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Stochastic linearization produces a linear system with the same covariance kernel as the
original nonlinear system. The method passes from factorization of finite-dimensional co-
variance kernels through convergence results to the final input/output operator represen-
tation of the linear system.
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1. Introduction. Linearization and hence stochastic linearization of a nonlinear sys-
tem is about local behavior of the system in time and space. Since the system functions
of monitoring and control are concerned with local behavior, they are usually based on
linearizations of the underlying nonlinear system [19]. The nonparametric methods of
linearization which are the subject of this investigation are based on the covariances of
the input and output processes for the system. The data typically looks like Figure 1.1.
Existence of the covariance is implied by the assumption that the underlying nonlinear
system is point dissipative [3], that is, there is a compact set which each trajectory of
the system without stochastic excitation enters and remains within.

Nonparametric methods of linearization which only require observations of inputs
and outputs rather than models of the nonlinear system are potentially useful in two
situations [5]: first, when the system is evolving in time or is frequently reconfigured
and model updates are difficult or expensive to obtain; second, when the monitoring or
control functions are to be exercised at a low level by smart devices without the high
level logic required for choosing or changing the system model.

The covariance function R of a zero-mean output process determines a reproducing
kernel Hilbert (RKH) space with kernel R. This RKH space is said to represent the out-
put process [21] and has been exploited in signal analysis [28]. In a reasonable sense,
the RKH space representation of the process contains all of the information on the
process available from observations. Starting with a known linear system excited by a
Wiener process [24] provides an explicit representation of the RKH space as a space
of Hellinger integrable functions. Further, the linear input/output operator for the sys-
tem provides a factorization of the nonnegative Hermitian operator on the space of
Hellinger integrable functions with matrix representation R.

When the underlying system is nonlinear, we show, in Section 3, that factoring dis-
crete versions of R yields in the limit the matrix representation of a linearization of the
nonlinear system. This stochastic linearization is the best possible in that when excited
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FIGURE 1.1. Sample covariance kernel, where 0 <x <1,0<y <1,and z = R(x,y).

by a Wiener process the linearization yields a process with covariance R, that is, one
which is indistinguishable from the original process. A natural way to proceed, build-
ing on our experience with linear systems, is to seek a factorization of R in terms of
limits of the Cholesky factors [11] of discrete approximations R; of R. The next section
provides the background for a reasonable notion of convergence required to make this
approach feasible.

2. Background. The RKH space approach to linear system modeling [24] provides
discrete nonparametric model representations in terms of factorizations of the discrete
covariances of the input and output processes for the system. Thus the representations
are in terms of data, avoiding the dimension or order problem associated with para-
metric approaches. The RKH space method eliminates decisions about the form of the
model, such as the number of terms to be included, which require a high level logic.

Let R? denote the space of d-tuples of real numbers with the usual inner product
(-,-y and norm | - |. Let G denote the class of continuous functions f from [0, ) into R4
such that f(0) = 0. We define a family of pseudonorms {N,, x > 0} on G by Ny (f) =
sup,., | f(z)| foreach f in G and x > 0. Two classes of linear operators defined initially
on G are introduced. These operators are used to describe the systems of interest. Let
9% denote the set of linear operators on G to which B belongs only when

(1) [Bf](0) =0 for each f in G,
(2) for each T > 0 there is a number b such that

t
I[BF1(t)—[Bf1(s)| < bj No(f)dx @.1)

foreach finGand0<s<t<T.
Let s denote the set of linear operators on G to which A belongs only in case A—1
is in ®. If B is in %, then I — B is an invertible operator from G onto G and (I —B)~! is
in o{. If A is in o, then A is an invertible operator from G onto G and I — A~! is in %.
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The classes of operators « and % can serve to describe linear systems, but what is
their relation with nonlinear systems? In particular, how do we relate these operators
to the available observation process {Y(t), 0 < t}? The next three theorems provide
answers to these questions.

In general, the covariance function R of a stochastic process {Y (t), 0 < t} defined by

R(s,t) =E((Y(s)—E(Y(s)))(Y(t) —E(Y () "), (2.2)

where E denotes the expectation operator, is nonnegative, that is,

n

> (R(tp,tq)Xq,xp) =0 (2.3)
p,a=0

for each sequence {t,}{ in [0,c0) and each sequence {x,}g in R4 (18, 21].

From this point we will reserve R to denote the covariance function of some obser-
vation process {Y(t), O < t}. In order to see the structure of the problem, modeling
the process {Y(t), 0 < t} from partial information, we begin by assuming complete
information, that is, R(s, t) is known exactly for O < s, t.

THEOREM 2.1 [1, 18]. For each covariance function R from [0, ) X [0, ) into the
d x d matrices, there is a Hilbert space {Gr,Qr} of functions from [0, ) into R4 with
reproducing kernel R, that is,

(1) R(-,t)x isin Gg for eacht in [0,00) and x in R4,
(2) Qr(f,R(-,t)x) = (f(t),x) for each f in Gg, x inR%, and t in [0, ).

The theorem only asserts the existence of the RKH space {Gg,Qr} with kernel R.

When our observation process is of the form Y = AW, where A is an invertible opera-
torin A UB, W is the standard d-dimensional Wiener process, and R(s,t) = EY (s)Y (t)T,
we can obtain more, namely, an explicit representation of {Gg,Qr}. (See [21] for an al-
ternative representation.)

