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The color type of a spanning forest of a graph with colored edges is defined and, subse-
quently, it is proved that the generating function of such spanning forests is obtained as
the formal expansion of a certain determinant. An analogous determinantal expansion yields
the generating function of all spanning forests of a given color type that contain a specific
subforest. Algorithms are described for obtaining a list of all colored spanning trees and
spanning forests of any graph with colored edges based on symbolic calculation.
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1. Colored spanning forests. We start out by defining colored trees and forests in a
graph with colored edges. The generating function of such objects is then introduced.
Relying on the concept of tree-monomial matrices, we then prove that the generating
function of a certain type of colored spanning forests is equal to the formal expansion
of a determinant.

Let G be a graph with n + 1 vertices denoted by 1,2,...,n+ 1. Denote by C a set of
cardinality s, the elements of which are called colors. Assume that each edge of G is
colored with one of the s colors in C. To edge ij, we associate the indeterminate x;;.
When the color ¢ of edge ij is of the essence, we append an additional index and write
Xije. Superscripts of the form xl(;‘c) are used to allow for multiple edges of the same
color between two vertices. We refer to Berge [4] and Constantine [7, Chapter 4] for the
basic concepts of graph theory. By a forest, we understand a cycle-free subgraph of G.
The connected components of a forest are called trees. If the forest is such that each
vertex of G is also a vertex of the forest, we call it a spanning forest. A spanning treeis a
connected subgraph of G having n edges. (Alternatively, a spanning tree is a spanning
forest having a single connected component.) If the edges of a forest carry distinct
colors, the forest is said to be colorful. In particular, we can talk about colorful trees,
colorful spanning forests, and colorful spanning trees. Furthermore, if the emphasis is
on the color of the edges of a forest, we refer to the forest as a colored forest with an
obvious terminological extension to any subgraph of G.

The generating function of a colored tree T is the monomial

g(T) = H Xijc- (1.1)
ijer
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If F is a colored forest, we define the generating function of F as

FfE) =]]a(m), (1.2)

TeF

the product being the overall trees in F.
If S is a set of colored forests of G, the generating function of S is defined by

h(s)= > f(F). (1.3)

FeS§

2. Tree-monomial matrices. LetI = {1,...,n}. Consider the indeterminates x;; with
i+ j,whereieland jelu{n+1}. Amatrix M = (m;) of dimension n is called a
tree-monomial matrix if its entries satisfy the following conditions:

m;; = x;; forsomejelu{n+1}, j=+i, (2.1)
-xij ifk=j,

Mg = Y J _ (2.2)
0 otherwise.

As we will see below, the determinant of the matrix M is either a monomial asso-
ciated with a spanning tree or 0, hence the name of tree-monomial matrices. We thus
distinguish it from the monomial matrices defined in Berman and Plemmons [5].

Denote by L,, the set of tree-monomial matrices of dimension n. For M € L,,, we
denote by M (1) the matrix obtained from M by replacing all the indeterminates in M
with the number 1. Observe the following lemma.

LEMMA 2.1. IfM €L, then detM (1) is either O or 1.

PROOF. Indeed, if each row of M (1) contains one 1 and one —1, the row sums of
M(1) are zero, and therefore M(1) is singular; thus detM (1) = 0. We may therefore
assume that the first row of M (1) has a 1 in position 1 and the rest of the entries are 0.
Expanding det M (1) along the first row, we see that det M (1) is equal to the determinant
of a matrix in L;,_; which by induction has determinant O or 1. O

LEMMA 2.2. There is a bijection between the spanning trees with n + 1 vertices and
the elements M € L,, with detM (1) = 1.

PROOF. Let T be a spanning tree with n+ 1 vertices labeled 1,...,n+ 1. By a process
of layered removals of vertices of degree 1, described below, we associate to T a matrix
Mr € L,.

