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A BAYESIAN MODEL FOR BINARY MARKOV CHAINS
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This note is concerned with Bayesian estimation of the transition probabilities of a binary
Markov chain observed from heterogeneous individuals. The model is founded on Jeffreys’
prior which allows for transition probabilities to be correlated. The Bayesian estimator is
approximated by means of Monte Carlo Markov chain (MCMC) techniques. The performance
of the Bayesian estimates is illustrated by analyzing a small simulated data set.
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1. Introduction. Markov chain models have been useful for the analysis of longi-
tudinal data in many areas of research. In ecology, the model was used to study the
migration behavior of animal population from capture-recapture data [2]; in pathology,
the model was useful to describe the evolution of certain viral or infectious diseases
[3, 6]; in sociology, the model was used for the modeling of the behavior of smoking
population [5].

In most applications, these models do not take into account possible correlations
between different rows of the transition matrix. As the observations are dependent, it
seems more reasonable to consider prior distributions which incorporate a certain type
of dependence between the components of the parameters.

In this note, we explore the Bayesian model, for binary Markov chains, using Jeffreys’
prior which has some advantages: the model has no extra parameters and permits a
structure of correlation between the transition probabilities.

In the sequel, X = (Xj,...,X,) denotes a homogenous and stationary Markov chain
with transition probabilities

pIJZP(Xt+1=J|Xt:i)I l,j:0,1 (11)

The equilibrium probability of observing a 1, which we denote by p, represents the long-
run proportion of time when the Markov chain is in state 1. From [1], this probability
is given by p = po1/(po1 + P10)-

Letting x = (xo,...,Xn) denote a fully observed realization of X, conditionally to
X = 1, the distribution of the observed sequence is then

flx1x0=1,0)=(1-po1)" " po pis° (1-p10)"", (1.2)

where 1;; is the number of one-step transition from state i to state j until time n and
0 = (po1,p10) € 10,1[? is the unknown parameter which is the aim of this inference.
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Using the distribution (1.2), the maximum likelihood estimates (MLES) of po; and p1o
are

. No1 A Nio
po1 = oo + 1101’ Pio = P (1.3)
and the MLE of pis ﬁ = ﬁo] /(ﬁ()] +ﬁ10).

The remainder of the note is organized as follows. In the next section, we calculate
Jeffreys’ prior and the correspondent posterior distribution. Next, we describe the way
to approximate the Bayesian estimator via the independent Metropolis-Hasting (IMH)
algorithm. Finally, we develop a numerical study by simulation in order to compare the
Bayesian estimates with the MLEs.

2. Jeffreys’ prior. The goal here is to determine Jeffreys’ prior (see, e.g., [4]) and its
correspondent posterior distribution. Jeffreys’ prior is obtained by taking the determi-
nant of the information matrix which is defined according to Fisher as

(2.1)

Z —
yn(9)=5[_w}

0pij0pkn

where 1,,(0 | xo = 1) is the logarithm function of (1.2). To obtain (2.1), we take the
second derivates of 1,,(0 | xo = 1), and then take the expectation with negative sign to
yield

E[_ 021,(0 | xo = 1)} E(noy | Xo=1) +15(noo | Xo=1)

P P (1-po)®
(2.2)
azln(0|X()=1) _E(HIQ‘X():l) E(?’l11|X0=1)
E| - 5 = 5 + .
oPio Pio (1-p10)

Considering the expectation of the sufficient statistics (#109,701,M10,711), We have

P(Xioi=1,Xe=jlXo=1)

M=

E(nij | Xo=1) =

~
Il
—

Il
M=

PX;=jlXe1=0)P(Xi1=1]Xo=1) (2.3)

-~
I

1

n

(t-1)

