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ON THE CRITICAL PERIODS OF LIENARD SYSTEMS
WITH CUBIC RESTORING FORCES
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We study local bifurcations of critical periods in the neighborhood of a nondegenerate cen-
ter of a Liénard system of the form x = —y + F(x), v = g(x), where F(x) and g(x) are
polynomials such that deg(g(x)) < 3, g(0) =0, and g'(0) = 1, F(0) = F'(0) = 0 and the
system always has a center at (0,0). The set of coefficients of F(x) and g(x) is split into
two strata denoted by S; and Sj; and (0,0) is called weak center of type I and type II, re-
spectively. By using a similar method implemented in previous works which is based on the
analysis of the coefficients of the Taylor series of the period function, we show that for a
weak center of type I, at most [(1/2)deg(F(x))]— 1 local critical periods can bifurcate and
the maximum number can be reached. For a weak center of type I, the maximum number
of local critical periods that can bifurcate is at least [(1/4)deg(F(x))].

2000 Mathematics Subject Classification: 34C23, 37G10.

1. Introduction. During the last decades, there has been considerable interest in
studying the generalized Liénard system of the form

X=-y+F(x), y=g(x), (1.1)

or its equivalent form

X=-y, y=gx)+f(x)y, (1.2)

where f(x) = F'(x). The popularity is due to at least two reasons. First, it generalizes
many oscillation systems arising from applications. Second, many other systems can
be transformed into the form (1.1) or (1.2) (see [1]).

One of the most studied problems is to determine the number and relative configu-
ration of limit cycles of (1.1) in terms of the properties of F(x) and g(x). There is an
enormous literature on this problem, see, for example, [15] for more on these issues.
For the special class of system (1.2), where f(x) and g(x) are polynomials of degrees
at most n and m, respectively, there are also extensive studies of the cyclicity Hn,m,
that is, the maximum number of small amplitude limit cycles bifurcating from the fine
focus of (1.2). In [7], Christopher and Lynch give results for FIn,m when f(x) or g(x) is
quadratic or cubic polynomial.

The purpose of this paper is to examine the local bifurcations of critical periods in
the neighborhood of a nondegenerate center of system (1.1), where F(x) and g(x) are
polynomials such that deg(g(x)) <3, g(0) =0, and g’'(0) = 1, F(0) = F'(0) = 0 and
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the system always has a center at (0,0). Let G(x) = [; g(§)dE&, the center condition for
polynomial Liénard systems is given by the following theorem of Christopher (see [5]).

THEOREM 1.1 [5]. If F(x) and g(x) are polynomials, then system (1.1) has a nonde-
generate center at (0,0) if and only if F(x) and G(x) are both polynomials of a polyno-
mial M (x) with M(0) =M’'(0) =0 and M"' (0) + 0.

The bifurcation of critical periods from centers of planar vector fields is an important
problem, because it is closely related to the monotonicity of periods of closed orbits
surrounding a center and subharmonic bifurcation for periodically forced systems.
Similar to Hilbert’s 16th problem, the following problem can be formulated.

PROBLEM 1.2. Determine the maximum number % () of critical periods of polyno-
mial systems of degree n with nondegenerate centers in terms of n only.

While Problem 1.2 is still completely open, an easier problem is proposed.

PROBLEM 1.3. Determine the maximum number %(n) of local critical periods bifur-
cating from a weak center of polynomial systems of degree »n in terms of n only.

In 1989, Chicone and Jacobs (see [3]) developed a general theory of solving Problem
1.3 and proved that €(2) = 2. However, the problem for higher-degree systems is still
unsolved. A few classes of cubic systems studied in [10, 11, 13, 14] proved that ¢(3) > 4.
It is worth noting that some researchers have considered the global problem of bifurca-
tions of critical periods for some specific systems, see, for example, [9]. However, there
is still no general method of solving Problem 1.2.

The monotonicity of the period function of centers of system (1.2) or isochronicity
has been studied by several authors (see [12] and the references therein). Recently,
Christopher and Devlin [6] gave a complete classification for isochronous centers of
polynomial Liénard systems of degree 34 or less. However, there are only very few
studies on the number of critical periods that can bifurcate from the nondegenerate
center of (1.1) for the special case where F(x) = 0, which significantly simplifies matters
(see [3, 4]).

Under our assumption, deg(G(x)) <4 and by Theorem 1.1, both F(x) and G(x) are
polynomials of M (x), where M (x) is as in Theorem 1.1. Without loss of generality, we
assume that M"'(0) = 2. Thus, M(x) = x2 + O(x?) and deg(M(x)) < 4. So, we write
M(x) =x%+b1x3+byx* and F(x), G(x) have the form

n
F=> axM*  G= %M+boM2. (1.3)
k=1

Clearly, there are only 2 possibilities: by = 0 or bg # 0 and M (x) = x2. To unify these
two cases, we write system (1.1) into the following form:

n
X=-y+> ax(x®+bix? +hoxH*, Y =x+ %blxz + (bo+2by)x3. (1.4)
k=1
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Thus, F(x) is as in (1.3) and g(x), G(x) are given below:
3 > 3 1 1 4
g(x)=x+ Eblx + (bo+2by)x3, G(x) = EM(XH Zbox . (1.5)

For the coefficients (bg,b1,b>,a4,...,a,) we will use the abbreviation A so that Ay = by
for k =0,1,2 and Ag,» = ax for k = 1,...,n. In particular, we have A € R"*3, Then, from
Theorem 1.1 we have the following lemma.

