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We have presented a method for the construction of an approximation to the initial-value
second-order Volterra integrodifferential equation (VIDE). The polynomial spline collocation
methods described here give a superconvergence to the solution of the equation.
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1. Introduction. In order to discuss the numerical solution of the second-order
VIDEs we consider the following linear integrodifferential equation:

1 1 -t
y(Z)(t):q(t)+zpi(t)y”>(t)+ZL ki(t, )y (s)ds, tel:=[0,T], (1.1)
i=0 i=0

with
y(0)=yo, ¥y =0y, (1.2)

where g: I - R, pi:I — R,and k; : D — R (i = 0,1) (with D := {(t,5):0<s <t <
T}) are given functions and are assumed to be (at least) continuous in the respective
domains. For more details of these equations, many other interesting methods for the
approximated solution and stability procedures are available in earlier literatures [1,
3,4,5,6, 7,8, 11]. The above equation is usually known as basis test equation and is
suggested by Brunner and Lambert [5]. Since then it has been widely used for analyzing
the solution and stability properties of various methods.

Second-order VIDEs of the above form (1.1) will be solved numerically using polyno-
mial spline spaces. In order to describe these approximating polynomial spline spaces,
let [[y:0=tg<t; <---<ty=T be the mesh for the interval I, and set

Oy = [tn,tn+1], hn:= tn+l_tna n=0’11"'=N_11
h =max{h,:0<n<N-1} (mesh diameter), (1.3)
ZNZ={tn!TL=1,2,...,N—1}, 7N=ZNU{T}.

Let 11,,,1. 4 be the set of (real) polynomials of degree not exceeding m + d, where m > 1
and d > —1 are given integers. The solution y to the initial-value problem (1.1), (1.2)


http://dx.doi.org/10.1155/S016117120421033X
http://dx.doi.org/10.1155/S016117120421033X
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com

3012 EDRIS RAWASHDEH ET AL.

will be approximated by an element u in the polynomial spline space,

S (Zy) == {u = u(b) lreoy 1= Un(t) € Tmia, n=0,1,...,N—1,

( ) ) (1.4)
L (te) = wid (tn) for j=0,1,...,d, ty € Zn},

that is, by a polynomial spline function of degree m + d which possesses the knots
Zy and is d times continuously differentiable on I. If d = —1, then the elements of
ST(,[_li (Zn) may have jump discontinuities at the knots Zy. Initial value problems, such
as (1.1) and (1.2), have often been solved by collocation method in polynomial spines
spaces S}S)(ZN) and Sy(y{)(ZN).

According to M. Micula and G. Micula [10], an element u €
form: foralln=0,1,...,N—-1and t € oy,

S“’” +a4(Zn) has the following

da

u(t) =un(t) = > ””ii(t")(t tn) + Zaw t—t,)", (1.5)
r=0 . r=1
where
u”1(0) ::[;tru(t)]ho:y(”(O), r=0,1,...,d. (1.6)

From (1.5), we see that the element u € S, @) +a(ZN) is well defined provided the coef-
ficients {an}r-1,.,m are known. In order to determine these coefficients, we consider
a set of collocation parameters {c;j};j-1,..m, where 0 <c; <--- < ¢y <1, and define the
set of collocation points as

N-1
X(N):= | Xn, with Xy := {tnji=tn+Cjhn, j=1,2,...,m}. (1.7)
n=0

The approximate solution u € S,(,‘ﬁ 4(Zn) will be determined by imposing the condi-

tion that u satisfies the following initial-value problem on X (N):

u(t) = q(t)+ZPl(t)u‘>(t)+ZIk(ts)u(l(s)ds VteX(N), (1.8)
i=0

with
u(0) =yg, u(0) =, (1.9)

with a uniform the mesh sequence {[ [y}, hy = h, forallm =0,1,...,N — 1, but for small
h, (1.8) has a unique solution {ay ;}-1,.,m, foralln =0,1,...,N - 1.
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Therefore, the modified collocation equation (1.8) can be rewritten as
uy, (tn,j) = q(tn,j) + pO(tnj)un(tnj) +P1 (tn,j)u;L(tn,j)