Fix and never remove vertex n + 1. Let E be the set of edges (i, ) of T such that i is
a vertex of degree 1 in T, and i is not vertex n+ 1. For (i, j) € E, define the ith column
of Mr to be 0, with the exception of entry i which equals x;; and entry j which equals
-xij,if j#n+1;if j = n+1, all entries in the ith column are 0 except the ith which
equals x;;. Remove all vertices i with (i, j) € E. Repeat the process in the resulting tree,
which has strictly fewer edges. The process terminates when only vertex n + 1 remains.
At this stage, we produced a matrix Mt € L,,. The matrix Mt (1) has a determinant equal
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to 1. To see this, write M7 (1) = (a;;). We have

detMr(1) = > sgn(o) [ [aicw), (2.3)

with the sum extending over all permutations o on n points. Except for the identity
permutation, any other o has nontrivial cycles which correspond to cycles in T. Since
T is a tree, it has no cycles, thus []; dis(i) = 0. Therefore, detM (1) = [];ai; = 1.

Conversely, let M € L,, and assume that detM (1) = 1. There exists i such that row i
of M(1) has 1 in position i and all its other entries are 0; else, the row sums of M (1)
would be zero, contradicting the nonsingularity. The cofactor of the ith entry in row i
is a matrix M;(1), with M; € L,,_; and detM;(1) = 1. By induction, there is a spanning
tree T; on vertices {1,...,n+1} — {i} corresponding to M;. The spanning tree T obtained
from T; by appending edge (i, + 1), where i is a vertex of degree 1, corresponds to
the matrix M.

It is evident that distinct M’s yield distinct spanning trees, and distinct spanning
trees lead to distinct M’s. The correspondence we describe is therefore a bijection. (It
is similar to the marimba stick bijection discussed in Merris [12].) This ends the proof.

O

Denote by T — Mt the bijection we constructed. The bijection is obtained by fixing
vertex n + 1 and then constructing the matrix Mt by a process of layered removals of
vertices of degree 1 (different from 7 + 1) which we informally call prunning. We call
vertex n + 1 the root of tree T and say that T is rooted at n + 1. Furthermore, it is
clear from the construction of My that My is completely determined by its diagonal
entries. If the ith diagonal entry of My is x;;, we call edge (i,j) the tail of vertex i.
The correspondence My — {(i,j) : (i,j) is the tail of i, 1 <i < n} = Pr is therefore a
bijection. It helps to interchangeably and advantageously make use of the bijections
T < M7 < Pr. Clearly, instead of n+ 1, we could a priori have selected any vertex as the
root in the above construction.

By our previous remarks, it follows that

n
det (MT) = HXU = H Xij =g(T). (2.4)
i-1 ijeT
This leads us to the following conclusion.

PROPOSITION 2.3. The generating function of a spanning tree T is equal to the de-
terminant of the associated matrix M. (In symbols, g(T) = det(Mr) (= H?:l Xij).)

For any set S of spanning trees, we therefore have

g(S) = > det(Mr). (2.5)
TeS
We will see examples of sets of spanning trees and spanning forests where the sum
of determinants reduces to the expansion of a single determinant.
Implementational aspects programmed in C++, Mathematica and Splus, along with
issues of optimization in the presence of graph coloration, are found in Buliga [6].
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3. Spanning trees of a specific type. The bijection T — P; allows us to classify a
spanning tree as a sequence of n possibly repeated colors c; - - - ¢,, where ¢; is the
color of the tail of vertex i. The induced correspondence T — w = ¢y - - - ¢y, i a function
but not necessarily a bijection. Spanning trees mapped into the same sequence w form
an equivalence class which we denote by S,,; we call w the color type of a spanning tree
in Sy,. The type of a spanning tree in S,,, with w = ¢, - - - ¢y, is described in words by
saying that vertex i has a tail of color ¢;, 1 <i <n.

Our next result expresses the generating function of the colored spanning trees in
which vertex i has a tail of color ¢;, 1 < i < n, as the formal expansion of a single
determinant obtained directly from the coloration of the edges of G. We first introduce
some terminology.

