle [5]

and Maddox [4].

An Orlicz functionM is said to satisfy the ∆2-condition for all values of u if there ex-

ists a constant K > 0 such thatM(2u)≤KM(u) (u≥ 0). The ∆2-condition is equivalent

to M(�u)≤K. �M(u), for all values of u and for � > 1.

An Orlicz function M can always be represented in the following integral form:

M(x) = ∫ x0 q(t)dt, where q, known as the kernel of M , is right-differentiable for t ≥ 0,

q(0)= 0, q(t) > 0 for t > 0, q is nondecreasing, and q(t)→∞ as t →∞. Lindenstrauss

and Tzafriri [3] used the idea of Orlicz function to construct the Orlicz sequence space

�M =
{
x ∈w :

∞∑
k=1

M
(∣∣xk∣∣

ρ

)
<∞, for some ρ > 0

}
, (1.1)

where w = {all complex sequences}.
The space �M with the norm

‖x‖ = inf

{
ρ > 0 :

∞∑
k=1

M
(∣∣xk∣∣

ρ

)
≤ 1

}
(1.2)

becomes a Banach space which is called an Orlicz sequence space.

2. A complex sequence whose kth term is xk will be denoted by (xk) or x. A se-

quence x = (xk) is said to be analytic if sup(k) |xk|1/k < ∞. The vector space of all

analytic sequences will be denoted by ∧. A sequence x is called an entire sequence if

limk→∞ |xk|1/k = 0. The vector space of all entire sequences will be denoted by Γ .

Definition 2.1. The space consisting of all sequences x in w such that M(|xk|1/k/
ρ) → 0 as k → ∞ for some arbitrarily fixed ρ > 0 is denoted by ΓM , with M being a

modulus function. In other words, {M(|xk|1/k/ρ)} is a null sequence. The space ΓM is

http://dx.doi.org/10.1155/S0161171204311385
http://dx.doi.org/10.1155/S0161171204311385
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


3756 K. C. RAO AND N. SUBRAMANIAN

a metric space with the metric

d(x,y)= sup
(k)
M


∣∣xk−yk∣∣1/k

ρ


 (2.1)

for all x = {xk} and y = {yk} in ΓM .

Given a sequence x = {xk}whosenth section is the sequence x(n) = {x1,x2, . . . ,xn,0,
0, . . .}, δ(n) = (0,0, . . . ,1,0,0, . . .), with 1 in the nth place and zeros elsewhere; let Φ =
{all finite sequences}.

An FK-space (or a metric space) X is said to have AK property if (δ(n)) is a Schauder

basis for X. Or equivalently x(n)→ x.

The space is said to have or be an AD space if Φ is dense in X.

We note that AK implies AD by [1].

If X is a sequence space, we give the following definitions:

(i) X′ = the continuous dual of X;

(ii) Xα = {a= (ak) :
∑∞
k=1 |akxk|<∞, for each x ∈X};

(iii) Xβ = {a= (ak) :
∑∞
k=1akxk is convergent, for each x ∈X};

(iv) Xγ = {a= (ak) : sup(n) |
∑n
k=1akxk|<∞, for each x ∈X};

(v) let X be an FK-space⊃ Φ, then Xf = {f(δ(n)) : f ∈X′}. Xα, Xβ, and Xγ are called

the α- (or Köthe-Toeplitz-) dual of X, β- (or generalized-Köthe-Toeplitz-) dual of

X, and γ-dual of X, respectively.

Note that Xα ⊂Xβ ⊂Xγ . If X ⊂ Y , then Yµ ⊂Xµ , for µ =α, β, or γ.

Lemma 2.2 (see [6, Theorem 7.2.7]). Let X be an FK-space ⊃ Φ. Then

(i) Xγ ⊂Xf ;

(ii) if X has AK, Xβ =Xf ;

(iii) if X has AD, Xβ =Xγ .

We note that Γα = Γβ = Γγ =∧.

Proposition 2.3. Γ ⊂ ΓM , with the hypothesis that M(|xk|1/k/ρ)≤ |xk|1/k.
Proof. Let x ∈ Γ . Then we have the following implications:

∣∣xk∣∣1/k
�→ 0 as k �→∞. (2.2)

But M(|xk|1/k/ρ)≤ |xk|1/k, by our assumption, implies that

M


∣∣xk∣∣1/k

ρ


 �→ 0 as k �→∞ (

by (2.2)
)

�⇒ x ∈ ΓM
�⇒ Γ ⊂ ΓM.

