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1. Introduction. As was shown in [8] (see also [9, 10]), under certain conditions,
the Carleman classes of vectors of a normal operator in a complex Hilbert space can be
characterized in terms of the operator’s spectral measure (the resolution of the identity).

The purpose of the present paper is to generalize this characterization to the case
of a scalar type spectral operator in a complex reflexive Banach space.

2. Preliminaries
2.1. The Carleman classes of vectors. Let A be a linear operator in a Banach space

X with norm || - [I, {mn};_ @ Sequence of positive numbers, and

Cc*(A) L N p(am) 2.1)

n=0

(D(-) is the domain of an operator).

The sets
Comy (A) E{feC®A) | 3a>0, Ic > 0: ||[A"f|| < ca™my, n=0,1,2,...},
(2.2)
Comp (A) L {feC®(A) | Va>03c>0:[|[A"f|| < ca"my, n=0,1,2,...}

are called the Carleman classes of vectors of the operator A corresponding to the se-
quence {my};,_o of Roumie’s and Beurling’s types, respectively.
Obviously, the inclusion

Cimn) (A) € Ciamyy (A) (2.3)

holds.
For m,, := [n!]# (or, due to Stirling’s formula, for m,, := nf"), n =0,1,2,... (0 < B <
o), we obtain the well-known Bth-order Gevrey classes of vectors, ¢'F} (A) and €#) (A),
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respectively. In particular, ¢V (A) are the analytic and ¢!’ (A) are the entire vectors of
the operator A [7, 17].

The sequence {m;};_, will be subject to the following condition.

(WGR) For any o > 0, there exist such a C = C(«x) > 0 that

Ca"<m,, n=0,1,2,.... (2.4)

Note that the name WGR originates from the words “weak growth.”
Under this condition, the numerical function

T(A) :=mo Z ﬂ, 0<A<oo, (00:=1), (2.5)

n=0 "

first introduced by Mandelbrojt [15], is well defined.

This function is nonnegative, continuous, and increasing.

As established in [8] (see also [9, 10]), for a normal operator A with a spectral measure
E4(-) in a complex Hilbert space H with inner product (-, -) and the sequence {my};,_,
satisfying the condition (WGR),

Cimny (A) = | JD(T(t]1AD),
t>0

Cimp) (A) = [ D(T(t]A])),

t>0

(2.6)

the normal operators T(t|A]|) (0 < t < o) being defined in the sense of the spectral
operational calculus for a normal operator:

T(tIA\)::J

o(

T(¢1A]) dEx,
A 2.7)
D(T(tIAD) = {f e L(A) T2(LAD (EA (M) £ f) < oo},

where the function T (-) can be replaced by any nonnegative, continuous, and increasing
function L(-) defined on [0, «) such that

aL(y1d) = T(A) = c2L(y21), A>R, (2.8)

with some positive yi, y», c1, ¢2, and a nonnegative R.
In particular, T(-) in (2.6) is replaceable by

A‘VL
S(A):=mosup—, 0=<A< oo, (2.9)

n=0 Mn
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or

) A2n 1/2
P(?\)::mo[z } , 0<A<o, (2.10)
n=0

3N

2
m
(see [10]).

2.2. Carleman ultradifferentiability. Let I be an interval of the real axis, C*(I) the
set of all complex-valued functions strongly infinite differentiable on I, and {m;};_, a
sequence of positive numbers.

{feyecw | viablcl, 3a>0, 3c > 0:
c (1) % maxXg<x<p || f™ (x)|| < camy, n=0,1,2,...},
o {f(-)ecw(l)w[a,b]gz, Va>0,3c>0:

maxXg<x<p || f™ (x)|| < ca™my, n= 0,1,2,...}

(2.11)

are the Carleman classes of ultradifferentiable functions of Roumie’s and Beurling’s
types, respectively, [1, 12, 13, 14].