LEMMA 1.4. System (1.4) has a nondegenerate center at (0,0) if and only if the pa-
rameter value A € R"*3 is in one of the following strata:

Sii={AeR"3 [A0#0,A; =A2=0},  Sy:={A€R"™3|Ag=0}. (1.6)

We say system (1.4) has a weak center of type I (resp., type II) if the system is non-
linear and A € S7 (resp., A € Syy). Our main result is the following theorem.

THEOREM 1.5. (1) System (1.4) has an isochronous center at the origin if and only
if by = (4/9):1(2) and by = b, =a, = --- = ay = 0. At most n — 1 critical periods can
bifurcate from the nonlinear isochronous center and there are perturbations to produce
n—1 critical periods.

(2) If system (1.4) has a weak center of type I of finite order at the origin, then at most
n — 1 critical periods can bifurcate from the weak center and there are perturbations to
produce n — 1 critical periods.

(3) The maximum critical periods can bifurcate from a weak center of type II of system
(1.4) is at least n.

It is clear from Theorem 1.5 that there are no nonlinear isochronous centers inside
type II. For a weak center of type I, deg(F(x)) = 2n, the maximum local critical periods
that can bifurcate are [(1/2) deg(F(x))]—1 and this upper bound can be attained. For a
weak center of type II, deg(F (x)) = 4n, the maximum local critical periods can bifurcate
is at least [(1/4)deg(F(x))].

Our approach is similar to the one implemented in [3, 10, 11, 13]. It is based on the
analysis of the coefficients of the Taylor series of the period function. The Taylor coeffi-
cients of the period function have been computed and simplified by reduction modulo
a Grobner basis using Maple for low degrees of F(x). This enables us to conjecture a
general pattern for the ideal generated by the coefficients over the polynomial ring of
the parameters. These conjectures are then proved rigorously using arguments similar
to those used by Bautin in [2] to determine the structure of ideal generated by focal
values of quadratic system.

This paper is organized as follows. Section 2.1 summarizes the general results by
Chicone and Jacobs (see [3]). Section 2.2 summarizes a recursive algorithm to compute
the period coefficients. Section 3 considers weak center of type I. Section 4 considers
weak center of type II. Section 5 is the proof of Theorem 1.5.
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2. Preliminary

2.1. Local critical periods of polynomial systems. Consider a family of planar or-
dinary differential systems with a nondegenerate center at the origin

x:7y+p(x1ysv)! y:erQ(X,y:V), (21)

where p(x,y,v) and gq(x,y,Vv) are polynomials of degree n in x and 7y, the parame-
ter v = (vy,...,Vim) € R™. The minimum period T (¥,Vv) of the periodic orbit passing
through (7,0) associated with the center of the above system for the parameter v yields
the so-called period function T. Let P(v,v) = T(v,v) —2m. For v, € R™, the origin is
called a weak center of finite order kif P(0,vy) = P’ (0,vy) = - - - = P@¥*D(0,v,) = 0 and
P@k+2) (0 yv,) # 0, where the derivatives are taken with respect to 7. The origin is called
an isochronous center if P%®)(0,v,) = 0 for all k = 0. A critical period is a period corre-
sponding to a solution of the equation P, (7,v) = 0 as v varies. A local critical period
is a period corresponding to a critical point of P(#,v) which arises from a bifurcation
from a weak center.

For v, corresponding to a weak center, the function (v,v) — T(r,Vv) is analytic in a
neighborhood of (0,v,) and can be represented by its Taylor series

T(r,v) =21+ > pr(v)rk, (2.2)
k=2

for || and |v — v, | sufficiently small. Here, the period coefficients py € R[vy,...,Vin],
the Noetherian ring of polynomials in the variables vy,...,v,, and for any k > 1, pox+1 €
(p2,p4,-..,P2k), the ideal generated by p2, pa4,..., p2x. In particular, for any v, the first
k = 1 such that px(v) = 0 is even (see [3]). The theory of Chicone and Jacobs in [3] is
based on the analysis of the period coefficients. To state their theorems precisely, we
first introduce the following concept.

DEFINITION 2.1 [11]. Let {xy},erm be a family of systems with a center at the origin
and associated period coefficients psi(v). The family is said to satisfy condition (%)
if for any vy € V(p2,p4,...,pok) :={v | p2i(v) =0, i =1,...,k}, par+2(Vs) += 0 and any
neighborhood W c R™ of v, in which pok.2 # 0, there exists v/ € W such that

P (V) pak+2 (V') <0, with v € V(p2,pa,...,pox-2). (2.3)

The system ¥, is said to satisfy condition (%y).