+hn¢nn un zhd)nl ul]

(1.10)
+ Whalu Zwm ul], j=1,....,m,n=0,1,....N-1,
where
r Cj
J ko(tnj tn +Vhn)un(tn +vhy)dv, ifi=n
J ,[u']=+ 0
n,i 1 1
J ko(tn,j,ti+vhi)ui(ti+vhi)dv, ifi=0,1,...,n-1,
Lo
¢ (1.11)
J ki(tnj,tn+vhp)uy, (ty+vhy)dv, ifi=n
i 0
wil,i[ ]:* 1
J kl(tn,j,ti+vhi)u§(ti+vhi)dv, ifi=0,1,...,n—1.
0

In most applications the integrals appearing in (1.11) cannot be evaluated analyti-
cally, so we seek suitable quadrature formulas as follows:

M
, > wjiko(tn,j tn+ djihn)un (tn + djghy), ifi=n

$hiluil =1% 1.12)
Zwlko(tn,j,ti +dlhi)ui(ti +dll’li), ifi=0,1,...,n—-1,

Ll=1

U1

' ij,lkl (tn,j,tn+dj,lhn)u’n(tn +dj’lhn), ifi=n

Goluil = 1'% (1.13)
> wiky (tn,j, ti +dih)u (t +dih), ifi=0,1,...,n—-1,

=1

where o and py are two given positive integers, {d;} and {d,;} are two sets of param-
eters satisfying the following conditions:

O<dy<---<dy, =<1, O<dji<---<djy <cj, (j=1,...,m), (1.14)

and w;, wj,; denote the quadrature weights.
The corresponding quadrature error terms are defined as

E) il = s [wil - 4, Tuil,

E,lril,i[u’] lljnl[ 1] (p‘l’ll[ 1] (1'15)
j=12,...,m, i=0,1,....n (n=0,1,...,.N—1).
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By the above quadrature process (1.10) is a fully discretized collocation method
which defines an element % € S,(,‘fi 4(ZN) (which, in general, will be different from the
approximate solution u determined by the exact collocation equation (1.10)). The full
discretized version of the collocation equation (1.10) is

Wy (En,j) = a(tn,j) + Po(tn,j)n(tn,j) +p1(tn,) iy (En,;)

n-1
+hn<££1,n[an] + z hi(i)‘yil,i[ﬁi]

i=0 (1.16)
+ @l ]+ > hlail, j=1,...,m,n=01,.,N-1
i=0
d)

Similarly, the approximate discretized solution it € S'") , (Zy) has the following form:
~ ~ d ﬁnfl(tn) r < ~ a+r
W) =hn(t) = > —L (0 —t) "+ > Ay (E—1) T, (1.17)

with the assumption that
11 70):=y"(0), r=0,1,...,d. (1.18)

The collocation equations (1.10) and (1.16) represent recursive systems, for each n =
0,1,...,N—1, which yield the coefficients {an}r-1,.m and {anr}r-1,., m, respectively.
Once the coefficients are known, the values of u, 7t together with their derivatives are
determined on o, by (1.5) and (1.17), respectively.

On each of the N subintervals of I we have to solve an m x m system of linear
equations. On the first subinterval oy, d + 1 additional equations are furnished by the
d + 1 initial conditions (1.6) and (1.18).

2. Global convergence criteria. If the given functions q, p;, and k; (i = 0,1) are of
class m + d on their domain of definition, then the VIDE (1.1) has a unique solution
v, which is of class m +d + 2. Let @, be the restriction of the function @ on I in the
subinterval o, for n =0,1,...,N —1, and the norm is defined by

@llo =sup{|@n(t)|:t €ou, n=0,1,...,N—1}. (2.1)

The following theorem describes the order of global convergence of u € Sf;fld(z N),

d<{0,1,2}.