In particular, for m, := [n!]# (or, due to Stirling’s formula, for m, 1= nf"), n =
0,1,2,... (0 < B < ), these are the well-known Sth-order Gevrey classes, ¢'#! (I) and
¢ P (I), respectively, [6, 12, 13, 14].

Observe that €'Y (I) is the class of the real analytic on I functions and ¢V (I) is the
class of entire functions, that is, the restrictions to I of analytic and entire functions,
correspondingly, [15].

Note that condition (WGR), in particular, implies that lim, .. m, = . Since, as is
easily seen, the Carleman classes of vectors and functions coincide for the sequence
{mny};,_, and the sequence {dmy},_; for any d > 0, without loss of generality, we can
regard that

infm, > 1. (2.12)
n=0

2.3. Scalar type spectral operators. Henceforth, unless specified otherwise, A is a
scalar type spectral operator in a complex Banach space X with norm | - || and E5(-) is
its spectral measure (the resolution of the identity), the operator’s spectrum o (A) being
the support for the latter [2, 5].

Note that, in a Hilbert space, the scalar type spectral operators are those similar to
the normal ones [21].

For such operators, there has been developed an operational calculus for Borel mea-
surable functions on C (on o (A)) [2, 5], F(-) being such a function; a new scalar type
spectral operator

F(A) = J(F(?\)dEA()\) = J (A)F(?\)dEA(A) (2.13)
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is defined as follows:

F(A)f:=lim F,(A)f, feD(F(A),

(2.14)
D(F(A):={feX| lim F, (A) f exists}
(D(-) is the domain of an operator), where
Fn(-):=F()Xuaeow) Fn=n (1), n=12,..., (2.15)
(X« (+) is the characteristic function of a set «), and
F,(A) :=J F,(A)dEA(A), m=1,2,..., (2.16)
o(A)

being the integrals of bounded Borel measurable functions on o (A), are bounded scalar
type spectral operators on X defined in the same manner as for normal operators (see,
e.g., [4, 19]).

The properties of the spectral measure, E (), and the operational calculus underlying
the entire subsequent argument are exhaustively delineated in [2, 5]. We just observe
here that, due to its strong countable additivity, the spectral measure E4(-) is bounded
[3], that is, there is an M > 0 such that, for any Borel set 6,

|EA(8)]| < M. (2.17)

Observe that, in (2.17), the notation || - || was used to designate the norm in the space
of bounded linear operators on X. We will adhere to this rather common economy of
symbols in what follows adopting the same notation for the norm in the dual space X*
as well.

Due to (2.17), for any f € X and g* € X* (X* is the dual space), the total variation
v(f,g*,-) of the complex-valued measure (Es(-)f,g*) ({-,-) is the pairing between
the space X and its dual, X*) is bounded. Indeed, é being an arbitrary Borel subset of
o (A),[3],

v(f,g* 0(A))

<4 sup [(Ea(0)f,g%)| <4 sup [[Ea(®||IfNllg*]| (by (2.17)) (2.18)
Sco(A) 6co(A)

< 4MIIflllg*]]-

For the reader’s convenience, we reformulate here [16, Proposition 3.1], heavily relied
upon in what follows, which allows to characterize the domains of the Borel measurable
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functions of a scalar type spectral operator in terms of positive measures (see [16] for
a complete proof).

On account of compactness, the terms spectral measure and operational calculus
for scalar type spectral operators, frequently referred to, will be abbreviated to s.m.
and o.c., respectively.

PROPOSITION 2.1. Let A be a scalar type spectral operator in a complex Banach
space X and F(-) a complex-valued Borel measurable function on C (on o (A)). Then
f e€D(F(A)) if and only if

(i) for any g* € X*,

j L FIdv (£ A) <, (2.19)
(i)

sup

J [F(A)|dv(f,g*,A) —0 asn — . (2.20)
{g*ex*|lg*l=1}J{Aco (A)IIF(A)[>n}

Observe that, for F(-) being an arbitrary Borel measurable function on C (on o (A)),
for any f € D(F(A)), g* € X*, and arbitrary Borel sets 6 < o,

j IF(V)dv(f.g%,A) (see [3])

<4sup
Sco

LF(A)d(EA(A)f,g*)

=4sup

Sco

(by the properties of the o.c.)

