IJMMS 2004:48, 2537-2546
PIL S0161171204401124
http://ijmms.hindawi.com
© Hindawi Publishing Corp.

MULTIVALENT FUNCTIONS AND Qx SPACES

HASI WULAN
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We give a criterion for g-valent analytic functions in the unit disk to belong to Qk,
a Mobius-invariant space of functions analytic in the unit disk in the plane for a nonde-
creasing function K : [0,0) — [0,%), and we show by an example that our condition is
sharp. As corollaries, classical results on univalent functions, the Bloch space, BMOA, and
Qp spaces are obtained.

2000 Mathematics Subject Classification: 30D35, 30D45.

1. Introduction. For analytic univalent function f in the unit disk A, Pommerenke [8]
proved that f € % if and only if f € BMOA, which easily implies a result of Baernstein
IT [4] about univalent Bloch functions: if g(z) # 0 is an analytic univalent function
in A, then logg € BMOA. We know that Pommerenke’s result mentioned above was
generalized to Q, spaces for all p, 0 < p < o, by Aulaskari et al. (cf. [2, Theorem 6.1]).
Their result can be stated as follows.

THEOREM 1.1. Let f be an analytic function in A such that
ﬂ n(w, f)dA(w) < A < oo, (1.1)
lw—wqp|<1

for all wy € C, where n(w, f) denotes the number of roots of the equation f(z) = w in
A counted according to their multiplicity and dA(z) is the Euclidean area element on A.
Then f € B(By) if and only if f € Q,(Qp) forall p € (0,0).

Here, Q, and its subspace Qp, 0 < p < oo, denote the spaces of analytic functions
f in A defined, respectively, as follows (cf. [1, 3]):

Qp = {f:f analytic in A, SupﬂA |f'(2) |2(g(2,a))pdz4(2) < 00},
acA
(1.2)
Qpo= {f €Qp: lim ﬂ | (2)|*(g(z,a) dA(z) = 0},
lal-1JJA

where g(z,a) =log1/|p,(z)|is a Green’s function in A with pole ata € A, and @, (z) =
(a—z)/(1—az) is a Mobius transformation of A.

We know that Q; = BMOA, the space of all analytic functions of bounded mean oscil-
lation (cf. [5]), and for each p € (1, «), the space Q is the Bloch space & (cf. [1]), which
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is defined as follows:
{f f analyticin A, || fllg = sup 1-1z1>)| f(2)] < oo} (1.3)

Similar to the above we have Q; 0 = VMOA, the space of all analytic functions of
vanishing mean oscillation (cf. [5]), and Q0 = Bo for all p € (1, ), where %, denotes
the little Bloch space defined by

%oz{fe% hm (1-1z12) | f(2)] = } (1.4)

In the present paper, we consider a more general space Qg (see below) and show

that all the above-mentioned results are true for space Qg. Our contribution gives an

extended version of Pommerenke’s theorem, which is also a slight improvement of all
the above results, and the proof presented here is independently developed.

Let K:[0,0) — [0,c0) be a right-continuous and nondecreasing function. Recall that
the space Qg consists of analytic functions f in A for which

1, = sup [[ 1) K (g(z,a)dA(2) < o (1.5)

acA JJA

f € Qg belongs to the space Qg o if
jA £/ (2) |’k (g(z,0))dA(z) — 0, la| — 1. (1.6)
Modulo constants, Qk is a Banach space under the norm defined in (1.5). It is clear that
Qg is Mobius-invariant and a subspace of the Bloch space % (cf. [6]). For 0 < p < oo,

K(t) = t¥ gives the space Q. Choosing K (t) = 1, we get the Dirichlet space 9.
By [6, Proposition 2.1] we know that if the integral

1/e 1 0
J K(log—)pdp=f K(t)e *tdt (1.7)

0 P 1
is divergent, then the space Qg is trivial; that is, the space Qg contains only constant
functions. From now on, we assume that the function K : [0,00) — [0,00) is right-
continuous and nondecreasing and that the integral (1.7) is convergent. Without loss of

generality, we can assume that K(1) > 0. For a general theory for Qg spaces, see [6, 11].

2. Main results. A function f analytic in the unit disk is said to be g-valent if the
equation f(z) = w has never more than g solutions. Let

1 21 )
p(p) = P JO n(pe'®, flde. (2.1)
If

R
JO p(p)d(p®) <qR* R>0, (2.2)
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or
p(R) <q, R>0, (2.3)

where g is a positive number, we say that f is areally mean g-valent or circumfer-
entially mean g-valent, respectively (cf. [7, pages 38 and 144]). It is clear that if f is
circumferentially mean g-valent, then f is areally mean g-valent.

Note that if (1.1) holds, f will be areally mean g-valent in A for some g > 0. We know
that if f is univalent, then f must be areally and circumferentially mean 1-valent. Thus,
it is natural to conjecture that Pommerenke’s result and Theorem 1.1 are also true for
the areally and circumferentially mean g-valent functions.