=Pij Z P
t=1

where pi}‘) denotes the k-step transition probabilities. By the Chapman-Kolmogorov
equation [1], these probabilities may be written in terms of the one-step transition
probabilities p;; as
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P& = (Po1 +pio) 1[19104'1001 (L=po1 —p1o k]
P = (por+p10) " [Por = por (1= por = pro)“| 2.4)
po = (Po1 +p10) 1[7010—1710 (1-po1—p1o k],
pY = (po1 +pio) 1[1001+1010 (I=po1—p1o k]
Then, we deduce that
gl 1-(1-po1—pi0)" |
E(no1 | Xo=1) = po1 (po1 + P10) ! np1o—pP1o (1=po1 =P10)
L Po1 tP1o
o 1- (1-por —p10)" |
E(noo | Xo = 1) = poo(por +p10) " | np10—p1o (1=Poi = p1o)
L Po1 tP1o ]
- _a e (2.5)
E(nio | Xo=1) = pio(pn +P10)_] npo1+pPio Po1=P1o
L Po1 tP1o
o 1-(1-po1—pi0)" |
E(ni1 | Xo=1) = pui(por +pio) " mpor +pio (1=Poi1 =P10)
L Po1 tP1o
Hence, the Fisher information matrix can be written as
-~ Aq 0
In(0) = ( 0 AZZ)’ (2.6)
where
A Plo[n(lﬂm +P10)*1+(1*P01*P10)n]
11 = 3
por (1= por) (Po1 + p10)°
2.7)
N an(POl+P10)+F710[1—(1—P10—P01)n]
2 = .
p1o(1-p10) (pro+por)°
Since Jeffreys’ prior 1 (0) is defined by
17(0) o [det (9,(0))]"72, 2.8)
where det(-) denotes the determinant, it follows that
172
(0) o [n(lﬂ01+7010)—1+(1—P01—P10) ]
1/2
X [nlﬂm(lﬂm +p10) +P10(1-Por *Pw)n] (2.9)

xpoi?(1-por1) 2 (1=pi0) " (por + pro) 7,
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and the posterior density is

nl/2
(0 | x) o< [n(por +pro) — 1+ (1= por — p10)" |

1/2
><[nl?01(7001+7010)+l710(1—l’01—Pw)n] (2.10)
xped M2 (1= por) "0 2Pl (1= p10) ™ 2 (por + pr0)

The main advantage of the density (2.9) is that it provides a convenient analysis
when the transition probabilities may be correlated. Moreover, this prior has no extra
parameters and it is a conjugate distribution for f(x | xo = 1,0) given by (1.2). Also
notice that for the particular case po; +p1o = 1 (independent case), Jeffreys’ prior given
by (2.9) is just the beta distribution $Be(1/2,1/2).

3. Bayesian estimation of transition probabilities. Under the squared error loss, we
know that the Bayes estimator coincides with the posterior mean, that is,

E(0]x) :JQW(QIx)dQ. (3.1)

In the case of Jeffreys’ prior, the above integral is difficult to calculate, so we propose
an approximation of it by means of a Monte Carlo Markov chain (MCMC) algorithm;
namely, the IMH algorithm (see [7]).

The fundamental idea behind these algorithms is to construct a homogenous and
ergodic Markov chain () with stationary measure 17(0 | x). For mg large enough,
0mo) is roughly distributed from (0 | x) and the sample 00 @Mo+D can be
used to derive the posterior means. For instance, the Ergodic theorem (cf. [7]) justifies
the approximation of the integral (3.1) by the empirical average

1 m
_Zg(moﬂ) (3.2)
mio

in the sense that (3.2) is converging to the integral (3.1) for almost every realization
of the chain (V) under minimal conditions. Next, we give the description of the IMH
algorithm.

Given 0 = (p(()?),pgg)), the IMH algorithm at step [ proceeds as follows.

STEP 1. Generate vy = (", y{") ~ Ujo.1) x Uo.1).-
STEP 2. Take

pD) vy with probability o (89, y®), 33)
0 with probability 1 —a (01, y®), '

where
(i) 00D, y®) =min(rr(y? | x)/m(0V | x),1),
(ii) 7t(- | x) is the posterior density given by (2.10).
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As convergence assessments, we use the cumulated sums method (cf. [7]) in the sense
that a necessary condition for convergence is the stabilization of the empirical average
(3.2). Also, this method of convergence control gives the minimal value m of iterations
that provides the approximation of the integral (3.1) by the empirical average (3.2).

4. Numerical study. In this section, we illustrate the performance of the Bayesian
estimation based on Jeffreys’ prior by analyzing a small simulated data set.

On the one hand, the simulation study compares the proposed Bayesian estimators
with the MLEs. On the other hand, it compares the two estimators for independently-
chosen transition probabilities in both cases of the beta distribution %e(1/2,1/2) and
the uniform distribution.