[ s @F@aEW£.97)

=4sup <J xg(A)F(A)dEA(A)f,g*> ‘ (by the properties of the o.c.)
Sco (o

=4sup | (Ea(8)EA(0)F(A)f,g*) |

dco

< 4§up||EA(5)EA(U)F(A)f|| llg*|l
54§up||EA<6>||HEA(a)F(A)fHIIg*H (by (2.17))

<4M||EA(a)F(A)f|l[lg*[| < 4M||[Ea(a)][[[[F(A) f[[lg*]]-

(2.21)
In particular,
j L FQIdv(£,%0) Gy @2:21)
< aM|Ex (o (A 1F ) £l g 2

(since E5o(0(A)) =1 (I is the identity operator in X))
<4M|[F(A) f|lllg*]]-
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3. The Carleman classes of a scalar type spectral operator

THEOREM 3.1. Let A be a scalar type spectral operator in a complex reflexive Banach
space X. If a sequence of positive numbers {my},,_, satisfies condition (WGR), equalities
(2.6) hold, the scalar type spectral operators T (t|A|) (0 <t < «) defined in the sense of
the operational calculus for a scalar type spectral operator and the function T (-) being
replaceable by any nonnegative, continuous, and increasing function L(-) defined on
[0, ) such that

clL(ylx\) =< T(/\) =< CzL(}/zA), A> R, 3.1)

with some positive y1, y2, ¢1, ¢2, and a nonnegative R.

PROOF. First, we prove the replaceability of T(-) in (2.6) by a nonnegative, contin-
uous, and increasing function satisfying (3.1) with some positive y;, y», c1, ¢2, and a
nonnegative R > 0.

Let

felJTlAD (ﬂT(tIA)). 3.2)

t>0 t>0

Then, for some (any) 0 < t < oo, f € D(T(t|A|)), which, according to Proposition 2.1,
implies, in particular, that, for any g* € X*,

J TtIADdv(f,g%,A) < . (3.3)
a(A)
For any g* € X*,
[ rotinav(f.ena) <. (.4
o(A)
Indeed,

| rouianav(s.era)
a(A)

Lot dv(f,g%0) + | L(yitIAl) dv (f,g* A)

- J{AEO’(A)\HMSR} {A€o (A)[t|A[>R}

<L(y1R)v(f,g*,0(A))+ LAEUMWDR} L(yitlAl)dv(f,g*,A) (by (2.18))

< L(y1:R)4MI £1]|g*| +LAEUMWWL(yltmndv (f,9%,A) (by 3.1)

1
<LonR)aMIflllg 1+ L |
C1 J{Aeo (A)|tIA|>R}

1
< L(y:R)4MI £ lllg*] + —j F(tIADdv(f,g%,A) (by (3.3)
C1 Jo(A)

F(tlADdv(f,g*,Q)

< o0,
(3.5)
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Further,

sup L(yitIAl)dv(f,g*,A) =0

{g*eXx*|llg*ll=1} J{AEU(A)\I‘\/\\SR, L(yitiAD)>n}

for all sufficiently large natural n’s since, when t|A| <R, L(yt|A|) < L(y1R).
On the other hand,

J L(yitlAl)dv(f,g*,2) (by (3.1)
{Aco (A)|tIA|>R, L(y1tIAl)>n}

1
<~ T(tADdv(f,g*,A) (by (2.21))
C1 J{Aeo (A)[tIAI>R, T(t|A])>cin}

< éHEA({)\ € o (A) | TIAD > ern}) T(E|ADf][llg*|l

(by the continuity of the s.m.)