THEOREM 2.1. Let q, pi, and k; be m + d times continuously differentiable in the
respective domains I and S. For d € {0,1,2}, every choice of collocation parameters
{cj}j=1,m, With0 < ¢y < -+ < ¢y < 1, and all quasiuniform mesh sequences {[ [y} with
sufficiently small h > 0, the following hold:



POLYNOMIAL SPLINE COLLOCATION METHODS ... 3015

(i) the exact collocation equation (1.10) defines a unique approximation ue Si,‘ﬁ 4(Zn)

and the resulting error function e := y —u satisfies
lle®]|, < Ckh™*d+1=k vk =0,1,...,m+d, (2.2)

where Cy’s are finite constants independent of h;
(ii) if the quadrature formulas (1.12) and (1.13) satisfy that fori =0,1,...,n—1,
H1

J b (ti+Th)dt— > widp(ti+dih;) =0(h}'), (2.3)
=1

J W+ The)dr— S wp (b + dihi) = O (DY), (2.4)
=1

and forj=1,....m

Ho

J P(tn+Thy)dT— D> wjip(tn+djihn) = 0(hy), (2.5)

=1

J Y (tn+Thy)dT — zw,lqj tn+djihy) =0 (hy), (2.6)
1=1
whenever the integrand is sufficiently smooth, then for all the discretized ap-
proximation solution 1t € Sr(,‘fl 41(Zn) defined by (1.17), the following relationships
hold:

le®] == [[u® -2 P, <Qeh™*, fork=0,1,...,s0, (2.7)
[ ®]|, = lly® —a®|, <Ch7%, fork=0,1,...,s1, (2.8)

where so = min{ry + 1,71} + 1, s1 = min{sg,m + d + 1}, and Qy, C "y are finite
constants independent of h.

PrROOF. We will prove the theorem by induction using the same technique as in
[2, 3, 9].

(i) Forn=0,1,....N—-1land forallt =t, +Th, € 0, (T € (0,1]), the exact solution
y can be obtained by Taylor series expansion:

m+d
Y (tn+Thy) = Z YO tn)T" Ty IR, (1), (2.9)
where
( d+1) d
Ru(1) = o [ b ) (7=, (2.10)

If the restriction of u € S, (@) +4(Zn) to the subinterval o, is given by (1.5), then by

using (2.9), the error function on this subinterval has the form

a (r) m
t
en(tn+Thy) = > e";# "l +hh > Buy T+ RIIR, (T), (2.11)
r=0 . r=1
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where

@+7) (g, ) —

Subtracting the collocation equation (1.8) from the integrodifferential equation (1.1),
replacing t by ¢, j, using (1.6) for n = 0, and utilizing the expression (2.11) for e, yields

h: 2 Doo = k"4 1y, forn =0, (2.13)
n-1
zianBn =FnEp+ hw+d_l7/n + Z (hiQn,i + pn,i)s for n > 0, (2.14)

i=1

where D,, is an m X m matrix, F, is an m X (d + 1) matrix, E, is a (d + 1) vector, and
Bn, Tn,y dn,is Pn,i are m vectors whose elements are given by

(Dn) =P 2[(d+7)(d+7 =1) = hypo(tn +djhn)c — (A +7)cjhnpy (tn+cjhn)]

N
3 JOJ Ko (b js tn + Tha) T dT

..
- (d+r)h$lj ! ki(tnj tn+Thy) T4 T,
0

.
po(tn.) +th " Ko(tnj,tn + Th)dT, itr =0,
0
Cj
BP0 (b + 1 () 412 | Koot + Tha) T T

.
+th "k (tn g, to + Thy)dT, ifr=1,

(Fn) = ; 0

J,r hz—z

. [—7r(r—1)c; 2 +hicipo(tn) +rhac] ' pi(tn)]

.
+h§J " Ko (tn g tn + Thy) T"dT
0

c:
+rh121JOJkl(tn,jatn+Thn)TrildT, ifr>2,

(ETL)V = e1(’LT—)l (tﬂ)!
(Bn), = Bny as defined in (2.12),

(Vn)j =—Ry/(cj) + h%p()(tn,j)Rn(cj) +hnpi (tn,j) Ry (cj)

.
+h,31J " Ko (tj tn + Tha)Ru(T)dT

0

..
+hflJ ! ki(tnj tn+Thy) Ry, (T)dT,

0

.