(2.3)

This completes the proof.
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Proposition 2.4. ΓM has AK where M is a modulus function.

Proof. Let x = {xk} ∈ ΓM , but then {M(|xk|1/k/ρ)} ∈ Γ , and hence

sup
k≥n+1

M


∣∣xk∣∣1/k

ρ


 �→ 0 as n �→∞. (2.4)

By using (2.4), d(x,x[n]) = supk≥n+1M(|xk|1/k/ρ) → 0 as n → ∞, which implies that

x[n]→ x as n→∞, implying that ΓM has AK. This completes the proof.

Proposition 2.5. ΓM is solid.

Proof. Let |xk| ≤ |yk| and let y = (yk)∈ ΓM .M(|xk|1/k/ρ)≤M(|yk|1/k/ρ), because

M is nondecreasing. But M(|yk|1/k/ρ) ∈ Γ because y ∈ ΓM . That is, M(|yk|1/k/ρ) → 0

as k→∞ and M(|xk|1/k/ρ)→ 0 as k→∞. Therefore x = {xk} ∈ ΓM . This completes the

proof.

Proposition 2.6. Let M be an Orlicz function which satisfies the ∆2-condition. Then

Γ ⊂ ΓM .

Proof. Let

x ∈ Γ . (2.5)

Then |xk|1/k ≤ ε for sufficiently large k and every ε > 0. But then by taking ρ ≥ 1/2,

M


∣∣xk∣∣1/k

ρ


≤M( ε

ρ

)
(because M is nondecreasing)

≤M(2ε)

�⇒M

∣∣xk∣∣1/k

ρ


≤KM(ε) (

by the ∆2-condition, for some K > 0
)

≤ ε
(

by defining M(ε) <
ε
k

)

�⇒M

∣∣xk∣∣1/k

ρ


 �→ 0 as k �→∞.

(2.6)

Hence x ∈ ΓM .

From (2.5) and since

x ∈ ΓM, (2.7)

we get

Γ ⊂ ΓM. (2.8)

This completes the proof.

Proposition 2.7. If M is a modulus function, then ΓM is a linear set over the set of

complex numbers C.
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Proof. Let x,y ∈ ΓM and α,β∈C. In order to prove the result, we need to find some

ρ3 such that

M


∣∣αxk+βyk∣∣1/k

ρ3


 �→ 0 as k �→∞. (2.9)

Since x,y ∈ ΓM , there exist some positive ρ1 and ρ2 such that

M


∣∣xk∣∣1/k

ρ1


 �→ 0 as k �→∞,

M


∣∣yk∣∣1/k

ρ2


 �→ 0 as k �→∞.

(2.10)

Since M is a nondecreasing modulus function, we have

M


∣∣αxk+βyk∣∣1/k

ρ3


≤M


∣∣αxk∣∣1/k

ρ3
+
∣∣βyk∣∣1/k

ρ3




≤M

 |α|1/k∣∣xk∣∣1/k

ρ3
+ |β|

1/k
∣∣yk∣∣1/k

ρ3




≤M

 |α|∣∣xk∣∣1/k

ρ3
+ |β|

∣∣yk∣∣1/k

ρ3


.

(2.11)

Take ρ3 such that

1
ρ3
=min

{
1
|α|

1
ρ1
,

1
|β|

1
ρ2

}
. (2.12)

Then

M


∣∣αxk+βyk∣∣1/k

ρ3


≤M


∣∣xk∣∣1/k

ρ1
+
∣∣yk∣∣1/k

ρ2




≤M

∣∣xk∣∣1/k

ρ1


+M


∣∣yk∣∣1/k

ρ2




�→ 0
(
by (2.10)

)
.

(2.13)

Hence

M


∣∣αxk+βyk∣∣1/k

ρ3


 �→ 0 as k �→∞. (2.14)

So (αx+βy)∈ ΓM . Therefore ΓM is linear. This completes the proof.
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Definition 2.8. Let p = (pk) be any sequence of positive real numbers. Then

ΓM(p)=

x =

{
xk
}

:


M


∣∣xk∣∣1/k

ρ





pk

�→ 0 as k �→∞

. (2.15)

Suppose that pk is a constant for all k, then ΓM(p)= ΓM .

Proposition 2.9. Let 0≤ pk ≤ qk and let {qk/pk} be bounded. Then ΓM(q)⊂ ΓM(p).
Proof. Let

x ∈ ΓM(q), (2.16)
M


∣∣xk∣∣1/k

ρ





qk

�→ 0 as k �→∞. (2.17)

Let tk = (M(|xk|1/k/ρ))qk and λk = pk/qk. Since pk ≤ qk, we have 0≤ λk ≤ 1.