— 0 asn — oo,

Therefore, by Proposition 2.1, f € D(L(y t|Al)).
Thus, we have proved the inclusions

UD(T(t1AD) = UD(L(tIAD),

t>0 t>0
(\D(T(t|A]) < [ D(L(t|A])).
t>0 t>0

Similarly, one can derive from (3.1) the inverse inclusions:

UD(Tt1aD) = UD(L(tIAD),

t>0 t>0
(\D(T(tIAD) = [ D(L(tIAD).
t>0 t>0

Thus,

UD(T(t1AD) = UD(L(tIAD),

t>0 t>0

() D(T(tIA]) = () D(L(t|A]).

t>0 t>0

3225

(3.6)

(3.7)

(3.8)

(3.9

(3.10)
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Let f € Cimyy (A) (Comy) (A)). Then f e C*(A) and, for a certain (an arbitrary) « > 0,
there is a ¢ > 0 such that

[|A" f]| < ca™my,, m=0,1,2,.... (3.11)
For any g* € X*,

L(A) (551M) av (£, L(A ier"i\im A0 (F.g" )

(by the monotone convergence theorem)

-3 | s A0

oA) 2" my,

= S # n k
=2 2oy Joon N dv(f,g*,A) (by(2.22)

Z g MIIA™ g 1l (by 3.11))

1
<4Mc > o llg Il = 8Mcllg*|| < .
n=0

(3.12)
Let
={Adeo)||Alzn}, n=0,1,2,.... (3.13)

By the properties of the o.c., T((1/2x)|A|)Es(Ay), n=0,1,2,...,is abounded operator
on X and

H:r( IA\)EA(AH) <4Mz2k

okmy

k
(by condition (WGR), thereisa C = C(x,n) > 0: kn
XMy

<, k=0,1,...> (3.14)

<4 Zlk_sMC.
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Forany 1 <m <n,

(T (11 Ea@n) £ =T (5 14T Ex (an) £.07)|

(by the properties of the o.c.)

1
< 7( 5N dEA N f.97) |
{Aea(A)|lm<|A|<n} 2

(by the properties of the o.c.)

1
- U T(flAl)d<EA<A>f,g*>
{Aeo(A)|lm<|A|<n} 2

1 *
SJ{/\EU(A)\WK\M}T<$|M)dv(flg A) - (by (3.12))

— 0 asm — oo,

3227

(3.15)

Since a reflexive Banach space is weakly complete (see, e.g., [3]), we infer that the se-
quence {T((1/2c)|AD)Es(An)f}5-1 weakly converges in X. This, considering the fact

that, by the continuity of the s.m.,
EA(An)f_'f as n — oo

and the closedness of the operator T((1/2x)|Al), implies

reo(r(n))

Therefore,

felUD(T(tIAD) (ﬂD(T(tlA)), resp.>,

t>0 t>0

which proves the inclusions

Cimpy (A) € UD(T(”AD)y
t>0

Cimp) (A) = [\ D(T(t]A])).
t>0

Now, we are to prove the inverse inclusions.

(3.16)

(3.17)

(3.18)

(3.19)
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Let

felUD(TtlAD) (ﬂD(T(t|A|))).

t>0 t>0

Then, for a certain (any) t > 0, f € D(T(t|A])).
We infer from the latter that f € C*(A).
Indeed, for an arbitrary N = 0,1,2,... and any g* € X*,

L AN dv(f.g%,0) J i ¥ 40 (,%.0)

(4) My

I
2

T(tlADdv(f,g*,A)
A)

(by Proposition 2.1),

< 00
Further, for any N =0,1,2,...,
sup J —|/\|Ndv(fg ,A)
{grex*|lg* =1} J{Aco (A)|(tN /mN) AN >n} TN

< sup J
{greXx*|llg*|l=1} J{Aeo (A)|T(t|A])>n}

— 0 asn — oo,

By Proposition 2.1, (3.21) and (3.22) imply that
fec*A).