In order to accomplish this we will introduce another RKH space, this time associated
with the input process. Let k denote an increasing scalar function with k(0) = 0. Let Gg
denote the subspace of functions in G which are Hellinger integrable with respect to k,
that is, f is in Gk only in case there is a number M such that

Ef ) = f ) |P o 1S

2 k() k() "2k =M 4
for each increasing sequence {t,}g in [0, ). The least such number M is denoted by
f0°° |df|?/dk. Finally, let Qx denote the inner product for Gx defined by Qx(f,g) =
Io” df dg/dk, the limit through refinement of sums >; d fdg/dk. We will use the short
notation dk(x,y) for the difference k(y)—k(x).

The space {Gk,Qk} is an RKH space with kernel given by K(s,t) = k(min(s,t))I,
where I is the d x d identity matrix [18]. Elements of % map G into Gk and elements of
A map Gk onto Gk. From now on, we will be concerned primarily with the restrictions
of elements of & and % to Gg.
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Let L denote the function from ${ U% into the space of d X d matrix-valued functions
on [0,0) x [0, ) defined by LD (s,t) = [D*K(-,t)](s) = [DK(-,s)](t)T, for D in AU %R
and (s,t) in[0,0) x [0, ). Weuse D* to denote the adjointin {Gx,Qx} of the restriction
of D to Gk and call LD the matrix representation of D. Notice that ([Df](t),x) =
Qx(f,LD(-,t)x), for each f in Gk and x in [0, o).

In general, the variance of a scalar input process is an increasing function k. When
the input process is the standard scalar Wiener process, we can use the special case
k(t) = t. Note that, when d = 1, K is the covariance function of the Wiener process.

THEOREM 2.2 [24]. Suppose R is the covariance of the process Y = AW, where A is
an invertible operator in A U B, and W is the d-dimensional Wiener process. For 0 <
s,t, R(s,t) = [AA*K(-,t)](s), where A* is the adjoint of A in {Gg,Qk} and K is the
reproducing kernel of {Gk,Qx}, that is, R is the matrix representation of AA*.

Let LA denote the matrix representation of the assumed operator A. We can write
R(s,t) = Qg (LA(-,t),LA(-,s)) (2.5)

for 0 < s,t, that is, we can use A to obtain a representation of R.

The following example illustrates this last observation. Note that a state space for-
mulation of the model would have to be infinite dimensional; however, the input and
output processes are scalar.

EXAMPLE 2.3. Suppose W is the standard scalar Wiener process and
Lt
Y(t) = [AW](t) =j b aw). 2.6)
ot—u+1

Direct calculation for s < t yields

s 1 1
R(s,0 = EY@Y () = | oy pau

Lm[w] ifo<s<t 2.7)
_Jt-s t+1
s .
m if s =1t.

If s <t, then

t
LA(s,b) = [AK(,5)](8) = jo ﬁdK(u,s)

E ) (2.8)
= J ———du=In(t+1)-In(t—-s+1).
ot—-u+1
If t <s,then LA(s,t) = LA(t,t). Assuming s < t, Theorem 2.2 yields
R(s,t) = Qg (LA(,s),LA(t)) = r ##du (2.9)
’ T ’ oS—u+lt-u+l

which agrees with the direct calculation.
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THEOREM 2.4 [24]. Given that A in A U is invertible and R is represented in terms
of A (see (2.5)), the RKH space with kernel R is given by Gg = Gk and Qr(f,g) =
Qx (f,(AA*)"1g), for each f and g in Gg.

For our problem, that is, R associated with a general observation process {Y(t), 0 <
t}, the underlying system might be nonlinear and the linear operator A assumed in
Theorems 2.2 and 2.4 unavailable. We seek a linearization in s{ U % of the underlying
system, which will play the role of A, through a factorization of the covariance function
R. Since R can be factored in many different ways, we will have to justify our choice
in the end. The method returns an element of ¢ U %, which we will denote by A, with
matrix representation LA.

FINITE-DIMENSIONAL APPROXIMATIONS. For calculations, the matrix representa-
tions of the operators have to be projected down to finite-dimensional spaces. A more
detailed explication appears in [24].

A class of polygonal functions, the K-polygonal functions, arises naturally in RKH
spaces and can be used along with projection methods to develop finite-dimensional
approximations to system operators. Any function f on [0, o) of the form

F(s) =D K(s,tp)xp, (2.10)
p=0

where t = {t,}{ is an increasing sequence in [0, ) and {x,}{ is a sequence in R4, is
called a K-polygonal function. The subspace of all K-polygonal functions based on a
fixed increasing finite sequence t in [0,) is a closed linear subspace of Gg. We let
I1; denote the orthogonal projection of Gk onto this subspace. Also, let P; denote the
projection on Gk defined by

f(s) ifs<t,
[Pf](s) = (2.11)
f) ift<s,

for each f in Gk and O < s,t.

THEOREM 2.5 [1, 18]. For each positive number T, the union of the finite-dimensional
subspacesIl;Gg, t a partition of [0, T], is dense in Pr Gk with respect to the inner product

norm Nk (f) = Qx (f, f)/2.

For convenience and clarity we restrict our attention in the rest of the paper to
the case d = 1 (observations and inputs are both scalar). This, of course, does not
restrict the underlying dynamical system to be one-dimensional. (See Example 2.3.) Fur-
thermore, we assume k is an increasing function on [0, c) with k(0) = 0. Recall that
K(s,t) = k(min(s,t)).