Let H be a graph with vertices labeled 1,...,n + 1. We assume that all edges of H
carry the same color c. The Kirchhoff matrix of H is a symmetric (n + 1)-dimensional
vertex-versus-vertex matrix with entries described as follows: for i = j, the (i, j)th entry
is equal to —xjj. (in case of multiple edges, it equals — >, xg-‘c)); it is equal to O if there
are no edges present between vertices i and j. The ith diagonal entry is equal to the
negative of the sum of the off-diagonal entries in row i. Delete the row corresponding
to vertex n+ 1 and the column corresponding to vertex n + 1 in the Kirchhoff matrix of
H; denote the resulting matrix by K (H). Call K(H) the reduced Kirchhoff matrix of H.

The Kirchhoff matrix is sometimes called the Laplacian. Recent contributions and
extensions of the matrix-tree theorem appeared in Lewin [11] and Moon [13, 14]. Oper-
ations on the graph that increase its number of spanning trees are found in Kelmans
[9]. Applications to statistics are highlighted in Ouellette [15] and Constantine [8].

For a graph G with vertices labeled 1,...,1n+ 1 and each edge colored with one of s
possible colors, let G, be the subgraph with n + 1 vertices whose edges are the edges
of G of color c. Denote by K(G.) the reduced Kirchhoff matrix of G.. Our result may
now be stated as follows.

THEOREM 3.1. In a graph G with n+ 1 vertices, the generating function of the set of
spanning trees, each having the property that vertex i has a tail of color c;, is obtained
as the formal determinant of the matrix whose ith column is equal to the ith column of
matrix K(G,), 1 <i<n.

PROOF. We are interested in g(S,,), where w = ¢; - - - ¢,. Denote by K (S,,) the matrix
whose ith column is equal to the ith column of K(G¢,), 1 < i < n. Use the linearity of
the determinant in each of its rows (or columns) to express det(K(S,)) as a sum of
determinants of tree-monomial matrices; in fact, if we use d; to denote the number of
distinct indeterminates in the ith column of K (S,,), the sum contains []}-, d; determi-
nants of tree-monomial matrices. By Lemmas 2.1 and 2.2, the formal determinant of a
tree-monomial matrix is either O or the generating function of a spanning tree of type
w. Since for each i, all indeterminates x;j.,, with edge ij of color ¢;, occur in the ith
column on K(S,,), the generating function of every spanning tree of type w =c;---¢cp
appears as a term in the expansion of det(K(S,)). There are no repetitions since a
repetition can occur if and only if a tree-monomial matrix is repeated; but different
monomial matrices (the determinats of which occur) in the expansion contain different
sets of indeterminates and they are therefore distinct. This ends the proof. O
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Expressed in symbols, we deduce that

9(Sw) = > det(My) =det (K(Sy)). (3.1)
TeSw

Denote by K(S,;1) the matrix obtained from K(Sy,) by substituting 1 for x;j. for all
i, j, and c. The last equation yields |S,, |, the cardinality of the set of spanning trees of
type w:

|Sw| = det(K(Sw;1)). (3.2)

It is self-evident that the entries of K(S,,;1) can be expressed directly in terms of inci-
dences in the graph G; the ith diagonal entry, for example, is the number of edges of
color c; incident with vertex i. To save space, we will not restate this last equation in
graph-theoretical language.

Observe that whereas the reduced Kirchhoff matrix is always symmetric, it is not the
same case for K(Sy ).

4. Spanning trees containing a specific subtree. Fix a subtree T of G with t vertices.
By an eventual relabeling of vertices, we may assume that n—t+2,...,n+1 are the t
vertices of T. Unless otherwise stated, whenever the context requires that a root be
specified, that root will be vertex n + 1 of the graph G. Fixatype w =c¢; ---cn. Let Sy,
denote the set of colored spanning trees of G of type w, each containing T as a subtree.
We attempt to find g(Sy 1), the generating function of the set of such spanning trees.
Denote by K(Sy,r) the matrix whose ith column is equal to the ith column of matrix
K(G;), 1 <i<n—t+1. The vertices by which matrix K (S, r) is indexed are vertices
not in the tree T.

THEOREM 4.1. The generating function g (S, r) is equal to the formal expansion of
the product of determinants det(Mr) det(Ky, 7).