Further, by (2.22),

sup J T(tIADdv(f,g*,A)  (by (2.22))

{g*ex*|llg*ll=1} Jo(A)
< 4M||T(tIAD f|| < .

By (2.22),

O<c:= sup J TtIADdv(f,g*,A) +1
{g*eXx*|lg*|=1}Jo(A)

<4M||T(t|A]) f|| < oo.

(3.20)

(3.21)

T(t|lA)dv(f,g*,A) (by Proposition 2.1),

(3.22)

(3.23)

(3.24)

(3.25)
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Whence, for any n =0,1,2,...,

n
c=> sup J t—l)\l"dv(f,g*,)\)
{g¥ex*|lg*I=1} Jo(A) Mn
tn
> — sup
Mn (grex+|lg*ll=1}

[ aragEaose)
o(A)

(by the properties of the o.c.)

<L<A) AndEA(A)f'g*> ‘ (3.26)

(by the properties of the o.c.)

tn
— sup
Mn (gxex+|lg*ll=1}

\%

tn
= sup |<Anf!g*>|
Mn (grex*||g*l=1}

(as follows from the Hahn-Banach theorem)
= jjang)
= .
Thus, for some (any) t > 0,
n
HNTHS%%)nm,n:QL&“” (3.27)
Hence,

f € Cimyy (A (Comy) (A), resp.), (3.28)
which proves the inverse inclusions

Cimny (A) 2 |JD(T(t]AD),

t>0
(3.29)
Cimn) (A) 2 () D(T(tIA]).
t>0
From (3.19) and (3.29), we infer equalities (2.6). O

REMARK 3.2. Observe that the assumption of the reflexivity of the space X was
utilized for proving the inclusions

Cimny (A) < |JD(T(t]AD),
=0 (3.30)

Cimm) (A) < (| D(T(t]A])
t>0
only.
The inverse inclusions

Cimn1 (A) 2 [JD(T(tIAD),
t>0

Cimm) (A) 2 () D(T(|A]))
t>0

(3.31)

hold regardless whether X is reflexive or not.
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4. The Gevrey classes of a scalar type spectral operator. Let0 < f8 < c. As is easily
seen, the sequence m,, = [n!1¥, n=0,1,2,..., satisfies condition (WGR) and, thus, the
function

00

T(A): Z , 0<A<oo, (4.1)

is well defined.
According to Stirling’s formula,

nfm ~ (2mn) Plefr 1P asn — co. 4.2)
Hence, there is such a C = C(f) > 1 such that
(18 <nbfr < c2mn)PPefr 0P < cefrnlf, n=0,1,2,.... (4.3)

Taking this into account, we infer

nooZAn > (ePA)" o1 (2ePA)"
SUp g < > g ST =CX = p=C2 5
n=0 n=0 n=0
(2ePA)" &1 (2eBA)" 9
e e
SO 2 TR 0FA e
Now, we consider the family of functions
AX 0
pa(x) = P 0<x<o, 1<A<o (0°:=1). (4.5)

It is easy to make sure that the function p,(-) attains its maximum value on [0, ) at
the point x) = e 1AVA,
Therefore,
n AX

A _ Be1AlB
< sup Py pa(xy) =e . (4.6)

x=0

sup ——

n=0 115"

For A > eP, let N be the integer part of x) = e 1AL/B,
Hence, N > 1 and

Al AN
EEISW > AN = eXP (NInA - BNInN)
= ) 4.7)
>exp ((xa—1)InA—Bxrlnx,) = Xeﬁ‘fl"w, A>eb.
Obviously, for all sufficiently large positive A’s,
36’1/2)/\”’5 1 (4.8)

>
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Based on (4.4), (4.6), (4.7), and (4.8), for all sufficiently large positive A’s,

(BB (e~ 2B)A)1/B (2eF0)"
e <T(A) < 2Csup7 < 2CSup Poepy(X)
x=0

n=0
1/8
) /B

(4.9

_ ZCeBe’l(ZeﬁA < e<4BBA)1/3_

Thus, by Theorem 3.1, in the considered case, the function T(A) can be replaced by
eAVP (0 < A < ) and we arrive at the following.