For f in Gk and {t,}g§ an increasing sequence in [0, ), let f; = (f(to), f(t1),...,
f(ty))T. Similarly, let K; denote the (n+1) x (n + 1) matrix whose (p,q) element is
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given by K¢ (p,q) = K(tp—1,t43-1) for 1l <p,g=n+1.1f
[T f](s) = Z K(s,tp)x (2.12)

and x = (x9,X1,...,xn)7T, then x = (K;) "1 f; [24]. Here (K;)~! is a pseudoinverse of K;,
that is, (K;)"™! = M is an (n+ 1) x (n + 1) matrix such that M(1,q) = M(p,1) = 0 for
l<p,g<n+l,and M(2:n+1,2:n+1) is the inverse of K;(2: n+1,2:n+1).

Suppose A is in «§ U with matrix representation LA. Let LA; denote the (n+1) X
(n+1) matrix whose (p,q) element is given by LA;(p,q) = LA(t,_1,t4-1), where {t,}§
is an increasing sequence in [0, o). We will use the same notation for various functions
without comment. For instance, R;(p,q) = R(tp-1,t4-1) for 1 < p,q <n+1. With this
understanding, for s in [0, ),

[ATT; f] (s Z )] (8)x4 = ZLA trs)' xg (2.13)
q=0 q=0

and, forp =1,2,...,n+1,
[ATL f](tp-1) = [(LA) T (K) ™ il (p). (2.14)

Thus if h = II, AIl, f, then h; = (LA;)T(K;)"1f;. Note that the finite-dimensional ap-
proximations converge [24] but covergence is not a sequential convergence but rather
a net convergence, that is, through refinements of partitions.

THEOREM 2.6. Suppose A isin AUB and R is the matrix representation of AA*. For
each pair of positive numbers ¢ and T, there is a partition s of [0,T] such that if {t,}§
refines s, then

IR (p,q) — Qx (T A*K (-, tp-1), T A*K (-, t4-1)) | <c (2.15)

forp,q=1,2,....n+1.

INDICATION OF PROOF. Let {r,}{" be a partition of [0,T] such that

dk(ry_1,1)) " € 2.16
(dk(rp-1,7p)) " < 8k(T)(NK(PTA*))2 ( )
forp=1,2,... m.If rp,_1 <u <v <7y, then
\dk|2 1z 1/2 C
K -K dk(u, .
Ng(K(-,v)=K(-,u)) = (L T ) = (dk(u,v))'" < SK(T) (N (Pr "))

(2.17)
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Let s be a partition of [0, T] refining v such that if {t,}{ refines s, then

C

NK(PTA K(',Tp)*HtA K(',Tp)) < W (218)
forp=0,1,2,.... m.If r,_1 <ty <7y, then
Nk (PrA*K (-, tq) T A*K (-, £q))
< N (PrA*K (- ty) — PLA*K (7))
+ Nk (PrA*K(+,7p) ~TL A*K(-,7p)) + Ng (T A*K (-, 1) ~TL A*K (-, 1)) (2.19)
* . c ’
<2NT(PTA )dk(tq,Tp)+4k(T)NK(PTA*)
C
< 2k(T)Ng (PrA*)
Hence
\Rt(pvq)_QK(HIA*K('atﬂ—l)intA*K('!tq—l))|
= |Qk(PrA*K(-,tp-1),PrA*K(+,tq-1))
= Qx (I A*K (-, tp-1), I A*K (-, tg-1)) |
< |Qk(PrA*K (-, tp-1) ~ILA*K (-, tp-1),PrA*K (-, t4-1)) | (2.20)
+ ’QK(HtA*K(',tpfl),PTA*K(',tqfl) —1I1; A* K tq 1 | '
SNK(PTA*K(',tp_l)—H[A*K(-,tp_l))NK(PTA* ( tq 1))
+NK(HtA*K(-,tp,l))NK(PTA*K(-,tq,l)—HtA K(-,tq,l))
<cC. O

CHOLESKY FACTORIZATIONS. The upper Cholesky factor of a nonnegative symmet-
ric matrix S is an upper triangular matrix S* with nonnegative diagonals such that
(SHTsu =8,

We can tie R to {Gk,Qx} without supposing the existence of a continuous linear
transformation A by assuming in the rest of the paper that for each positive number
T there is a positive number ¢ such that if [x,y] and [u,v] are subintervals of [0, T],
then

|[R(y,v)—R(y,u) —R(x,v) +R(x,u)| <cdk(x,y)dk(u,v). (2.21)

With this assumption R is the matrix representation of a nonnegative Hermitian mem-
ber of «l U% [24] which we will denote by H in the rest of the paper. What happens
when H = AA* and A is time-invariant?
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THEOREM 2.7 [24]. Suppose A is a time-invariant operator in 4 U%RB. There is a con-
tinuous function M on [0,%) such that for each positive number T and partition t of
[O’ T]I

(K?)irLAt
(oMt —u)du [P M(to—u)du [ M(ts—u)du [ M(ty—u)du i
vk (2) vk (2) vkt (2) vk (2)

0 ttle(tz—u)du ttle(tg—u)du fle(t4—u)du

Vdk:(2,3) Jdk(2,3) Jdk(2,3)
_ 0 0 [PM(ts—w)du [P M(ts—u)du

vk (3,4) Vdk¢(3,4)
0 0 0 [ M (ts—u)du

Vdk(4,5)

(2..22)

Therefore, assuming equally spaced partition points, the diagonal elements of
(K{)"TLA; all have the same sign. Hence +(K}')"TLA; is an upper Cholesky factor.
Further,

(K "LA) T (K1) TLA: = Ry. (2.23)

In our problem the underlying system is nonlinear and we do not start with a fac-
torization of H. Furthermore, the factorization we seek is not necessarily in terms of
time-invariant linear operators. Even so, this result suggests that we seek a factoriza-
tion of R as a limit in some sense of the upper Cholesky factors R} of R;. We want
convergence in terms of finite-dimensional linear operators associated with the upper
Cholesky factors R} in the following way.