PROOF. Let G’ be the graph obtained from G by contracting the tree T to a new
vertex ¥ and preserving all adjacencies and all indeterminates attached to the edges as
they appear in the original graph G. We form the color matrices G;i by treating the new
vertex v as a root. Observe that matrix K(S,, r) has as its ith column the ith column
of matrix G'ci. Theorem 3.1 yields now the generating function of the spanning trees of
G’ as the expansion of det(K (S, 1)), provided that we substitute the indeterminates
Xijc with anew indeterminate x;,. for all vertices j € T. Therefore, by multiplying each
term in det(K(Sy,)) by the generating function g(T) = det(Mr) of tree T, we obtain
the generating function of all spanning trees of type w that contain T as a subtree.
The main point being that a spanning tree of G of the kind we seek is obtained from a
spanning tree of G’, a specification of the edges of the spanning tree of G’ that connect
to T, with the tree T itself appended. It follows that g(Sy,r) = det(Mt)det(K(Sw,T)),
as stated. This ends the proof. |

If we consider all edges colored with the same color, we obtain the following corollary.
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COROLLARY 4.2. The generating function of the set of all spanning trees of a graph G
containing a given subtree T is equal to the product between the generating function of
T and the determinant of the matrix obtained from the Kirchhoff matrix of G by deleting
the rows and columns corresponding to the vertices of T.

Furthermore, if we replace in the corollary each indeterminate x;; by the number 1,
we obtain a formula for the number of spanning trees of G containing a given subtree T.
This numerical result was first proved in Lewin [11].

5. Rooted colored spanning forests. In this section, we assume that G is a graph
with vertices labeled 1,...,n. Let F = (T1,...,Tx) be a forest in G with connected com-
ponents T;, 1 < i < k. When the tree T; is rooted at vertex v;, we say that F is a rooted
forest at vertices (vy,...,Vx). To each rooted tree T;, with t; vertices, we associate Mr,,
the (t; — 1) x (t; — 1) matrix obtained by layered removals of vertices of degree 1 while
converging toward the root v;, as described in detail in the proof of Lemma 2.2. In
this case, we label the rows and columns of My, by the vertices present in the tree T;,
except for the root v;. To F, we now associate the direct sum of matrices My, in the
sense that we place the zeroes for all entries other than those previously defined. We
denote the resulting (n — k) X (n — k) matrix by M. The generating function of F is
g(F) = T1f., g(T) = [T, det(Mr,) = det(Mg) as is readily seen from definition (1.2)
and Proposition 2.3.

We define the type of a colored forest F = (T3,...,Tx) rooted at (vq,...,vx) to be
(wq,...,wg), where w; is the type of the colored tree T;. Let S be the set of colored
spanning forests of G rooted at (vq,...,vx) of type (w1,...,wy); we will find a deter-
minantal expression for the generating function of S. Computer algorithms for finding
spanning forests in certain classes of graphs are found in Annan [1]. Extensions of such
algorithms to colored forests appear in Buliga [6].

Identify k vertices (vy,...,Vx) in G. Denote by G the graph obtained from G by adding
anew vertex n+ 1 and joining it to vertices vy,..., V. Color each of the k new edges by
anew color s + 1. Associate the indeterminate x to each of the k new edges. Denote by
G, the subgraph of G on n+1 vertices with edges of color ¢;, 1 <i<s+1. Let K(G;)
be the n xn reduced Kirchhoff matrix of the graph G, upon deletion of the row and
column corresponding to vertex n + 1 in the Kirchhoff matrix of the graph G.,. We are
now in a position to enunciate our next theorem.

THEOREM 5.1. The generating function of the set of spanning forests rooted at (vy,...,
vi) of a graph G with n vertices, having the property that vertex i has a tail of color c;,
is equal to x~* times the formal determinant of the n x n matrix whose ith column is
equal to the ith column of matrix K(G,;), 1 <i<mn.

PROOF. Deletion of vertex n + 1 from a spanning tree of G yields a spanning forest
of the type we want. This association is a bijection. The result now follows by applying
Theorem 3.1 to obtain the generating function of the spanning trees of G having the
same type as the spanning forests in question. O

An extension of Theorem 4.1 yields the generating function of the spanning forests
of G of a given type that contain a given subforest. Let K be the n X n matrix whose
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ith column is equal to the ith column of matrix K(G;), 1 <i <n, and let U be a set
of vertices in G. Denote by K(U) the matrix obtained from K by deleting the rows and
columns whose indices correspond to vertices in U.