Take 0< λ< λk. Define

uk =

tk

(
tk ≥ 1

)
0

(
tk < 1

)
,

vk =

0

(
tk ≥ 1

)
tk

(
tk < 1

)
,

tk =uk+vk, tλkk =uλkk +vλkk .

(2.18)

Now it follows that

uλkk ≤uk ≤ tk, vλkk ≤ vλk . (2.19)

Sincetλkk =uλkk +vλkk , then tλkk ≤ tk+vλk .


M


∣∣xk∣∣1/k

ρ



qk


λk

≤

M


∣∣xk∣∣1/k

ρ





qk

�⇒

M


∣∣xk∣∣1/k

ρ



qk


pk/qk

≤

M


∣∣xk|1/k

ρ





qk

�⇒

M


∣∣xk∣∣1/k

ρ





pk

≤

M


∣∣xk∣∣1/k

ρ





qk

.

(2.20)

But


M


∣∣xk∣∣1/k

ρ





qk

�→ 0
(
by (2.17)

)
. (2.21)
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Hence (M(|xk|1/k/ρ))pk → 0 as k→∞. Hence

x ∈ ΓM(p). (2.22)

From (2.16) and (2.22), we get

ΓM(q)⊂ ΓM(p). (2.23)

This completes the proof.

Proposition 2.10. (a) Let 0< infpk ≤ pk ≤ 1. Then ΓM(p)⊂ ΓM .

(b) Let 1≤ pk ≤ suppk <∞. Then ΓM ⊂ ΓM(p).
Proof. (a) Let x ∈ ΓM(p),


M


∣∣xk∣∣1/k

ρ





pk

�→ 0 as k �→∞. (2.24)

Since 0< infpk ≤ pk ≤ 1,


M


∣∣xk∣∣1/k

ρ




≤


M


∣∣xk∣∣1/k

ρ





pk

, (2.25)

From (2.24) and (2.25) it follows that

x ∈ ΓM. (2.26)

Thus

ΓM(p)⊂ ΓM. (2.27)

We have thus proven (a).

(b) Let pk ≥ 1 for each k and suppk <∞ and let x ∈ ΓM .

M


∣∣xk∣∣1/k

ρ


 �→ 0 as k �→∞. (2.28)

Since 1≤ pk ≤ suppk <∞, we have


M


∣∣xk∣∣1/k

ρ





pk

≤

M


∣∣xk∣∣1/k

ρ




,


M


∣∣xk∣∣1/k

ρ





pk

�→ 0 as k �→∞ (
by using (2.28)

)
.

(2.29)

Therefore x ∈ ΓM(p). This completes the proof.
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Proposition 2.11. Let 0<pk ≤ qk <∞ for each k. Then ΓM(p)⊆ ΓM(q).
Proof. Let x ∈ ΓM(p)


M


∣∣xk∣∣1/k

ρ





pk

�→ 0 as k �→∞. (2.30)

This implies that (M(|xk|1/k/ρ))≤ 1 for sufficiently large k. Since M is nondecreas-

ing, we get


M


∣∣xk∣∣1/k

ρ





qk

≤

M


∣∣xk∣∣1/k

ρ





pk

�⇒

M


∣∣xk∣∣1/k

ρ





qk

�→ 0 as k �→∞ (
by using (2.30)

)
.

(2.31)

Since x ∈ ΓM(q), hence ΓM(p)⊆ ΓM(q). This completes the proof.

Proposition 2.12. ΓM(p) is r -convex for all r , where 0 ≤ r ≤ infpk. Moreover, if

pk = p ≤ 1 for all k, then they are p-convex.

Proof. We will prove the theorem for ΓM(p). Letx ∈ ΓM(p) and r ∈(0, limn→∞ infpn).
Then, there exists k0 such that r ≤ pk for all k > k0.

Now, define

g∗(x)= inf


ρ :M


∣∣xk−yk∣∣1/k

ρ



r

+M

∣∣xk−yk∣∣1/k

ρ



pn

. (2.32)

Since r ≤ pk ≤ 1 for all k > k0, g∗ is subadditive. Further, for 0≤ |λ| ≤ 1,

|λ|pk ≤ |λ|r ∀k > k0. (2.33)

Therefore, for each λ, we have

g∗(λx)≤ |λ|r ·g∗(x). (2.34)

Now, for 0< δ< 1,

U = {x : g∗(x)≤ δ}, (2.35)

which is an absolutely r -convex set, for

|λ|r +|µ|r ≤ 1, x,y ∈U. (2.36)
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Now

g∗(λx+µy)≤ g∗(λx)+g∗(µy)
≤ |λ|rg∗(x)+|µ|rg∗(y)
≤ |λ|rδ+|µ|rδ (

using (2.34) and (2.35)
)

≤ (|λ|r +|µ|r )δ
≤ 1·δ (

by using (2.36)
)

≤ δ.