For each positive number T and partition t of [0,T], let A; denote the linear trans-
formation of G defined for each f in Gg by

k(tp)—k(u) w\T (pruy =T
[AcfTw) = k(tpf_k(tp—l) LREY (K™ el i) (2.24)
+%[(R?>T(Krﬂft]<p+l>,

where t,_1 <u <t, for some p = 1,2,...,t 7 W(T).If T <u, then [A;f](u) = [Acf1(T).

THEOREM 2.8. For each positive number T and partitiont of [0,T],

M u\T pu(puy-1
k(t) —k(t, ) LKE) REKE) T fi] ()

k(u) —k(tp-1)
k(tp) —k(tp-1)

[(A) fl(u) =
(2.25)

[(KE) RE(KE) " fel(p+1)
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foreach f inGx and0 <t,_1 <u<t, <T.If T <u, then

[(A)* Flw) = [(KE) RE(KE) ™ f] (61T +1). (2.26)
INDICATION OF PROOF.

Qk((A)" f.9) = Qk (f,Ar9)
= (f) (K) (KPR (K) g (2.27)
= (K#) "R (Ke) ™' fe) T (Ke) ' ge

Hence the result.

SUMMARY OF STANDING ASSUMPTIONS AND NOTATION FOR THE REST OF THE PA-
PER. (1) Assume d = 1 and k is an increasing function on [0, o) with k(0) = 0. Recall
that K (s,t) = k(min(s,t)) is the reproducing kernel of {Gk,Qk}.

(2) Let R denote the covariance function for a scalar observation process {Y(t), 0 <
t}. R is nonnegative (see (2.3)). Assume that R satisfies inequalities (2.21) and is the
matrix representation of nonnegative Hermitian operator H in s U %.

(3) P; and IT; are projections given by (2.11) and (2.12), respectively.

(4) K; and R; are discretizations of K and R, respectively. For instance, R;(p,q) =
R(tpfl,tqfl).

(5) K{* and R}* are upper Cholesky factors of K; and R;, respectively. For instance, K}
is an upper triangular matrix with nonnegative diagonal such that (K{*)TK}' = K.

(6) {A;} is a family of continuous linear transformations of {Gk,Qx} given by (2.24).

(7) dk(x,y) is the difference k(y) —k(x).

3. Main results. The objective is linearization of an unknown underlying nonlinear
system generating the observation process {Y(t), 0 < t} from data which we interpret
as {R;}. The quality of the linearization should be measurable in terms of the sampling
rates and statistics of the observations. The first part of this objective can be achieved by
establishing convergence in some reasonable sense of the finite-dimensional operators
{A;}. Conditions which imply convergence should be restricted to conditions on the
data {R;} as opposed to conditions on the underlying system.

Given that A is in 4 U, T is a positive number, and 0 < x < T, we will say that the
net {((A;)* -II;A*)K(-,x),t apartition of [0, T] refining {0,x,T}} has limit O provided
that for each positive number ¢ there is a partition » of [0, T] refining {0, x, T} such that
if t refines 7, then Nk (((A;)* —II;A*)K(-,x)) < c. Further, given that T is a positive
number and 0 < x < T, we will say that the net {(A;)*K(-,x), t a partition of [0, T]
refining {0,x,T}} is Cauchy provided there is a partition » of [0, T] refining {0,x, T}
such that if s refines r and t refines s, then N (((A¢)* — (A5)*)K(-,x)) < c.

THEOREM 3.1. (1) If A is in A U B, and for each positive number T and 0 < x < T
the net

{((Ar)" =TILA*)K(-,x), t a partition of [0, T] refining {0,x,T}} (3.1)
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has limit 0, then for each positive number T and 0 < x < T the net
{(At)"K(-,x), t a partition of [0, T] refining {0,x,T}} (3.2)

is Cauchy.

(2) If, for each positive number T and 0 < x < T, the net (3.2) is Cauchy, then there is
a linear operator A in {4 U such that for each positive number T and 0 < x < T, the
net (3.1) has limit 0.

INDICATION OF PROOF. Assume that the hypothesis of (1) holds, ¢ and T are posi-
tive numbers, and 0 < x < T. There is a partition v of [0, T] refining {0,x, T} such that
if s refines v and t refines s, then Nx (IT;A*K (-, x) —II;A*K(-,x)) < ¢/3. In addition,
we may assume that Nk ((A;)*K(-,x) —II;,A*K(-,x)) < c/3. Hence

Nk ((A)) K (+,x) = (A) "K (+,x))
<Ng((A)"K(+,x) =TI, A*K (-, x)) + Ng (II;A*K (-, x) = TI;LA*K (-, x))
+ Ng (ILA*K (-, x) — (As)*K(-,X))

<c,

(3.3)

that is, the net (3.2) is Cauchy.
Assume the hypothesis of (2) holds. For each x > 0 choose T > x and let LA(-,x)
denote the limit of (3.2). Note that LA(-,x) is in Gg and if x = t;—1 < u, then

[(A)"K ()] () = [AK (+,u) ] (x)
= (R (k) (K (w) ] (@)

a
Re(i,q) (K" (1,) (K (-,w)),

—

Z (3.4)
th(L ) Z k()

thatis, LA(u,x) = LA(x,x). Therefore we may define a linear, causal function A on Gg
by [Af]1(x) = Qk(f,LA(-,x)) for each f in Gx and x = 0.
Further, note that