THEOREM 5.2. Let G(U) be the subgraph of a graph G induced by a subset U of ver-
ticesof G.IfF(G(U)) = (T1,...,Ty) is a spanning forest of G (U) with trees {T;} as compo-
nents, the generating function of the set of spanning forests of G rooted at (vy,v2,...,Vy),
with v; € T;, having the property that vertex i has a tail of color c; and that each tree of
such a spanning forest contains precisely one tree of F(G(U)), is equal to the generating
function of F(G(U)) times the formal determinant of K(U).

PROOF. As in the proof of Theorem 5.1, we add a new vertex n + 1 and join it to
vertices v1,...,Vx obtaining the graph G. Analogously, we produce G(U) by adding
the new vertex n+ 1 to G(U). Notice again the bijection between the spanning trees
of G and the spanning forests of G. We denote by F(G(U)) U {n + 1} the tree ob-
tained by adding vertex n + 1 to the forest F(G(U)). In view of this bijection, we
see that the generating function of the spanning forests in G containing F(G(U)) is
equal to the product between x % and the generating function of the spanning trees
in G containing the tree F(G(U)) U {n + 1}. By Theorems 4.1 and 5.1, the last ex-
pression is x ¥ - g(F(G(U)) U {n+1}) -detK(U) = x % - x*. g(F(G(U))) - detK(U) =
g(F(G(U)))-detK(U). Here g(H) denotes the generating function of the forest H. This
ends the proof. O

The result represents a colored generating function version of the numerical uncol-
ored version that appears in Lewin [11].

6. Examining some known results. If all edges of G are of one color, then there
is only one color type. All spanning trees of G are in the same class, and our main
result implies that the generating function for the spanning trees of G is equal to the
formal expansion of the determinant of the reduced Kirchhoff matrix of G. This is the
well-known matrix-tree theorem due to Kirchhoff [10].

A generating function for the set of all colorful spanning trees of G was obtained
by Bapat and Constantine [3] as the formal expansion of the mixed discriminant of
matrices K(G.), where ¢ ranges over a set of n colors. We refer the reader to [3, page
232] for a definition of the mixed discriminant. This result is recovered by observing
that the generating function for the set of all colorful spanning trees of G is equal to

> det (K(Sw)), (6.1)

weB
where B is the set of all sequences consisting of n colors selected out of s available
colors. It is evident that the mixed discriminant is just the sum of det(K(S,,)) when w
ranges over the n! sequences, possible to make with n distinct colors. Moreover, the
expansion of the mixed discriminant contains many formal determinantal expansions
that are actually zero since S,, is empty unless spanning trees of type w exist in G.
By examining the color incidences at each vertex, we obtain meaningful information
on the color types that correspond to actual colored spanning trees of that type, thus
avoiding redundant determinantal evaluations included in the mixed discriminant.
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By selecting as color types all sequences of length n having n; elements of color c;
out of a choice of s colors, Bapat and Constantine [3] express the generating function
of such spanning trees as a mixed discriminant. The result is obtained as a special case
of Theorem 3.1 by summing det(K(S,,)) over all such type choices w. In general, since
the subsets S, are disjoint, the generating function of any union of classes is

(U Sw) =D det (K(Sw)). (6.2)

The results on colorful spanning forests are recovered by observing that the same
generating function is obtained by rooting the forest F = (Ty,...,Ty) in H§:1 t; ways,
with ¢; being the number of vertices in tree T;.

7. Algorithms using symbolic manipulation. In the first part of this section, we
present an algorithm for obtaining the list of all spanning trees of a specific color
type for a given graph G. This algorithm is then extended to obtain all spanning trees
containing a given tree. At the end of the section, we generate all colorful spanning
trees for the complete graph Kg colored in a specific way (coloring by matchings).

The input to the main procedure for the first algorithm consists in the list graph
(containing all edges x;j. of the graph), the variable ord (representing the order of the
graph), and the required color type w for the spanning trees. The symbol s represents
the cardinality of the set of colors.