The following version of the theorems of Chicone and Jacobs [3] are given by
Rousseau and Toni in [11].

FINITE-ORDER BIFURCATION THEOREM. From weak centers of finite order k at the
parameter value v, no more than k local critical periods bifurcate. Moreover, if the
family satisfies the condition (?) and if x,, satisfies the condition (Py), then there are
perturbations with exactly j local critical periods for any 0 < j < k.
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ISOCHRONE BIFURCATION THEOREM. If the vector field (2.1) has an isochronous cen-
ter at the origin for the parameter value v, and if for each integern > 1, the period coeffi-
cient pyy isinthe ideal (p2,pa, ..., P2k, P2k+2) over the ring R{vy,..., v}y, of convergent
power series at v, then at most k local critical periods bifurcate from the isochronous
center at vy. Moreover, if the family satisfies the condition (?) and if xv, satisfies the
condition (Py), then exactly j local critical periods bifurcate from the center at vy for
any 0 < j<k.

2.2. The computation of the periodic coefficients. Let go(x) = g(x)—x and trans-
form (1.4) to polar coordinates by x = ¥ cos 0, v = rsin@, and eliminating time yields

dar F(rcos@)cos0+go(rcosd)sind

d0 " 1+ (1/7)go(rcos0)cosd— (1/¥)F(rcos)sin0’ (24)
Then, (2.4) is analytic and we assume the following expansion:
dl = S k ﬁ — S k

20 *kngk(g)V . g —kgoBk(G)r : (2.5)

where B (0) = 1. Let yg¢ be the closed orbit of (1.4), through (&,0). The period function
is given by
21 dt JZTr ®

TEN=| dt= Z—de =2 Br(6)rkde, 2.6
(E,A) . T 7T+0k§k()r (2.6)

where ¥ =7 (0, &, A) is the solution of (1.4), with the initial condition 7 (0,A) =&.7(0,&,A)
may be locally represented as a convergent power series in &:

7(0,5A) = > ur(0,A)Ek, (2.7)
k=1

where 11(0,A) = 1 and u(0,A) = 0 for any k > 1 and A. Substituting (2.7) into (2.5)
and comparing the coefficients of €%, k > 1, we obtain recursive equations for uy. For
example, the first 3 equations are given by

du1 _ duz _ 2 du3 _ 3

7619 =0, 7619 = Azul, 7619 = Agul +2Au Uy, (2.8)
which can be found by direct integration. From (2.6) and (2.7), we obtain a recursive
algorithm for computing the period coefficients p», pa,...,p2k,.... The algorithm can
be easily implemented in the computer algebra system Maple.

3. Weak center of type I. A weak center of type I corresponds to the case where
F(x) is a polynomial of degree 2n and system (1.4) has the following form:

n
X=-y+ > axx*, ¥y =x+box3, (3.1)
k=1

where by # 0. Direct computation with the aid of Maple yields the following lemma.
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LEMMA 3.1. The period coefficient p» for (3.1) is given by p> = (11/12)(4a? —9by).

It is convenient to split the set S; as Sy = S{USP, where

Spi={AeR"™3 A9 <0, A; = A2 =0},

(3.2)
SE:= {A€R™3 1> 0, A; = A, = 0}.

Following our notation, we say system (1.4) has a weak center of type I, (resp., type
Ip) if the system is nonlinear and A € Sf‘ (resp., A € SIB). We consider weak centers of
type I, and type Iz separately. Obviously, p» > 0 for by < 0 by Lemma 3.1. Thus, we
have the following theorem.

THEOREM 3.2. A weak center of type I, has order 0 and no local critical periods can
bifurcate from a weak center of type 1 4.

Now, we discuss weak centers of type Ip. In this case, the system has the same form
as (3.1) with by > 0. We have the following lemma.

LEMMA 3.3. Suppose by > 0 in (3.1). Then, if by = (4/9)(1% anda, = ---=a, =0, the
origin is an isochronous center.

PROOF. Since by > 0, the assumption of Lemma 3.3 implies that a; # 0. Perform
coordinate transformation (x,y) — ((2/3)a1x,(2/3)a,y), system (3.1) becomes

x:—y+%x2, Y =x+x3. (3.3)
It can be linearized by the change of coordinates (u,v) = (=2x/(x% =2y —2),(x2-2y)/
(x2—2y-2)) and has first integral F(x,y) = —4(2x2 -2y - 1)/(x? -2y - 2)%. By
[8, Theorem 3.2], the origin is an isochronous center. O

To simplify the computation, we scale system (3.1) so that by = 1. Then, system (3.1)
has the form

n
X=-y+ > ax?*,  y=x+x> (3.4)
k=1

LEMMA 3.4. If 2 < k < n, then the period coefficient p»y of system (3.4) has the
form pox = Baax + q(ay,...,akx-1), where B + 0 is a constant and q(a,,...,ax-1) €
Rlai,...,ak-1].