We recall that under the beta prior distribution

-1/2_-1/2

T (po1,p10) = pio > (1-p10) " pot* (1= por) %, (4.1)
the Bayesian estimator is calculated explicitly by
Po1 = %, D10 = %- 4.2)
The Bayesian solution, using the uniform prior distribution
(Po1, P10) = 0,11 (P10) X Ijo,11 (Po1), (4.3)
is given by
Po1 = Mo +1 P1o Mot 1 (4.4)

TL00+1’L01+2’ =1110+1/L11+2-
4.1. A simulated data set. Table 4.1 displays a data set consisting of 20 indepen-
dent Markov chains each with 21 observations; obviously, the chains may be of differing
lengths. To generate this data set, transition probabilities for each chain are first drawn
from Jeffreys’ prior given by (2.9) by using the IMH algorithm (see Section 3). We as-
sume, without loss of generality, that the first state Xy, in each chain, is equal to 1. The
remaining observations in each chain are drawn in succession from Bernoulli distribu-
tion with successive probabilities given by the appropriate transition probabilities.
We recall that Jeffreys’ prior permits a certain type of dependence between the ran-
dom vectors P;¢ and Py;. Indeed, P;¢ and Py; are correlated with correlation coefficient

p = E(P10P01)—E(P10)E(P01), (4.5)
010001

where o (resp., 0p1) is the standard deviation of Py (resp., Po1).
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To approximate this coefficient, we use the sample 0V, ..., 0 drawn from Jeffreys’
prior thanks to the IMH algorithm. Therefore, an approximation of p is

le 1?7%)19(()11) pie 1’71 zz 1P(l)
=
\/mZL 1 P10 Zz 117 \/"’LZ[ 1 1701 (Z?:llp(()ll))

(4.6)

Numerically, we have p = 0.36.

To obtain the Bayesian estimator p;;, based on Jeffreys’ prior, of the transition proba-
bilities, given each chain, we apply the IMH algorithm to the posterior distribution given
by (2.10). The MLE p;; is calculated from (1.3). The Bayesian estimator p;; founded on
the beta distribution (resp., the uniform distribution) is obtained from (4.2) (resp., from
(4.4)). The results of this experiment are provided in Table 4.1.

4.2. Simulation results. Table 4.1 shows the actual transition probabilities p;; from
the simulation, the MLE p;;, and the Bayesian estimates p;; of the transition probabili-
ties for each chain.

Notice that for many chains, the MLE takes extreme values O or 1; this is explained
by the restricted size of the simulated sample. In addition, for the chain no. 8, po; does
not exist because the chain never entered state 0, whereas the Bayesian estimates do
not suffer from these problems because a common prior distribution is assumed.

Also shown in Table 4.1 are the mean actual and the estimated transition probabil-
ities, as well as mean square errors (MSE) for the estimates. The MSE are calculated
by averaging the squared difference between the estimated probability and the actual
probability used in simulation. Notice that the Bayes posterior means perform better
than the MLEs. In particular, the MSE of the MLEs is clearly higher than that correspond-
ing to the Bayes estimates.

This study also illustrates the usefulness of modeling the dependence among the
transition probabilities. In particular, the resulting posterior distributions, under the
assumption that P;g and Py; are independent, may not be accurate. Indeed, using the
beta prior distribution (resp., the uniform prior distribution), the resulting changes in
the posterior means range from —0.1594 to 0.1909 (resp., from —0.0844 to 0.2574)
for p1o and from —0.1588 to 0.1445 (resp., from —0.1588 to 0.1098) for po;. More-
over, the MSEs corresponding to p1o and po; become 0.0122 and 0.0096 (resp., 0.0131
and 0.0101). These are slightly higher than the results obtained by modeling the de-
pendence. All these results lead to privilege the Bayesian solution based on Jeffreys’
prior.

For the previous experiment, a Pascal program is written to run the transition proba-
bilities. The Bayesian estimator p;;, founded on Jeffreys’ prior, is obtained from a single
chain including 10* iterations.

Figures 4.1 and 4.2 give an example of the convergence evaluation (see Section 3).
Figure 4.1 (resp., Figure 4.2) describes the convergence of the estimator po (resp., Po1)
as the number m of iterations increases. The final values are 0.4073 and 0.1742 for po
and Py, respectively.
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FIGURE 4.1. Convergence of p1o.
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FIGURE 4.2. Convergence of po1.

5. Conclusion. In this note, we studied the Bayesian estimation for the transition
probabilities of a binary Markov chain under Jeffreys’ prior distribution. As shown,
this prior has many advantages: it permits a certain type of dependence between the



A BAYESIAN MODEL FOR BINARY MARKOV CHAINS 429

components of the parameter. The absence of extra parameter in this prior is of great
interest because we do not need to do more extra estimation. A numerical study by
simulation is also carried out to evaluate the performance of the Bayesian estimates
compared to the MLEs. The following stage of this note will be to generalize the sug-
gested method in the case of missing data.
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