Nk ((A)*£)° = (fo) " (Ke) T (RE)TKI (Ke) ™ (KE) RE(Ke) ™ fe

(ft)T(Kt) Ry (K¢) i
= Qx (ILAA*TI f, f)
(

Nk (AA*)Ng (f),

that is, Nx ((A;)*) < N2 (AA*).
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Therefore, for each positive number T, pair of subintervals [x,y] and [u,v] of [0, T],
and positive number ¢ there is a partition t of [0,T] refining both {0,x,y,T} and
{0,u,v,T} such that

|LA(y,v) —LA(x,v) —LA(y,u) + LA(x,u) |
<c+|[(A)"(K(-,v) ~K(-,u)] ()

—[(A) " (K (-, v) =K (-,u) ] (x) |

(3.6)
< c+NK((At)*(K(-,v)—K(-,u)))((7lk(x,y))l/2

< ¢+ Nk ((A)) (dk(u,v)) " (dk(x, )

< ¢+ N2 (AA*) (dk(u,0)) ' (dk(x,3)) "%,

that is, the linear operator defined in terms of LA is in & U % [24]. Further, R is the
matrix representation of AA*.

For each pair of positive numbers ¢ and T and 0 < x < T, there is a partition » of
[0, T] refining {0,x,T} such that if t refines v, then Nx(((A;)* — A*)K(-,x)) < ¢/2,
Nx((A* —II; A*)K(-,x)) < c/2 and thus Ng (((Ay)* —=II;A*)K(-,x)) < c. Therefore (3.1)
has limit 0.

Thus showing that {(A;)*K(-,x)} is Cauchy is more basic since we do not need to
assume a factorization AA* of the operator with matrix representation R. Our search
then is for conditions on the finite-dimensional covariances {R;} which allow us to
conclude that {(A;)*K(-,x)} is Cauchy. O

THEOREM 3.2. The following are equivalent.

(1) For each positive number T and 0 < x < T, the net (3.2) is Cauchy.

(2) For each pair of positive numbers c and T and 0 < x < T, there is a partition v of
[0, T] refining {0,x,T} such that if s refines v and t refines s, then

|R(x,x) - Qk ((A)"K(+,x), (As)*K(-,x)) | <c. (3.7)

INDICATION OF PROOF. Assume (1) and let A be the linear operator defined in the
proof of Theorem 3.2(2). For each positive number T, 0 < x < T, and partition t of
[0,T] refining {0,x, T},

[R(x,x) - Qx ((Ar) "K (-, x), (As) "K(+,x)) |
< |R(x,x)—Qk (A*K (+,x), (As) "K (-,)) | +|Qx (A* = (A) VK (-, x), (As) "K (-, %)) |

= [ Qk (A*K (+,x), (A% = (Ag)")K(-,x)) | +]Qk ((A* = (A1) )K (-, x), (Ag) "K (+,x)) .
(3.8)

And hence (2) follows.



3552 JAMES A. RENEKE

Assume that (2) holds, T is a positive number, and 0 < x < T. If s is a partition of
[0, T] refining {0,x,T} and t refines s, then

Qk ((As) K (+,x), (As) “K (+,x))
= (K R (Ks) 'Ky (s 0) + 1)+ (Ko) (KSR (KS) K (-, 571 () +1)
= (R%(-, s (x)+1)) " K¥(Ks) 'R¥(-, 571 (x) +1)

= (RY(-, s (x)+1)) " R¥(-,s71(x) +1)

=R(x,x).
(3.9)
Hence
Nk (((A0)* = (As) K (+,x))*
= N ((A) *K(+,x)) = 2Qk ((A) *K (+,%), (As) *K (-, %))
(3.10)
+Ni ((As) K (,x))*
= 2R(x,x) —2Qx ((A¢) "K(+,x), (As) "K (+,x))
from which (1) follows. O

THEOREM 3.3. If T is a positive number, {s,,};,,‘zo is a partition of [0,T], t refines
s, and {u,l,};,‘:0 is an increasing integer-valued sequence such that s = t[u], then, for
l<p<n+landl<g=<un)+1,

(K9 T (KE(ud-1)+1)) (pq)
0 ifp=1o0rq=1,

0 ifp=2,g=<ulp-2)+1, (3.11)

vdkia-1.a) - )
dk;(p—1,p) ifp=2, u(p-2)+1<qg=<u(p-1)+1,
0 ifp=2, u(p-D+1<aq.

Furthermore,

(KM R, p) " (Ks) (K (-, u(T—=1) +1)) "R (-, u(@—1) +1)
u(t 1) (3.12)

14
§ e ST KGR a1 )

J u(l 2)+1
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INDICATION OF PROOF.

0, i=lorg=1,

K{(i,q) = {+Jdki(i—-1,i) if2<i=<gq,

0 if g <1,

0, i=lorg=1,

(Kt“)fl(i,q) _ ] vdki(a-1,q)

(3.13)
if2<i=q-1,

if 2<i=gq,

10 otherwise.
Hence

K (q,uI-1)+1)(K*) ' (-, p)
=K' (g u(p-1+1)(K) " (p-1,p) + K (q,u(p—1) + 1) (K¥) ' (p,p)

0, p=1,

(3.14)
0 ifg<u(p-1)+1,

| vark@=T1,0)
Vdks(p-1,p)

10 ifp=2, ulp)+1<q.

ifp=2,u(p-1)+1<g=<ulp)+1,

Furthermore,

(K)'RYC,p) T (Ke) (K (- uT = 1) +1) ' RE (-, u(g—1) +1)
= (R¥(-,p)) (KX) (KM (-, uT-1)+1)) 'RE(-,ulg—1) +1)
14
= S REG,p) [(KY) (K (- ud -1 +1)) ' RE(,ul@—1) +1)] (D) (3.15)
u(i-1)

_ < _ RYG,p) —
_gm > \dke(j,j+ DRI+ 1, u(g—1)+1). .