PROOF. The expansion (2.4) for system (3.4) is given by

dr Siey (axcos®*+19)r2k 4 (cos® BsinB)r3

do ~ 1-37, (axcos2k 0sin0)r2k-1+ (cos* 0)r2

n
[Z (axcos®**19)r? +(Cos3QSin0)r3] (3.5)
k=1

> m
[+ Z o ( S st osmorr i costore) |

k=1
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Similarly, we have

00 n m
% =1+ > (1)"‘[ > (akcos®* 0sin0)r** !+ (cos? 9)1’2} ) (3.6)
m=1 k=1

Obviously, for any j < 2(k — 1), where 2 < k < n, the coefficients A; and B; in the
corresponding expansion (2.5) are independent of a.
On the other hand, B; = a; sin6cos? 0 and for 2 < k < n,

Aog = arcos®** 10+ Aoy, Bok_q1 = axcos?k0sin0 + Boy_1, 5
Bo = 2a;ai cos®**2 0sin® 0 + Boy, '

where Ay, Bor_1, Box are polynomials only depending on ay,...,ax_;. Furthermore,
from (2.5) and (2.7), itis clear that ©y,..., Uo7 only depend on a1,...,ax_1. Uz Satisfies
the following initial value problem:

duai
dao

= Aput® + Dy,,,  u2k(0,4) =0, (3.8)

where D,,, only depends on Ay,...,Az1 and u,...,uzk1. Solving (3.8) yields uzy =
ayPy,, (cos 0,sin 0) + i, where P, (cos 0,sin 0) is a polynomial of cos 0 and sin 0 that,
independent of a,...,ay, 2k, is a polynomial only depending on aq,...,ax_1. Hence,
the period coefficient pox can be computed as follows:

21
pok(A) = J (Byuog + (2k — 1) Bog 1 u* %uy + Bopu?* + By, ) do, (3.9)
0

where B, only depends on By, ...,Bx_» and u1,...,us,_1. Thus, p2k has the form poy =
Baay+q(ai,...,ax-1), where  # 0 is a constant and g(ai,...,ax-1) € Rlay,...,ar-1].
O

Direct computation of period coefficients using the Grébner base package of Maple
for n < 8 suggests the following Lemma which is proved rigorously.

LEMMA 3.5. For system (3.4), the period coefficients pox (k > 1), reduced modulo the
ideal generated by po, ..., p2k—2 and omitting the constant factor, are given by poyx = a1 ax
for 1 <k <m and p>r = 0 for k > n. In particular, p2x € (p2,...,P2n), the ideal of the
polynomial ring R[ai,ao,...,an].

PROOF. We prove Lemma 3.5 by induction on k. By direct computation, we find that
p4 modulo the ideal generated by p» is given by ps = (217/3)aia,. Thus, Lemma 3.5 is
true for k = 2.

Now, assume that 2 < k < n and pa,...,p2k-2, with each reduced modulo the ideal
generated by the previous coefficients, and omitting the constant factor are given by
p2j=ai1a; (j =2,...,k—1). By Lemma 3.4, pox = Barax+4q(ai,...,ax-1), where g = 0 is
a constant and g(aq,...,ax-1) € Rla,...,ax-1].
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Because p» is a quadratic polynomial of a;, q(ai,...,ax-1) can be written into the
form q(ai,...,ar-1) = qo(ai,...,ax-1)p2 + a1q1(az,...,ax-1) + q2(az,...,ax-1). Thus,
we have

pok = Barak+qol(ai,...,ak-1)p2 +arq1 (az,...,ax-1) +qz2(az,...,ax-1). (3.10)

By Lemma 3.3, when p» = 0 and a, = --- = ax = 0, p2r = 0. Thus, 4:(0,...,0) =
q2(0,...,0) = 0. Hence, they have the following form:

k-1

q1 (az,...,ak_l) = z aij(ag,...,ak_l),
j=2
k-1

az(az,...,ax-1) = Z ajRj(az,...,ax-1),
Jj=2

(3.11)

where S;(ay,...,ax-1) and Rj(a»,...,ax-1) are polynomials of a»,...,ax—1. By induction
hypothesis, aia; = p2j (j = 2,...,k—1). Thus, (3.10) becomes

k-1 k-1

Pok = Barai+qopa+ Y. p2jSi+ > ajR;. (3.12)
j=2 j=2

On the other hand, we have up, + ya% =1, where u = —4/3m, y = 4/9. Therefore, by
induction hypothesis, for each a; (2 < j < k—1), we have

aj=pa;p:+ya(aa;) = yajp: +yapz;. (3.13)

Substituting (3.13) into (3.12) yields

k-1 k-1
pak = Barax +qopz + Z p2;S;+ Z (uajpz+yaip2j)R;. (3.14)
j=2 j=2

Thus, p2k, reduced modulo (p3,...,p2(k-1)) and omitting the constant factor, is a;a.
This completes the proof of Lemma 3.5 for 1 < k < n.