COROLLARY 4.1. Let A be a scalar type spectral operator in a complex reflexive Ba-
nach space and 0 < § < oo, Then

€Br(A) = UD(et\Ap/B)’
t>0

€B (A) = mD(et\Aﬂ/l{).

t>0

(4.10)

In particular, for § = 1, Corollary 4.1 gives the description of the analytic and entire
vectors of the scalar type spectral operator A.

Corollary 4.1 generalizes the corresponding result of [8] (see also [9, 10]) for a normal
operator in a complex Hilbert space.

Observe that the inclusions

%{B}(A) ) UD<3HA|”B>,

t>0

€ (A)2 (D ().
t>0

(4.11)

are valid without the assumption of the reflexivity of X (see Remark 3.2).

5. A theorem of the Paley-Wiener type. Consider the self-adjoint differential op-
erator A = i(d/dx) (i is the imaginary unit) in the complex Hilbert space L?(—c0, ).
With the unitary equivalence of this operator and the operator of multiplication by the
independent variable x in view, by Theorem 3.1 as well as by [9, 10], we arrive at the
following theorem of the Paley-Wiener type [18, 22].

THEOREM 5.1. Let {my};,_, be a sequence of positive numbers satisfying condition
(WGR), then

£ € Cimy1 (A) (Comy) (A)) = Jﬁ | () [P T2 (¢|x]) dx < o (5.1)

(f is the Fourier transform of f) for some (any) 0 < t < oo, the function T(-) being
replaceable by any nonnegative, continuous, and increasing function L(-) defined on
[0, ) and satisfying (3.1) with some positive y1, y», c1, C2, and a nonnegative R.

The only natural question to be answered now is how the abstract smoothness rela-
tive to the differential operator A in L2(—o0, ) reveals itself as the smoothness in the
ordinary sense.
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For any f € WJ'(I), where I is an interval of the real axis and W3'(I) = H"(I) is the
nth-order Sobolev space [20], let f(-) be the representative of the equivalence class f
continuously differentiable 7 — 1 times and such that £~ (-) is absolutely continuous
on .

For

fEWS(—00,00) 1= (| Wi(~00,0), (5.2)

n=0

let f(-) be the infinite-differentiable representative of the equivalence class f such that

I | F™ () |%dt <, n=0,1,2,.... (5.3)
Let
Clmny (—00,00) € { f € W (=0, 00) | V[@,b] € (~e0,00) Jo >0,
Elc>0:maXHf(")(t)IIsccx"mn,n:0,1,2,...},
a<t<b

Compy (—0,00) E L f € W5 (—00,) | V[, b] € (—0,), Vx>0

Ac>0: max [|f™ (1)]] < cattmy, n=0,1.2,..}.
ast=

We will impose upon the sequence {my},_, an additional condition.
(DI) There are an L > 0 and a y > 1 such that

My+1 < Ly"m,, n=0,1,2,....

Note that the name (DI) originates from the words “differentiation invariant” since,
as is easily verifiable, under this condition, the Carleman classes Cypy,,} (—0, ) and
C(my) (—00,00) along with a function f(-) contain its first derivative, f'(-).

Observe that, for 0 < 8 < o, the Gevrey sequence m, = [n!1¥, n = 0,1,2,..., meets
condition (DI) with any y > 1. Indeed, in this case, M1 /M, = (m+1), n=0,1,2,....