= Jj=u(i-2)+1
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COROLLARY 3.4. For each positive number T, 0 < x < T, and partition s of [0,T]
refining {0,x, T}, if t refines s (s = t[u]), then

|R(x,x) - Qx ((A) "K(+,x), (As) "K(+,x)) |

STHOO+L oy s o1

i=2

u(i-1)
- > Ak, j+1) Z‘(j+1,t1(x)+1)}.
j=u(i-2)+1

(3.16)

THEOREM 3.5. Assume that for each positive number T and 0 < x < T there is a
positive number M such that if {s,}q is a partition of [0, T] refining {0,x,T}, then

0<R¥(i,s7'(x)+1) < MyJdks(i—1,1) (3.17)

fori=2,3,...,s 1(x) + 1. Furthermore, assume that if t refines s (s = t[u]), then
u(i-1)
Z Ndke(G,j+DRE(G+1,t7 (x) +1) <+/dks(i—1,i)R*(i,s 1 (x)+1) (3.18)

j=uli-2)+1

fori=2,3,....,s71(x)+1.
Then for each positive number T and 0 < x < T, the net (3.2) is Cauchy.

INDICATION OF PROOF. The net
s7hHx)+1
{ > \dks(i—1,i)R*(i,s ' (x) +1), t a partition of [0, T] refining {O,x,T}}
o (3.19)
is nonincreasing but bounded below. Let L(x) denote the limit. Then

|R(x,x) — Qx ((A¢) "K(+,x), (As) K (+,x)) |
TR (s () +1) T oy ol
ié W \/mRS(l,S (x)+1)
u(i-1)
-2 WR?‘(J'H,N(X)H)H

j=uli-2)+1

< M( > \dks(i—1,)R(i,s 71 (x) +1)

t1(x)+1
- Z \dke(i—1,1) ?(i,tl(x)+1))
i=2

_M( > \dks(i—1,)R¥(i,s 1 (x) +1) —L(x)).

(3.20)
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Hence for each pair of positive numbers ¢ and T and 0 < x < T, there is a partition »
of [0, T] refining {0,x, T} such that if s refines » and t refines s, then

|R(x,x) - Qg ((A)"K(-,x), (As) " K (-,x)) | <c. (3.21)

The conclusion follows from Theorem 3.2. O

COROLLARY 3.6. Ifm is an increasing function on [0, o) which is absolutely contin-
uous with respect to k and R(x,y) = m(min(x,y)) for 0 < x,y, then for each positive
number T and 0 < x < T the net (3.2) is Cauchy.

THEOREM 3.7. IfR(a,s)R(b,t) = R(b,s)R(a,t) for 0 < a,b < s,t and for each posi-
tive number T and 0 < x < T there is a positive number M such that if {s, }{ is a partition
of [0,T] refining {0,x,T}, then

0<RU(i,s7'(x)+1) < Mydks(i—1,i) (3.22)

fori=2,3,...,n+1, then for each positive number T and 0 < x < T the net (3.2) is
Cauchy.

LEMMA 3.8. For each integer q = 2,
1)

Ri(q—1,9)*
R*(q,q)? =Ri(q,q) - m(ta(lq—imq—)l)’ (3.23)
)
Rt(q,k)
R (q,k) = R} 24
@k =3 o K@), (3.24)

fork > q.

PROOF OF LEMMA 3.8. We will proceed by induction. Assume for convenience that
R;(1,1) = 1. Note that R#(1,1) = 1, R¥(1,q9) = R;(1,q), and R¥(2,2)> = R;(2,2) —
RI(1,2)% = R4(2,2) —R¢(1,2)2. Further,

Ri(2,k) —R{(1,2)R(1,k)
Ri(2,2)

R (2,k) =

_ Ri(2,k)
T Ri(2,2)
_ Ri(2,k)
T Ri(2,2)

(Ry(2,2) =Ry (1,2)2)"? (3.25)

R(2,2).
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Assume (1) and (2) for g > 2 and k > q.

R g+1,g+1)2=Ri(g+1,q+1)—R¥(1,q+1)>—---—Rl(g+1,g+1)?
=Ri(g+1,9+1)-R¥(1,q+1)*
Ri(2,q+1)2 2
TR (Re(22)=Ri(1,2)%)
Rd%q+lﬁ( Ri(g—1,9)? )
- ——2* 2 (Ri(q,q) — —F—T—
Riga? @D R 11
Ri(2,g+1)2

= - ’ -
Re(g+1,a+1)=Re(1,q+1)"+R(1,q+1) Ri(2,2)

Ri(2,q+1)2 Ri(3,q+1)2
R:(2,2)  Ri(2,2)
Ri(q—1,g+1)* Ri(q,q+1)*
Ri(q-1,9-1) Ri(q,q)
Ri(q,q+1)*
R:(q,9)

=Ri(q+1,q+1)-

Also, for k > g +1,

R (q+1,k)
= (Re(@+1,k) —RE(1,q + DRY(1,k)
— - —R{@,q+ DRIMa, k) (R} (a+1,q+1)) "
- (Rt(q+1,k)—Ry(1,q+1)Ry(1,k>

CRi(2,g+1)
R/(2,2)
Ri(q,q+1)

_..._41314 2
Ri(q,q) ¢(a.a)

R (2,k)

R (2,2)

R:(q,k)

R:i(a,q)

_ ~ Ri(1,g+1)*Ri(q+1,k)

_(R‘(q”’k) Riq+L,q+1)

_Ri(2,+1)°Ri(q+1,k)R}(2,2)?