Procedure P1(graph, ord, w)
begin
allcolm = GEN(graph, ord)
d = DET (w, allcolm)
end.

The variable allcolm represents a list containing s color matrices (each having dimen-
sion (ord—1) X (ord —1)) for the given graph. This list is generated using the procedure
GEN.

Procedure GEN(graph, ord)
begin
initialize all entries in allcolm with 0
for xijc € graph, do
begin
add x;jc to entry (i,1) in allcolm[c]
if j!=ord, then
begin
subtract x;;c from entry (i, j) in allcolm[c]
subtract x;j. from entry (j,1) in allcolm[c]
add x;jc to entry (j,j) in allcolm[c]
end,
end,
return allcolm
end.
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This procedure requires O(m) time and O(s - ord?) storage space, where m repre-
sents the number of edges of the graph G.

The procedure DET is used to form the matrix K(S,,), as described in Section 3, and
to compute its determinant.

Procedure DET (w, allcolm)
begin
for cp, € w, do
begin
copy column p of allcolm[c, ] into column p of K(Sw)
end,
return the determinant of K(Sy,)
end.

This procedure requires O (ord?) space. The output of this procedure is O (if there are
no spanning trees of color type w) or a sum of monomials, each monomial representing
a spanning tree of the required type.

The procedure P2 presented below determines all colored spanning trees having color
type w that contain a given tree t.

Procedure P2(graph, ord, w, t)
begin
allcolm = GEN(graph, ord)
=9
for xijc €t, do
begin
if (i¢landi=+ord), then
l=1u{i}
if (j¢1and j=+ord), then
I=1u{j}
end,
for ¢, € w, do
begin
copy column p of allcolm[c, ] into column p of K(S.)
end,
obtain Ky, ; by erasing from K(S,,) all rows and columns indicated by elements of [
gt=1
for xijc €t, do
begin
gt =gtx Xijc
end,
return gt *x det(Ky )
end.

The list | contains all vertices in the tree t that are different from the root. The
elements of | determine which rows and columns are erased from the matrix K(Sy).
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The generating function of all spanning trees containing tree t having color type w is
returned as the product between the generating function gt of t and the determinant
of the new matrix Ky, ;.

As an illustration of the use of these routines, consider the complete graph Kg with
edges colored by using seven colors. The coloration has the properties that all edges
having color ¢; (1 < i < 7) cover all vertices of Kg and are vertex disjoint. We say that Kg
is colored by matchings. Wallis [16] showed that there are six possible nonequivalent
colorations by matchings for Kg. We try to obtain a decomposition of Kg into isomorphic
colorful spanning trees that are edge disjoint. In order to do this, we first find the list
of all colorful spanning trees of Kg. We produce the list P of permutations on seven
elements, and for each symbol w € P, we find the colorful spanning trees having color
type w by using the algorithm P1. Since all symbols in w are different and we go through
all w € P, we obtain the list C of all colorful spanning trees in the graph without
repetitions.

For each spanning tree t € C, we then form the adjacency matrix and find its eigen-
values. We partition the list C into equivalence classes containing trees that have the
same eigenvalues. This is a necessary condition, which is also sufficient for Kg, to allow
sorting of the spanning trees into isomorphism classes. The list of classes is denoted by
ISO. For each equivalence class ISO[i], we pick an element t; and find the list ISO; with
all trees from ISO[i] that are edge disjoint with t,. Next, we pick an element t, in ISO;
and find the list ISO, with all trees from ISO, that are edge disjoint with t,. We continue
this process until we obtain ISO7. If ISO; = {tg} # &, then (t1,to,...,tg) represents a par-
tition of Kg into isomorphic colorful spanning trees that are edge disjoint. The method
yields all possible decompositions of the edges of Kg into isomorphic spanning trees.
It turns out that there are exactly seven nonisomorphic trees for which such a decom-
position is possible, and precisely one tree that is common to all six nonequivalent
colorings by mathings.

Applications of such decompositions to the analysis of mytochondrial DNA data in
population genetics appear in Banks et al. [2].
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