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We give a lower bound of the genus of the fibration of free loops on an elliptic space whose
rational cohomology is concentrated in even degrees.
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1. Introduction. In this note, all spaces are supposed to be connected and having

the rational homotopy type of a CW complex of finite type. The LS category, cat(X), of

a space X is the least integer n such that X can be covered by n+1 open subsets, each

contractible in X. The genus, genus(η) or genus(p), of a fibration η : F → E p→ B is the

least integern such that B can be covered by n+1 open subsets, over each of which p is

a trivial fibration, in the sense of fiber homotopy type. The sectional category, secat(η),
is the least integer n such that B can be covered by n+1 open subsets, over each of

which p has a section. Let

�X :ΩX �→ LX �→X (1.1)

be the fibration of free loops on a 2-connected space X and let �X : ΩX → PX → X be

the path fibration. It is known that �X is an interesting object in topology and geometry

[1, 9]. We know that cat(X) = secat(�X) = genus(�X) (see [4, page 599]). On the other

hand, since �X has a section, secat(�X) = 0. But it seems hard to know genus(�X) in

general. In this note, we consider a certain case for X by using the argument of the

Sullivan minimal model in [4].

A simply connected space is said to be elliptic if the dimensions of rational coho-

mology and homotopy are finite. An elliptic space X is said to be an F0-space if the

rational cohomology is concentrated in even degrees. Then there is an isomorphism

H∗(X;Q) � Q[x1, . . . ,xn]/(f1, . . . ,fn) with a regular sequence f1, . . . ,fn. For example,

the homogeneous space G/H where G and H have same rank is an F0-space. Note that

there is a conjecture of Halperin for an F0-space (see [3, page 516], [7]).

Theorem 1.1. Let X be a 2-connected F0-space of n variables. Then genus(�X)≥n.

In the following, Section 2 is a preliminary in Sullivan minimal models and we prove

the theorem in Section 3. Refer to [3] for the rational model theory.

2. Sullivan model of classifying map. Let M(X) = (ΛV,d) be the Sullivan minimal

model [3, Section 12] of a 2-connected space X, in which V = ⊕i>2Vi as a graded

vector space. Let Vi = Vi+1 and let β : ΛV ⊗ΛV → ΛV ⊗ΛV be the derivation (β(xy) =
β(x)y + (−1)degxxβ(y)) of degree −1 with the properties β(v) = v and β(v) = 0.
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Then M(ΩX) = (ΛV,0) and M(LX) � (ΛV ⊗ΛV,δ) with δv = dv and δv = −βdv =∑
j±j∂dv/∂vj ·vj for a basis vj of V [9].

Let Y be a simply connected space and let DeriM(Y) be the set of derivations ofM(Y)
decreasing the degree by i > 0. We denote

⊕
i>0 DeriM(Y) by DerM(Y). The Lie bracket

is defined by [σ ,τ]= σ ◦τ−(−1)degσ degττ◦σ . The boundary operator ∂ : Der∗M(Y)→
Der∗−1M(Y) is defined by ∂(σ) = [d,σ]. Let BautY be the Dold-Lashof classifying

space [2] for fibrations with fiber Y and B̃autY the universal covering. The differential

graded Lie algebra L= (DerM(Y),∂) is a model for B̃autY (see [8, page 313]).

Any fibration with fiber Y over a simply connected space B is the pullback of the

universal fibration by a classifying map h : B → B̃autY . Let Y → E → B be a fibration

whose model [3, Section 15] is

M(B)= (ΛW,d) �→ (ΛW ⊗ΛV,D) �→ (ΛV,D)=M(Y). (2.1)

Take a basis ai of (ΛW)+, then there are derivations θi of ΛV such that for each z ∈ V ,

we have D(z) = D(z)+∑i aiθi(z). A differential graded algebra model for B̃autY is

given by the cochain algebra C∗(L) [3, 23(a)] on L, and a model for the classifying map

of the fibration h is given by

h∗ : C∗(L)=Hom
(
Der∗−1M(Y),Q

)
�→ΛW, h∗(ψ)=

∑

i
aiψ

(
θi
)

(2.2)

(see [6, Section 9]). Put the derivation which sends a generator p to an element q and

other generators to zero as (p,q) and the dual element with the degree shifted by +1

as s(p,q)∗.

Lemma 2.1. The fibration �X is the pullback of the universal fibration by a classifying

map h : X → B̃autΩX, where the model is given by h∗(s(vi,vj)∗) = ±i,j∂dvi/∂vj for

vi,vj ∈ V and h∗(other)= 0.

3. Proof. The category, cat(f ), of a map f :X → Y is the least integer n such that X
can be covered by n+1 open subsets Ui, for which the restriction of f to each Ui is null-

homotopic. Note that cat(f )≤ cat(X). Recall that if η : F → E→ B is a simply connected

fibration, then genus(η)= cat(h) for the classifying map of η, h : B→ B̃autF [5].

Proof of Theorem 1.1. Let M(X) = (Λ(x1, . . . ,xn,y1, . . . ,yn),d) with degxi even,

degyi odd, d(xi)= 0, and d(yi)= fi ≠ 0∈Λ(x1, . . . ,xn) for i= 1, . . . ,n. ThenM(ΩX)=
(Λ(x1, . . . ,xn,y1, . . . ,yn),0) with degv = degv − 1 for any element v . The minimal

model of the space LX of free loops on X is given by

M(LX)= (Λ(x1, . . . ,xn,y1, . . . ,yn,x1, . . . ,xn,y1, . . . ,yn
)
,δ
)
, (3.1)

where δxi = δxi = 0, δyi = dyi = fi, δyi = −
∑n
j=1 ∂fi/∂xj ·xj . Then we see from

Lemma 2.1 that

h∗
(
s
(
yi,xj

)∗)=− ∂fi
∂xj

for 1≤ i, j ≤n, h∗(other)= 0. (3.2)
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Let J be the determinant of the matrix whose (i,j)-component is s(yi,xj)∗. Then

(−1)nh∗(J) is the Jacobian |(∂fi/∂xj)1≤i, j≤n| of f1, . . . ,fn and it is a cocycle which is

not cohomologous to zero in M(X) [7, Theorem B]. Therefore, as in [4, page 598(2)],

genus
(
�X
)= cat(h)≥ nil

(
ImH̃

(
h∗
))≥n, (3.3)

where nilR is the least integer n such that Rn+1 = 0 for a ring R and H̃(h∗) is the

induced morphism in reduced cohomology.

Corollary 3.1. If X is an F0-space of n variables with cat(X)=n, then genus(�X)
=n.

Example 3.2. Let X = S2n ∨ S2n ∪ e4n ��0 S2n ∨ S2n ∨ S4n. X is an F0-space where

H∗(X;Q) �Q[x1,x2]/(x1
2+ax2

2,x1x2) with some a ≠ 0 ∈Q and degxi = 2n. Then

from Theorem 1.1 and [3, Lemma 27.3], 2≤ genus(�X)≤ cat(X)≤ cat(S2n∨S2n)+1=2,

that is, genus(�X)= cat(X)= 2.
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