(Qn,i)j = JOJ kO(tn,j,ti-f—Thi)ei(ti +T”Li)dT,

.
(Pn,i)j = JOJ ki(tnj,ti+Thi)e;(ti+Th;)dT.
(2.15)
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Note that the matrix D,, defined by the coefficient of {f, ;} on the left-hand side of
(2.13) and (2.14) is invertible whenever h,, is sufficiently small. This follows from the
assumptions of the theorem and the fact that for h,, = 0 the determinant of this matrix
is essentially a Vandermonde determinant. Therefore, for sufficiently small h,, > 0, the
matrix D, possesses a uniformly bounded inverse.

By the hypothesis on p; and k;, the £;-norm of the vector 7y is uniformly bounded.
Hence, for p =m+d+1, (2.13) leads to

1Boll1 = 2. | Boa| =1IDg|ll[roll =: Mo. (2.16)
I=1

From (2.11) we have the following result:

leo(to+Tho) | < ™ 1 (Mo + | Ro(T)|)

(2.17)
< Coh™*4*1 for T € (0,1].

By differentiating (2.11) k times (k = 1,2,...,m +d) and using (2.16), we obtain
eX(to+Tho)| < Ckn™*d+1-k  for T € (0,1]. (2.18)
0 0
Suppose, for j =0,1,...,n-1,
leX(tj+Thy)| < Cfpm*a1k for T € (0,11, k=0,1,...,m+d; (2.19)

we prove that (2.19) holds for j = n. By the assumption of the theorem on g, pi,
and k; and (2.19), it follows that for sufficiently small h, |E,|l1 = O(h™*), lIgn.ill1 =
O(h™+ 1) ppili = O(h™*4) (i = 0,1,...,n—1), and [|7,|; is bounded. Thus, for
p=m+d+1andd e {0,1,2}, (2.14) leads to

m
1Bully := > | Bni| <My +M;h. (2.20)
=1

Then, from (2.20) and (2.11), it follows that
lek (ty +Thy)| < Ckpm*+d*1=k " for T € (0,1], k= 0,1,...,m+d. (2.21)

This completes the first assertion of the theorem.
(ii) By (1.5) and (1.17) for every n = 0,1,...,N — 1, the error function ¢ := u — 1 can be
written as
d gi('er)l(t”) Y 1,7 S0 < d+r
enltn+Thy) = > Ty Zlnn,yr , (2.22)
e

r=0

where

hf’? Nny = (an,r - dn,r)hz-w- (2.23)
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By subtracting the discretized equation (1.16) from the exact collocation equation
(1.10) and using (1.15) and (2.22), we have the following systems:

h8072ﬁ0n0 = ho70,0 + 70,0, forn =0, (2.24)
R R n-1 n-1
W Dunn = En&nt Rntun+ > Mitni+Tun+ > Tni, for n>0, (2.25)

i=1 i=1

where v := (Ep [uil,...,Epilu)T and 7 := (E) ;[ujl,..., Bl [u;])T. The matrices
D, By, &, have the same orders as D,,, Fy,, E,, from (2.13) and (2.14). The difference
between them is that the integrals are replaced with quadrature formulas (1.12) and
(1.13).

The expressions (2.24) and (2.25) have the same structure as (2.13) and (2.14), respec-
tively. The smoothness hypothesis and the assumption on the order of the quadrature
formulas (2.3), (2.4), (2.5), and (2.6) imply [[7nnlli = [Panli = O(hy) and [[1n;ll1 =
17n.illh = O (h3!). Therefore, by the same reasoning in the proof of assertion (i), in-
equality (2.7) is true.

From (2.2) and (2.7),

1e®] =1y ® @, < lle]ls + W]l < Ceh 17k, (2.26)

forall k=0,1,...,s1, with sy = min{sg,m+d +1}. O

COROLLARY 2.2. Let the assumptions of Theorem 2.1 hold. If the quadrature formu-
las (1.12) and (1.13) are of interpolatory type, with uy = u = m +d, then the approxi-
mation il € Sr(fl 1(Zn) defined by the discretized collocation equation (1.16) leads to an
error é(t) satisfying

||é(k)||oo = O(hm+d+lfk), (2.27)

for k = 0,...,m+d, every choice of collocation parameters {c;}-1,..m, With 0 < ¢1 <
-+ < cm < 1, and all quasiuniform mesh sequences {[ [y} with sufficiently small h > 0,
and d € {0,1,2}.