(2.37)

If pk = p ≤ 1 for all k, then for 0< r < 1, U = {x : g∗(x)≤ δ} is an absolutely p-convex

set. This can be obtained by a similar analysis and therefore we omit the details. This

completes the proof.

Proposition 2.13. (ΓM)β =∧.

Proof

Step 1. Γ ⊂ ΓM by Proposition 2.3; this implies that (ΓM)β ⊂ Γβ =∧. Therefore,

(
ΓM
)β ⊂∧. (2.38)

Step 2. Let y ∈∧. Then |yk|<Mk for all k and for some constant M > 0.

Let x ∈ ΓM . Then M(|xk|1/k/ρ)→ 0 as k→∞. Hence M(|xk|1/k/ρ) < ε for given ε > 0

for sufficiently large k.

Take ε = 1/2M so that M(|xk|/ρ) < 1/(2M)k.
But then M(|xkyk|/ρ) ≤ 1/2k so that

∑∞
k=1M(|xkyk|/ρ) converges. Therefore∑∞

k=1M(xkyk/ρ) converges. Hence
∑∞
k=1xkyk converges so that y ∈ (ΓM)β. Thus

∧⊂ (ΓM)β. (2.39)

Step 3. From (2.38) and (2.39), we obtain

(
ΓM
)β =∧. (2.40)

This completes the proof.

Proposition 2.14. (ΓM)µ =∧ for µ =α,β,γ,f .

Proof

Step 1. ΓM has AK by Proposition 2.4. Hence, by Lemma 2.2(i), we get (ΓM)β = (ΓM)f .

But (ΓM)β =∧. Hence

(
ΓM
)f =∧. (2.41)

Step 2. Since AK implies AD, hence by Lemma 2.2(iii) we get (ΓM)β = (ΓM)γ . Therefore

(
ΓM
)γ =∧. (2.42)
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Step 3. ΓM is normal by Proposition 2.5. Hence, by [2, Proposition 2.7], we get

(
ΓM
)α = (ΓM)γ =∧. (2.43)

From (2.41), (2.42), and (2.43), we have

(
ΓM
)α = (ΓM)β = (ΓM)γ = (ΓM)f =∧. (2.44)

Proposition 2.15. The dual space of ΓM is ∧. In other words, Γ∗M =∧.

Proof. We recall that δk has 1 in the kth place and zeros elsewhere, with

x = δk,
{
M
(∣∣xk∣∣1/k

ρ

)}
=
{
M(0)1

ρ
,
M(0)1/2

ρ
,. . . ,

M(1)1/k

ρ
,
M(0)1/(k+1)

ρ
, . . .

}

=
{

0,0, . . . ,
M(1)1/k

ρ
,0, . . .

} (2.45)

which is a null sequence. Hence δk ∈ ΓM . f(x) = ∑∞
k=1xkyk with x ∈ ΓM and f ∈ Γ∗M ,

where Γ∗M is the dual space of ΓM . Take x = δk ∈ ΓM . Then

∣∣yk∣∣≤ ‖f‖d(δk,0)<∞ ∀k. (2.46)

Thus (yk) is a bounded sequence and hence an analytic sequence. In other words,

y ∈∧. Therefore Γ∗M =∧. This completes the proof.

Lemma 2.16 [6, Theorem 8.6.1]. Y ⊃ X� Yf ⊂ Xf , where X is an AD-space and Y
an FK-space.

Proposition 2.17. Let Y be any FK-space⊃ Φ. Then Y ⊃ ΓM if and only if the sequence

δ(k) is weakly analytic.

Proof. The following implications establish the result: since ΓM has AD and by

Lemma 2.16,

Y ⊃ ΓM ⇐⇒ Yf ⊂
(
ΓM
)f

⇐⇒ Yf ⊂∧
(
since

(
ΓM
)f =∧)

⇐⇒ for each f ∈ Y ′, the topological dual of Y ·f (δ(k))∈∧
⇐⇒ f (δ(k)) is analytic

⇐⇒ δ(k) is weakly analytic,

(2.47)

this completes the proof.
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