Now, assume that k > n. Then, p2x has the form poy = Vo (ay,...,an)p2+a1Vi(az,...,
an) +Voe(ay,...,ay), where Vy, V1, V, are polynomials. By Lemma 3.3, when p, = 0 and
a» =---=au =0, p =0.Thus, for j = 1,2, V;(0,...,0) = 0. Using the same method as
above and the result about po,...,p2, we just proved, it is straightforward to show that
P2k, reduced modulo the ideal generated by p»,...,p2n, is zero. Hence, for any k > 1,
P2k € (P25, P2n)- O

Lemma 3.5 describes the simple structure of the period coefficients which enables
us to prove the following theorem.
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THEOREM 3.6. If the origin is a weak center of type Ig, then it is an isochronous center
of (3.1) if and only if by = (4/9)a3 and a; = - - - = a, = 0. If the origin is a weak center
of finite order, then its order is at most n — 1, at most n — 1 local critical periods can
bifurcate and there are perturbations with exactly j critical periods for each j <n—1.
Moreover, at most n— 1 local critical periods can bifurcate from the isochronous center
and there are perturbations to produce the maximum number of critical periods. Here,
all perturbations of parameters are within S?.

PROOF. We first prove that the origin is an isochronous center if and only if by =
(4/9)a% and a; = --- = a, = 0. The sufficiency of the condition has been proved
in Lemma 3.3. Now, assume that the origin is an isochronous center. By Lemma 3.1,
p2 = 0 if and only if by = (4 /9)a% > 0. Perform coordinate transformation (x,y) —
((2/3)a1x,(2/3)a1y), hence system (3.1) becomes

n
X=-y+ > ax*,  y=x+x3, (3.15)
k=1

where dy = (3/2a1)%'ay. System (3.15) has the same form as (3.4). Hence, by Lemma
3.5, pa = -+ = p2y = 0if and only if d» = --- = d, = 0. This implies that a, = --- =
ay = 0. Thus, the necessity of the condition is also proved.

To discuss the local critical periods, note that by > 0, we can scale system (3.1) so
that by = 1. It suffices to consider (3.4) only.

If the origin is a weak center of finite order and p» = 0, then a% = 9/4 and there
must be an integer k, such that 1 <k <mn and a; = --- = ax-1 = 0 and ay # 0. Thus,
by Lemma 3.5, p2 = - - - = pak-1) = 0, p2x = a1ax # 0 (with a nonzero constant factor
omitted). That is, the origin is a weak center of order k — 1. Hence, the maximum order
of the weak center is n—1 and at most n— 1 local critical periods can bifurcate.

Now, assume that the origin is a weak center of order n — 1. Then, a% =9/4, a, =

-=ay-1 =0, and a, = 0. Let vy, = (a1,0,...,0,a,), where a; = 3/2 or —3/2. Let
aj be 3/2 or —3/2. It is straightforward to see that the algebraic surfaces p2x-2)(aj,
0,...,0,a,_,,a,_,,ay,) = 0and p2n-1)(ay,0,...,0,a,_,,a,_,,a,) = 0intersect transver-
sally at their common roots for (a,_,,a,_,) € (—,00) X (—00,0). In fact, from the
expressions for the period coefficients given in Lemma 3.5, the determinant of the Ja-
cobian matrix of pan-2)(aj,0,...,0,a,_,,a,_;,a,) and pamn-1)(ai,o,...,0,a,_,,a,_;,
a;,) is given by a’lz, which is not zero. This guarantees that in the neighborhood of v,
there exists a perturbation v’ such that p2n-2) (V' )p2m-1)(v') < 0 with p2,(v') = 0.
This implies that, in the neighborhood of such perturbation, we may choose v, such
that the system satisfies the condition (%) with k = n — 1. Thus, by the finite-order
bifurcation theorem, there are perturbations with exactly j critical periods for each
j<n-1.

Denote by v, = (6 +€1,€2,...,€;,) the perturbation of the isochronous center, where
0 is 3/2 or —3/2. Denote by pox (V4) the perturbed period coefficients. Using the same
method as in the proof of Lemma 3.5, we find the perturbed period coefficients, with
each reduced modulo the ideal generated by the previous coefficients, are given by
P2 (Vi) = (11/3)€1 (20 + €1), Por (Vi) = €x(0 +€1) for 2 <k <n, pa(Vy) =0 for k > n.
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Clearly, for any k > 1, pox (V) € (P2(V4),...,P2n(V4)), the ideal of the Noetherian ring
R{ai,...,an}v, of convergent power series at vy = (6,0,...,0). Thus, by the isochrone
bifurcation theorem, at most n — 1 local critical periods can bifurcate from the
isochronous center. Similar to the argument in the previous paragraph, the maximum
number can be reached. O

4. Weak center of type II. A weak center of type II corresponds to the following
system:

n
x:—y+Zak(x2+b1x3+b2x4)k, y=x+%b1x2+2b2x3. 4.1)
k=1
Executing our Maple program yields the following lemma.

LEMMA 4.1. The period coefficient p» for (4.1) is given by p, = (11/24) (8a? +45b3 —
36b>).