If we use pp =y =m, dj =cj, and dj; = cjc; (j,l =1,2,...,m) in the quadrature
formulas, then our method leads to some simplifications. These simplifications are
useful when they do not affect the convergence order given by Theorem 2.1, namely,
si=m+d+1.

COROLLARY 2.3. Ifin the VIDE (1.1), q € C™*4(I), p; € C™+4(I), k; € C"*4(S), and
m = d, then there exists the set of collocation parameters {c;} j-1,..m such that for the ap-
proximation i € S,(,fl 4(Zn) defined by the discretized collocation equation (1.16), where
Ho=H1 =m,d;=ci,anddj = cjc,

||é(k)||oo = O(hm+d+lfk), (2.28)

fork=0,....m+d, de {0,1,2}.
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PROOF. If pug =y = m, m > d, then we can choose the collocation parameters to
be the zeros of the shifted Legendre polynomial P, (2s — 1) (i.e., the Gauss points for
(0,1), as the collocation parameters {c;} j-1,. m). Then in the quadrature formulas (2.3),
(2.4), (2.5), and (2.6), r9o = 1 = 2m. Therefore, sp =2m+1 and sy =m+d+1 in (2.7)
and (2.8), respectively, which proves the corollary. |

3. Local superconvergence on Zy. Inmany applications one is especially interested
in obtaining higher-order approximations at the mesh points Zy. There arises the ques-
tion as to whether there exist particular sets of collocation parameters leading to a
discrete convergence order (on Zy) that is higher than the global order.

In the subsequent analysis, the integrals

1 m
Ji:= JO sk (s—cj)ds, keN, (3.1

j=1
play a critical role.

THEOREM 3.1. Suppose that the given functions q, pi, and k; (i = 0,1) in the VIDE
(1.1) are m + p times continuously differentiable on their respective domains I and S
(d+1<p<mandd < {0,1,2}), and assume that the collocation parameters {C;j} j-1,..m
are chosen so that Jy =0 for k = 0,1,...,p —1, and J, # 0. Then, for all quasiuniform
mesh sequences {] [y} with sufficiently small h > 0, the following hold:

(i) ifue Sﬁ,‘fi 41(Zn) is the approximate solution defined by the exact collocation equa-
tion (1.8) and y is the exact solution of (1.1), then

max |y (tn) —u(ty)| =0(h™*?), ash— 0, Nh<yT, (3.2)

tneZn

(ii) if the quadrature formulas (1.12) satisfy (2.3) and (2.4), the quadrature formu-
las (1.13) satisfy (2.5) and (2.6), and 1l € S,(,‘ﬁd(ZN) is the approximate solution
defined by the discretized collocation equation (1.16), then

max |y (tn) - (tn) | =0(h%), ash— 0, Nh<yT, (3.3)

theZnN
where x = min{m+ p,so} and so = min{ro+1,7;} +1.

PROOF. (i) The exact collocation equation (1.8) can be written in the form

u” (t) = q(t) + po(®)u(t) + pr(HHu' () —6(t)

t t (34)
+j kou,s)u(s)de ki (t,s)u' (s)ds,
0 0

where 6(t) (the residual) is (at least) continuous on each of the subintervals o, and
vanishes at the collocation points X(N), t € I. Then, by (3.4) and (1.1), the error function
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satisfies

e’ (t) =po(t)e(t) +pi(t)e'(t) +6(t)

t t (3.5)
+J ko(t,s)e(s)ds+J ki(t,s)e’(s)ds,
0 0

with initial conditions e(0) =0, e’ (0) = 0.
The solution of (3.5) for t = t, € Zy can be expressed in the form (see [4, pages
130-131))

n-1
e(ty) =h > E™, (3.6)
i=0

where E™' is the quadrature error which, by (3.1), has an order m + p.
Hence,

e(tn) = |y (tn) —u(tn) | = O(K™7), (3.7)

which proves the first assertion of the theorem.
(ii) The second assertion of Theorem 3.1 now follows from (2.7) and (3.2). O