R:(2,2)2R;(q+1,q+1)

_ Ri(q,q+1)°Re(q+1,k)R{ (q,9)*
Ri(q,4)°Ri(q+1,q+1)

R (2,2)°

)(R}‘(q+1,q+1))‘1

)(R}‘(qﬂ,qﬂ))*l

_M( - ,
“Ria+1,q+n \felarlarD=Ri0.a+1)
_Rt(Z,q+1)2Rg¢(2,2)2
R:(2,2)
_Ri(q,a+1)°R{(q,q)*
RI(Q1q)2

)(Ri@+1,a+10) "

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
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-~ Ri(g+1,k) _ 2 _ pu 2
_Rit(q+llq+l)(Rt(q+l,q+l) Ri(1,q+1)* =R} (2,q+1) 334

— - —RMg+1,g+1D?) (R} (@+1,q+1)) "

Ri(a+1,k)

_ u
77Rt(q+1,q+l)Rt (g+1,q+1). (3.35)

Thus (1) and (2) hold for all ¢ > 2 and k > g. O

LEMMA 3.9. IfT >0, {s,}( is a partition of [0, T] with refinement {t;},1 <p <n-2,
ti=siforO<i<p,s, <tpi1 <Sps1,andti.1 =s; forp+1<i=<mn, then

(1) R¢(1:p+1,1:p+1)=R¥(1:p+1,1:p+1),

(2) Rf(1:p+1,p+3:n+2)=R¥(1:p+1,p+2:n+1),

(3) RE(p+2,))*+ R (p+3,0))*=(RE(p+2,q-1))%, p+3<g=<n+l,

4) R (p+3:n+2,p+3:n+2)=R¥(p+2:n+1,p+2:n+1).
Alternately, if t; =s; forO<i<n-1,s,1 <ty <SSy, and t,.1 = sy, then

(5) R{(1:n,1:n)=R%*(1:n,1:n),

6) R (1:n,n+2)=R¥(1:n,n+1),

(7) (RFM+1,n+2))>+(Rf(n+2,n+2))>=(R¢(n+1,n+1))>.

PROOF OF LEMMA 3.9. The first two parts are immediate. Note that

p+3 p+2
> Ri(k,p+3)> =Re(p+3,p+3) =Rs(p+2,p+2) = > Rl (k,p+2)°. (3.36)
k=1 k=1
Hence
REp+2,p+3)>+R¥(p+3,p+3)2=R%(p+2,p+2)°. (3.37)

Suppose g > p + 3. Then

R (p+2,0)* +Ri(p+3,9)*
_ Ri(p+2,q9)°
Ri(p+2,p+2)2
Rt(p+3,q)2
Ri(p+3,p+3)?

_ Ri(p+3,4)* |Ri(p+2,p+3)?
T Ri(p+3,p+3)2| Ri(p+2,p+2)2

RMp+2,p+2)?

R (p+3,p+3)?

RM(p+2,p+2)2
(3.38)
+RM(p +3,p+3)2]

Rs(p+2,9-1)*
T Ri(p+2,p+2)2
Rs(p+2,9-1)*
T Ri(p+2,p+2)2
=R%(p+2,q-1)%

[Ri(p+2,p+3)>+RE(p+3,p+3)%]

RY(p+2,p+2)°

Parts (4), (5), (6), and (7) follow in a similar way. O
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LEMMA 3.10. IfT>0,0=<x <T, {s,}§ is a partition of [0,T] refining {0,x,T}, and
t is a refinement of s (s = t[u]), then

u(i)
> \dke (G i+ DRE(G+1,670(x) + 1) < dks(i,i+ DR (i+1,57 (x) +1)
j=u(i-1)+1

(3.39)

fori=1,2,...,s 1(x).

PROOF OF THEOREM 3.7. The theorem follows from Lemma 3.10 and Theorem 3.5.
|

THEOREM 3.11. Ifm is an increasing function on [0, c) which is absolutely continu-
ous withrespecttok, m(0) = 1,andR(x,y) = exp(—c|x—y|)m(min(x,y)) for0 < x,y,
where c is a nonnegative number, then, for each positive number T and 0 < x < T, the
net (3.2) is Cauchy.

PROOF OF THEOREM 3.11. If0<a,b <s,t, then

R(a,s)R(b,t) =e S Ym(a)e <" Dm(b)
=e S Pm(b)e Dy (a) (3.40)
=R(b,s)R(a,t). O

We will show that R; is positive definite (see (2.3)) by developing a Cholesky fac-
torization of R;. We accomplish this by first defining R}* inductively, a row at a time.
Assuming R} (1,1) = R;(1,1)/2 = 1, R#*(1,k) = R¢(1,k)/RF(1,1) = ™ for k > 0, and
forq=2,3,...,

(1)

Ri(qa—1,9)°
R?(q,q)zth(q,q)—% (3.41)

= m(tq) —ezc(”"’)’t(q’l))m(tq,l) >0,

@)

Rt(qi k)

Rita. ) = 2 aa)

R{(q,9), (3.42)
for k > q.
We conclude that (R}")TR} = R, by reading (2.5), (2.11), (2.12), (2.21) and (2.24), (3.26),
(3.27), (3.28),(3.29), (3.30) in reverse order. Thus R; is positive definite and satisfies the
hypothesis of Theorem 3.7 and we draw the conclusion that the net is Cauchy.
Theorem 3.11 provides arich class of examples and we can begin to examine relations
between members of the class. For instance, we can think of ¢ as a damping coefficient
and investigate the effects of ¢ on the linearized system’s behavior. Figure 3.1 shows a
collection of examples with the graph of m in the upper left corner and, in a clockwise
direction, the graph for R; for ¢ = 4,2,0. We look at the question of system behavior in
the next section.
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FIGURE 3.1. Covariance kernels, with R;(x,x), 0 < x < 3, plotted in (a) and
(b), (c), and (d) represent various versions of possible kernels. For clarity, the
x and y axes are labeled 0,1,...,7 for the partition x; = y; = 3j/7.