LEMMA 5.2. Let a sequence of positive numbers {my},,_, satisfy condition (DI). Then

Cimpy (A) € Cpnyy (—00, ),

. (5.5)
Cimn) (A) € Cimy) (=00, 00).
PROOF. Let f € Ciymy,3(A) (Cony) (A)), Then
S eEWS (—00,00), (5.6)

and for some (any) & > 0, there is a ¢ > 0 such that

0 1/2
||f||L2(_oo,oo)=[J |f(”)(x)|2dx] <ca™m,, n=0,1,2,.... (5.7)
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We fix a finite segment [a, b] of the real axis. Then, according to the Sobolev embedding
theorems [20] (see also [22, 23]), the space Wzl(a,b) is continuously embedded into
Cla,b], that is, for some M > 0 and any f € Wzl(a,b),

;1;1% [fOo) = M”f”WZl(a,h) = M[”f”LZ(a,lo) + ||f,||L2(a,b)] (5.8)

Since f € Cymy,3 (A) (Cany) (A)). Then, obviously, f™ € W} (a,b) for any n = 0,1,2,....
Therefore, for an arbitrary n =0,1,2,...,

max | f™(x)| < MIILf ) a,p) < M[Hf(n)HLZ(a,h) + ||f(n+l)||L2(a,b)]

ast<b
= M|:||f(n)||]_2(foo,oo) + ||f(n+1)||L2(foo,oo):|

<M[ca™my+cx" 'my.]  (by (DD)

(5.9)
<M[ca"my +ca ' Ly"m, ]| = Mc[1+Lay™]«"m,
(considering that y > 1, there is a ¢; > 0 such that y > 1, ¢; > 0)
<calyo)"m,, n=0,1,2,.... O

Based on this Lemma, we obtain the following proposition.

PROPOSITION 5.3. Let {my},_, be a sequence of positive numbers satisfying (WGR)
and (DI). If f € L?(—o0, ) is such that, for some (any) 0 < t < oo,

r | Fx) | *T2(t|x]) dx < oo, (5.10)

there is a representative f(-) of the equivalence class f such that f(-) € C*(—o,®),

) MW (x)[*dx <0, n=0,1,2,...,
L»|f | (5.11)

S () € Cmyy (—00,00) (Cimy) (—00,00)),

the function T (-) being replaceable by any nonnegative, continuous, and increasing func-
tion L(-) defined on [0,) and satisfying (3.1) with some positive yi, y», c1, C2, and a
nonnegative R.

COROLLARY 5.4. Let0 < < co.If f € L?(—c0,0) is such that, for some (any)0 <t < oo,

J | F 0o |2 dx < o, (5.12)

there is a representative f(-) of the equivalence class f such that f(-) € C®(—o0, ),

ro | fM(x)[Pdx <o, n=0,1,2,...,
® (5.13)
F() €€ (—00,00) (€F) (—c0,00)).

In particular, for 8 = 1, we obtain sufficient conditions for the real analyticity and
entireness.
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6. Remarks. Itistobenoted that,in[10] (see also [8, 9]), not only were equalities (2.6)
for a normal operator in a complex Hilbert space proved to hold in the set-theoretical
sense but also in the topological sense, the sets Cyy,,; (A) and Cin,)(A) considered as
the inductive and, respectively, projective limits of the Banach spaces

Cotma1(A) 1= {f €C™(A)| 3¢ > 01 [|A"f| < ca™my, n=0,1,... ], (6.1)

0 < & < oo, with the norms

: [lA™ ]|
IS oy (4) 2= SUD - i, (6.2)
and the sets ;o D(T(t|Al)) and ;-0 D(T(t|Al)) as the inductive and, respectively,
projective limits of the Hilbert spaces

Ht[T](A) ZZD(T(HAD), 0<t<00, (6.3)
with inner products
(f, @y = (T(EIADF,T(tIADG), 0<t <. (6.4)

Observe also that, in [11] (see also [10]), similar results were obtained for the generator
of a bounded analytic semigroup in a Banach space.
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