It is well known that the orthogonality conditions Jy =0 (k =0,...,p — 1) imply that
the degree of precision of the m-point interpolatory quadrature formula on [0, 1] based
on the abscissas {cj}j-1,..m is m+p —1. Since this degree of precision cannot exceed
the value 2m — 1, we always have p < m. Moreover, since the local order is required to
be greater than or equal to the global order (m +d + 1), it is necessary that d + 2 < p.
The following corollary deals with some important special cases and its proof relies on
the above theorem.

COROLLARY 3.2. Let the assumptions of Theorem 3.1 hold, then
(i) if the collocation parameters {c;j}j-1,..m are the Gauss(-Legendre) points for
(0,1), that is, the zeros of the shifted Legendre polynomial Py, (25 —1), then J; =0
fork=0,...,m—1, with J,, # 0, and hence
max |y (t,) -u(ty)| =0(h*™), ash — 0, Nh<yT, (3.8)
tneZn
(ii) if the collocation parameters {c;}j-1,..m are the Radau II points for (0,1], that
is, the zeros of the polynomial Py, _1(2s — 1) — Py, (25 — 1), then Jx = 0 for k =
0,...,m—2, with J,,_1 = 0, and hence
max |y (ty) —u(ty)| =0(h*™ 1Y), ash—0, Nh<yT. (3.9)

theZn

4. Numerical example. The convergence results derived in the preceding sections
will be illustrated by applying various collocation methods to the following problem.

ExXAMPLE 4.1. Consider the following integrodifferential equation of second order:

t
Yt =at)+y(t) +J0 tsy(s)ds, y(0)=1, y(0)=1, t[0,1], (4.1)
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TABLE 4.1. Approximate error when m = 2 and ({c] = 1/2, ¢ = 1}) (uni-
formly distributed collocation parameters).

d el en/2 eN

0 1.68x 1077 0.593657978 1.089198840
1 0 0.000304350 0.012944677
2 0 0.000303703 0.012941467
3 0 0.000303661 0.012940922

TABLE 4.2. Approximate error when m =3 and ({c1 =1/3, c2 =2/3, c3 =1})
(uniformly distributed collocation parameters).

d e eN/2 eN

0 2.45x107° 0.015164638 0.172113704

1 0 0.000303699 0.012941460

2 0 0.000303701 0.012941459

3 0 0.000303688 0.012941212
TABLE 4.3. Approximate error when m = 2 and (Radau II parameters) ({c; =
1/3, co =1}).

d e eN/2 en

0 1.68x 1077 0.593423722 1.089594757

1 0 0.000304350 0.012944677

2 0 0.000303704 0.012941470

3 0 17489.97760 1.97 x 1019

TABLE 4.4. Approximate error when m = 3 and (Radau II parameters) ({c] =
(4-6)/10, c2 = (4++6)/10, c3 = 1}).

d e1 eny/2 enN

0 0.000027239 0.57170808 0.126648551
1 0 0.0003033700 0.012941460
2 0 0.000303703 0.012941464
3 0 1.89x 1010 1.36x 1034

with g (t) chosen in such a way that it has the following exact solution:
y(t) =t>+el. 4.2)
Following Tables 4.1, 4.2, 4.3, and 4.4 illustrate the error approximations as

e1:=|y(0.01) -u(0.01)|,
en2:=|¥(0.5)—u(0.5)], 4.3)
en:=|y(1)—u()],
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where u € Sfmd(ZN) is the approximate solution if ¢; := ih € Zy with h = 0.01 when
me {2,3}and d € {0,1,2,3}.

As we can see from the above tables, the collocation spline method yields very good
approximations when d = 1,2. However, for d = 0, the method performs poorly. But
for the case d = 3, the method converges if the collocation parameters are uniformly
distributed and diverges if the collocation parameters are Radau II points, which can
be seen from Tables 4.1, 4.2, 4.3, and 4.4.
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