4. Simulations. Starting with such anice model for the covariance kernel in Theorem
3.7, one might ask if stochastic linearization contributes anything. That is, if the only
information available for the discrete process Y; is the mean m; and the covariance ker-
nel R, then everything we can know of the approximating normal process determined
by the first two moments is captured by the discrete distribution function obtained as
follows. The finite-dimensional density function is given by

fi(x) = 2m) "2 det (R;) * exp (— %(x—mt)TRt’l(x—mt)). 4.1)

The finite-dimensional distribution function is then given by

b b(0) b(n)

@(asYtSb)=J ft(x)dx=f Jt(x0,...,xn)dx0 - - - dxy. (4.2)
a a(0) a(n)

However, a problem remains with the slow convergence of numerical evaluation of the
iterated integral, especially when n is large, bigger than eight. Many methods rely on
some kind of simulation to speed convergence [20].
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1.5
1
0.5
0

FIGURE 4.1. Simulations.

BASIC DISCUSSION. We propose another simulation methodology based on stochas-
tic linearization. Let X; be an n-dimensional normally distributed random row vector.
Note that EX; = 0 and EXtTXt = I,. If K} is the upper Cholesky factor of K;, then
Wi(p) = [X:K{ 1(p).

To see this, note that EX;K}* = 0 and

E(X.KM) XK = (K TEXT XK} = K;. (4.3)

For a given finite-dimensional stochastic linearization A; with matrix representation
(K{)TR}, we have

[AW](ty) = W] (Ke) " (KE) RET(p) = [WT(KE) 'R (p) = [XRE](p). (4.4)

In Figure 4.1 we can compare the behavior of the system examples with ¢ = 8 and 0.
The probability of a sample path generated by the first system on the interval [0, 3]
exceeding a = 1.0 is 0.3750. For the second system, the probability is 0.2262.

OPERATOR NORM. In the system monitoring problem, there is a need to measure
the distance between two nonlinear systems. One possiblity is to measure the distance
between the systems’ discrete linearizations rather than between the systems directly.
If the systems have covariance kernels R, and R», respectively, with upper Cholesky
factorizations R} and RY, then an approximate operator norm for the difference of
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TABLE 4.1. Table of distances.

Rul Ru2 Ru3
Rul 0.0 — —
Ru2 0.7961 0.0 —
Ru3 1.3039 0.5471 0.0

the discrete linearizations could be computed with the following scrap of MatLab code:
% input: InvKt, Rul, Ru2

X = randn(1000, n);
y = x*(Rul - Ru2);

z = diag(y*InvKt*y’);
w = diag(x*x’);

max((z./w).".5)
The distances between the systems represented by the covariance kernels given in
Figure 3.1 are given in Table 4.1.

In the absence of an absolute scale, we can only conclude that the third system is
further from the first than it is from the second. This certainly fits our intuition.

5. Significance of work. We need a more robust condition on the finite-dimensional
covariances {R;} implying convergence of the finite-dimensional operators {A;}. Theo-
rems 3.5 and 3.7 are too delicate for application to estimates of R;. That is, the theorems
assume we know R; exactly or, in other words, we have an infinite amount of data at
our disposal.

One can easily move from statistics of observations of inputs and outputs to confi-
dence intervals and other measures of the accuracy of the estimates of R;. We need to
extend these possibilities to results on the quality of the estimates of A;.

Much of this material can be extended immediately to vector processes. Examples of
vector processes have been explored; for instance, a Lorenz system [6, 17, 26] with a one-
dimensional noise input and a two-dimensional observation. The notion of convergence
introduced for scalar inputs and outputs extends to the vector case. However, until the
scalar case is settled, the condition which implies convergence for the vector case is
hard to visualize.

Again, the dimension of the state space for the underlying system does not enter.
The first example has an infinite-dimensional state space. So the method of lineariza-
tion under investigation, if we can carry out our program, will apply to some systems
governed by nonlinear partial differential equations as well.

6. Comments on the literature. Most work reported in the literature [4, 7, 8, 9, 10,
12,13, 14, 15, 16, 22, 23, 27] assumes a model. As noted earlier [19] common practice
when confronted by a system known only from input/output data is to fit a linear model.

The statistical linearization as presented in [25] is based on an assumption of the
form of the underlying nonlinear system. Data enters the problem from simulations of
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a known nonlinear system. Applications are made to marine structures such as drilling
platforms.

Application of Hilbert space ideas to system problems requires an additional time
structure which can be used to guarantee the operators are realizable, that is, causal.
This requirement as discussed in [8] can be satisfied in several different settings [2, 10,
29]. The framework of Hellinger integrable functions, associated with the covariance
function of the Wiener process, has a built-in time structure. The elements of i U% are
immediately causal.

The starting point for the work in this investigation differs from that of [8, 10, 27] in
that the covariance R, known only partially as R; from data, is the matrix representa-
tion of several positive definite Hermitian operators depending on choices made for the
Hilbert space. Further, no assumption is made concerning the factorization of this op-
erator. We are searching for conditions on R which yield the existence of a factorization.
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