We split Sj; into 3 subsets as S = SitUSE US, where

Sfi={AeR"™3 Ay =0, Az <0},
SE:={AeR"™|Ag=24; =0, Az > 0}, 4.2)
SGi={AeR™3 =0, A, #0, A, > 0}.

We say system (4.1) has a weak center of type II, (resp., type Il or type Il¢) if the
system is nonlinear and A € S{} (resp., A € Sﬁ or A € S,CI). We immediately have the
following theorem.

THEOREM 4.2. A weak center of type 11, cannot be an isochronous center and no
local critical periods can bifurcate from a weak center of type I14.

PROOF. If b, <0 and b? + b? # 0, then p, > 0 by Lemma 4.1 and the order of the
weak center is 0. Thus, no local critical periods can bifurcate by finite order bifurcation
theorem. If b; = b, = 0, then the weak center is of type I, there are no local critical
periods that can bifurcate by Theorem 3.2. |

Thus, in the following we only need to discuss weak centers of types Il and Ilc.

4.1. Weak center of type IIz. For a weak center of type IIg, we can scale system (4.1)
so that by = 1/2. Thus, we only need to consider the following system:

n x4\ k ,
X=—y+2ak(x2+7) . y=x+x5 (4.3)
k=1
We first prove the following lemma.

LEMMA 4.3. A weak center of type IIy cannot be an isochronous center.
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PROOF. Clearly, system (4.3) can be written into the form

n
x=-y+ > ax’®  y=x+x3 (4.4)
k=1
where
[k/2] )
M dep
U 2 o7 k2 @

System (4.4) has the same form as (3.4). By Theorem 3.6, if the origin is an isochronous
center, then ¢y = -+ - = ¢, = 0 and cf =9/4.But cy = - - - = ¢y, = 0 implies that a; =
a, =---=ayu = 0. Hence, ¢; = 0. This is a contradiction. O

The following Lemma characterizes the ideal generated by the period coefficients.

LEMMA 4.4. For system (4.3), the period coefficients pox (k > 1), reduced modulo the
ideal generated by po,...,p2k-2 and omitting the constant factor, are given by poy =
arai+ o for 1 <k <m, pam+1) = Cn+1 and par = 0 for k > n+1, where o,..., 041
are nonzero constants. In particular, p2k € (p2,...,P2m+1)), the ideal of the polynomial
ring Rlay,az,...,an].

PROOF. We first prove the result about pyi for 1 < k <n by induction on k. Direct
computation yields p> = (11/12)(4a3 — 9), p4 reduced modulo the ideal generated by
p» and omitting the constant factor is p4 = a1a, +9/8.

Now, assume that 2 < k < n and py,...,p2(k-1) with each reduced modulo the ideal
generated by previous coefficients and omitting the constant factor, are given by p,; =
araj+«x;(j=2,...,k—1), where «; is nonzero constant. Similar to the proof of Lemma
3.4, pok has the form pox = Baar +R(ay,...,akx-1), where 8 is a nonzero constant and
R(ai,...,ax-1) is apolynomial. Since p» = (17/12) (4(1% -9),we can write R(a1,...,aix-1)
= Rl(al,...,ak_l)pg +a1Ry(ay,...,ax-1) +R3(aq,...,ax-1), where Ry, R», Rj3 are poly—
nomials. We claim that R, (0,...,0) = 0.

In fact, if we set a, = - - - = a, = 0, then system (4.3) has the form
. x4
,-c:_yml(xu?), y=x+x°, (4.6)

Let T(&,a;) be the minimum period of the closed orbit of (4.6) passing through (&,0).
Then, T(&,—a;) is the minimum period of the closed orbit of the following system
passing through (&,0):

x4
x:_y_al(xu?), ¥ =x+x% 4.7)
But (4.7) can be transformed to system (4.6) by the scaling (x,y) — (-x,—y) and
this scaling does not change the period of the closed orbit passing through (&,0).
Thus, T(&,a,) = T(§,—a,). Hence, when a, = - - - = a,, = 0, the period coefficients are
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functions of a%. Thus, R(a4,0,...,0) = Ry(a4,0,...,0)p2 +a1R2(0,...,0) + R3(0,...,0) is
a polynomial of a%. Since p, = (17/12)(401% —9), it is clear that Ry (a,0,...,0) does not
have terms of a; with odd degree. Thus, R»(0,...,0) = 0.

Hence, R, has the form

Ro(az,...,ar-1) = axS2(az,...,ak-1) + - - - + ak-1Sk-1(az, ..., ax-1), (4.8)

where S»,...,S,_1 are polynomials. Therefore, p>x can be written as

k-1
P2k = Balak +R1p2 + z alaiSi(ag,...,ak_l) +R3(a2,...,ak_1). (49)
i=2

By induction assumption, aia; = p»; — &;, s0 (4.9) can be written in the form

k-1

pok = Barax +Rip2+ . Sipei+Q(az,...,ak-1), (4.10)
i

where Q(ap,...,ax—1) is a polynomial and can be written as Q(ap,...,ax-1) = K +
Q2 (asz,...,ax_1), where Q5 is a polynomial such that Q»(0,...,0) = 0 and « is a con-
stant.

On the other hand, p» = (11/12)(4a? - 9), which implies that up, + ya3 = 1, where
u = —4/3m, y = 4/9. Therefore, by induction hypothesis, for each a; 2 < j < k-1),
we have

aj=pajp:+ya(aiaj) = pajpz +ya\pzj+Tian, (4.11)
where T; = —y«; is a constant. Thus, for any monomial aéz - -ai"jf with m := j» +

-+ + jx-1 > 0, after reducing modulo the ideal generated by py,...,p2k-1), it equals
Ta' for some constant T. Since Q»(ay,...,ax-1) is a combination of such type of
monomials, it is clear that, after reducing modulo the ideal generated by p»,...,P2k-1),
Q>(as,...,ax-1) = Q(a1), a polynomial of a;. Combining this with (4.10), it is obvious
that, after reducing modulo the ideal generated by po,...,pP2k-1), P2k = Baiax + Q(ar)+
k. Similar to the argument above, Q(a;) is a polynomial of a?. Hence, it can be writ-
ten in the form Q(a;) = Q(al)pz +(, where ( is a constant and Q(al) is a polynomial.
Therefore, the reduced poy is pox = Baiax + 1+ Kk = B(ayax + &), where & = (t+K) /8
is a constant. If we omit the constant factor, then pox = ajax + xg. It is trivial to show
that o is nonzero: just set p» = 0 and a, = - - - = a, = 0, simple computation shows
that py4,...,p2n, which are multiples of «o,..., «,, are all nonzeros.
Now consider p241), it can be written as

Poms+1) = Vi(ai,...,an)p2 +a1Va(az,...,an) +Vi(az,...,an), (4.12)
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where V1, V>, V3 are polynomials. Following the same reasoning as above, we can prove
that the reduced p;+1) iS anonzero constant &y+1. Since pz,+1) reducing modulo the
ideal generated by po»,...,p2, iS a nonzero constant, it is clear that whenever k > n+1,
pak is reduced to zero. It follows that pak € (p2,...,P2(m+1)) for any k > 1. The lemma
is thus proved. |

From Lemma 4.4, we have the following theorem.

THEOREM 4.5. If the origin is a weak center of type Ilg, then it cannot be an
isochronous center and it is a weak center of order at most n. At most n local criti-
cal periods can bifurcate from the weak center of order n and there are perturbations
to produce exactly j critical periods for each j < n. Here all perturbations of parameters
are within S5.

PROOF. For a weak center of type IIg, it suffices to consider system (4.3). We have
proved in Lemma 4.3 that the origin cannot be an isochronous center. From Lemma 4.4,
it is easy to see that the origin is a weak center of order at most n. Now, seta; = 3/2 or
a; = —3/2, then p, = 0. If we set ay = —ax/a, for 2 < k < n, where « is the nonzero
constant stated in Lemma 4.4, then we have p, = - - - = p2,, = 0 and p2n+1) # 0. Thus,
there exists a weak center of order n. By finite order bifurcation theorem, at most n
critical periods can bifurcate from the weak center of order n.

Denote vy = (5,—x2/0,...,—&n /), where 6 =3/2or 6 = —3/2. Then, p2(vy) =--- =
Pon(vy) = 0 and p2n+1)(V4) = 0. For any neighborhood W c R" of vy, let v/ € W,
v/ = (aj},...,ay), such that p»(v') = - -+ = pap_2(v') = 0. Then, p2, (V') = aja;, + cn
and pon+2(V') = ou41- Obviously, we can always pick aj near § and aj, near —&,, /&
such that p2y, (V') pon+2(v') < 0. Thus, the system satisfies condition () with k = n.
by finite order bifurcation theorem, there are perturbations to produce exactly j critical
periods for each j < n. O

4.2. Weak center of type II.. For a weak center of type II-, we again scale system
(4.1) so that b, = 1/2. So, system (4.1) has the following form:

n 4\ k
)'c:—y+Zak(x2+b1x3+x7) , y:x+%b1x2+x3. (4.13)
k=1

Clearly, G(x) = [y g(§)dE = M /2. In [6], Christopher and Devlin proved that if F(x) =
fiIM+ .-+ fM" and G(x) = g1M + - - - + gp,MP", then a necessary condition for the
origin to be an isochronous center is that p = 2¥. From this result, we immediately
have the following lemma.

LEMMA 4.6. A weak center of type II- cannot be an isochronous center.

It is much harder to describe the ideal generated by the period coefficients. Based
on computation for n < 6, we believe that for any k > 1, the period coefficient p,y €
(p2,..-,P2(n+2)), the ideal of the polynomial ring R[b;,a;,...,a,]. Although we are un-
able to rigorously prove this, we are able to estimate the lower bound of the maximum
number of local critical periods. First, we have the following lemma.
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LEMMA 4.7. For system (4.13), the period coefficients p»y (k > 1) are polynomials of b%.

PROOF. Performing the coordinate change (x,y) — (x,y —F(x)), system (4.13) can
be rewritten into the form

X=-y,

n 4 k-1 4.14
3‘;:x+%b1x2+x3+(2x+3b1x2+2x3) Zkak(x2+b1x3+x7) v, “4.19)
k=1

where
n L xAk
F(x)=> ak(x2+b1x3+7) . (4.15)
k=1

The coordinate change is nonsingular near the origin and it does not change the periods
of the closed orbits near the origin.

Let T(&,by,ay,...,a,) be the minimum period of the closed orbit of (4.13) passing
through (&,0). Then, T(&,—-b1,a4,...,a,) is the minimum period of the closed orbit of
the following system passing through (&,0):

xX=-y,

x* (4.16)

n k-1
V=x- %blxz +x3 4+ (2x -3b1x? +2x3) > kay (xz —b1x3+ ?) y
k=1

But (4.16) can be transformed to (4.14) via (x,y) — (-x,—y).Thus, T(§,b1,a,,...,a,) =
T(§,-by,ai,...,a,). Hence, T(§,by,ai,...,ay,) is a function of b?; namely, the period
coefficients are polynomials of b?. |

Note that for b; = 0, system (4.13) is the same as system (4.3). We have the following
theorem.

THEOREM 4.8. The maximum number of local critical periods which can bifurcate
from a weak center of type II¢ is at least n.

PROOF. let T(&,by,a,,...,a,) be the minimum period of the closed orbit passing
through (&,0). By Lemma 4.7,

T(§,b1,ay,...,an) = T(§,0,a1,...,an) +b2T(E,b%,a4,...,an), 4.17)

where T(&,b?,a4,...,a,) is an analytic function. Clearly, T(Z,0,a,,...,a,) is identical
to the period function of system (4.3). Let

P(&,b1,ay,...,a,) =T(&,by,ay,...,a,) — 2T, (4.18)
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then

P(§7b11a’1|"'!an) :P(E!O’ali"'lan)+b%T(§|b%!a1!"'1a’n)7

. (4.19)
Ps(E,b1,a1,...,an) = P£(E,0,a1,...,an) + b3 Te (E,b%,ay,...,an).

By Theorem 4.5, the function § — P¢(§,0,a4,...,a,) can have at most n zeros near
& = 0 and there exists a}, ...,ay, such that P¢(&,0,a3,...,a;) has n zeros near & = 0. Fur-
thermore, following exactly the same line as in the proof of the finite order bifurcation
theorem given in [3] (i.e., [3, Theorem 2.1]), we may select aj,...,a;,, and construct the n
zeros &i1,...,&y such that 0 < &; < - - - < &, < n for some n and on each pair of the open
intervals (&;-1,&:), (&;,&i+1) (1 <i=<mn), P£(§,0,a},...,a,) has different signs. Here, we
set & =0 and &, = n. Thus, there exists &,...,&, suchthat 0 < ) < --- < &, <nand
forany 1 <i<mn, P¢(§_,,0,a),...,a,)Ps(§,0,a},...,a,) <O0. Since T¢(§,b},al,...,a,)
is continuous (actually analytic) on [0,n], it is easy to see that for sufficiently small
Ib1l, Ps(&;_y,b1,ay,...,a,)Pe(E],b1,al,...,a,) < 0. Hence, there exists £ € (&_1,€)
such that Pg(gi,bl ,al,...,ay) =0.8S0, Pg(§,by,ay,...,a;) has at least n zeros. O

By finite order bifurcation theorem, no more than g local critical periods can bifurcate
from a weak center of order q. Hence, we immediately obtain the following corollary to
Theorem 4.8.

COROLLARY 4.9. There are weak centers of type I with order at least n.

If our conjecture that pax € (p2,...,P2m+2)) is true, then since the origin cannot be
an isochronous center, the origin is a weak center of order at most n and there are at
most n local critical periods that can bifurcate from the weak center of order n. By
Theorem 4.8, the maximum number of critical periods can be attained.

5. Proof of Theorem 1.5

PROOF OF THEOREM 1.5. By Theorems 3.2, 3.6, 4.2, 4.5, and Lemma 4.6, system
(1.4) has a nonlinear isochronous center at the origin if and only if by = (4/ 9)aé and
by=by=a,=---=a,=0and ap * 0.If ag = 0, then the origin is a linear isochronous
center. For a nonlinear isochronous center, by # 0. Since we only consider small per-
turbation of parameter values, any perturbation of the parameters corresponding to
the isochronous center remains in S,B. Thus, assertion (1) of Theorem 1.5 is true by
Theorem 3.6.

Note that under small perturbation of parameter values, a weak center of type I
(resp., Ip) is still a weak center of type I, (resp., Ig). Thus, assertion (2) of Theorem 1.5
is true by Theorems 3.2 and 3.6. Assertion (3) of Theorem 1.5 is clear by Theorem 4.8.

O

We remark that a weak center of type II can be perturbed to become a weak cen-
ter of type I, but this will not increase the number of local critical periods by (2) of
Theorem 1.5.
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