We know that the space Qg can be nontrivial if K is not too big at infinity (see condi-
tion (1.7)). For such functions K, the properties of Qg depend essentially on the behavior
of K near the origin. From [6, Theorems 2.3 and 2.5], we know that Qg = B(Qk,0 = Bo)
if and only if

Ll (1772)72K<log%)rdr<oo. (2.4)

A natural idea is to look for an integral condition which is weaker than that given
by (2.4) such that f € B(By) if and only if f € Qx(Qk,) for some special f. For the
areally mean g-valent case, we present the main result in this paper as follows.

THEOREM 2.1. Let f be an areally mean q-valent function in A. If

JOI(10g$)2(1—1f)*1[<(10g%)1’d1’<00, 2.5)

then
(i) feBifandonlyif f € Qk;
(i) feBoifandonlyif f € Qko-

Note that (2.4) implies (2.5) since (logl/(1-7))%2 <4e 2/(1—v) for 0 < ¥ < 1, but
the converse is not true. For example, K(t) = t gives that (2.5) holds but (2.4) fails. By
[6, Theorems 2.3 and 2.5], (2.5) is also necessary for Theorem 2.1(i) and (ii) in case f is
an areally mean g-valent function in A.

In the light of the following example it is impossible to drop the assumption of areally
mean g-valence of the functions f in Theorem 2.1. Indeed, choose K; () = t2*~! and

filz)=> p-ill=e0 527, % <ax<l1. (2.6)
j=1

It is easy to see that f; € % and (2.5) holds for K;. Since f; has a gap series repre-
sentation, f; is not an areally mean g-valent in A. The following argument shows that

féQKl-
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For € [3/4,1), we find k so that 1/2 < 2¥(1 —r) < 1. Using the inequality logr >
2(r—1),1/2 <r <1, we see that

21 ) - - §
_[ | f{(rei®) |°d0 = 2 > 272y 272
0 .
Jj=1

>2m(l—-7r)"2% Z (27(1-7))*exp (- 29%2(1—7))

> D20+l (] )20 Z DURI20 ey (— ik+2) (2.7)
=
> 2*2““17(14)*2“2 (22%exp (—27+2))
=C(x)(1—-7)72%, "
Hence
sup [ 112 *Ki(9(z,)dA(2)
ﬂ | fi(2)] Kl(log| |)dA(z>
(2.8)

1
=J K(log—)rdrj | fi (re'®)|°do
0 v 0
1 1 20e—1
2C(o<)J (l—r)‘zo‘(log—) rdr.
3/4 ¥

Since the last integral is divergent, we conclude that f; ¢ Q.

THEOREM 2.2. Let f be a circumferentially mean q-valent and nonvanishing function
in A. If (2.5) holds, thenlog f € Qk.

It is clear that the integral in (2.5) is convergent for K(t) = t?, p > 0. Thus, we have
the following result which extends Theorem 1.1.

COROLLARY 2.3. Let f be an areally mean q-valent function in A, 0 < p < co. Then
(1) feBifandonlyif f € Qp;
(i) feBoifandonlyif f € Qpp.

3. Proofs. In the proofs of Theorems 2.1 and 2.2, we need two lemmas, the first one
can be considered as a generalization of a result of Pommerenke (cf. [9, page 174]).

LEMMA 3.1. Let f be areally mean q-valent in A. Then

21 2
JZ |f’(1fei9)|217l9<M l<1f<1, (3.1)

0 - 1-r 2

where M (v, f) = sup, -, |.f(2)], 0 <r < 1.
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PROOF. If1/2 <7 <1, we obtain

H\zkﬁ f'(2)]*dA(2) = JﬁpF" | (pei®) |*d0dp

. o (3.2)
1(1 T)J | £ (rei®) |°do.
Since f is areally mean g-valent, we deduce that
21 5
J | £ (rei)|? o = 5 H | f'(z)]| dA(z)
0 |zl<7
H n(w, f)dAw) (3.3)
[w|<M(/7,f)
n(M(ﬁ,f)V
B 1-r ’
which proves Lemma 3.1. O
LEMMA 3.2. Let K be defined as in Section 1. Then
(i) Qk,0 C Bo;
(ii) an analytic function f belongs to B if and only if there exists anv € (0,1) such
that
lim ﬂ | £ (2)|°K(g(z,a))dA(z) =0, (3.4)
lal=1JJA(a,r)
where Ala,v) ={ze€ A:|p.(z2)| <r}.
PROOF. See [6, Thereom 2.4]. O

Now we turn to give the proofs of our main theorems.

PROOF OF THEOREM 2.1. We first prove (i). Since Qk C %, it suffices to prove that
if a Bloch function f is areally mean g-valent in A, then f € Q. We use the change of
variable w = @, (z) to deduce that

[ £ (2) K (g(z,@)dA(2)
A\A(a,1/2)
=ﬂ [(f(2)~f(@) | K(log )dA(z)
A\A(a,1/2) | a( )| 35
:jjl/2<lw\<1 |<fo<pa(w>7f(a)) | K(logm)dA(w)

= Jl K(log%)rﬁn | (fo@a(re®) - f(a)'|*dodr.

1/2
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It is known that if g € %, then

92)-9(0)| = 5lgllalog “:j: (3.6)

Choosing g = f o @, — f(a) and observing that ||g|ls = || f|ls, we obtain

1+7r

M(r,fopa—fla)) < fllf\loklogi. (3.7)
It follows from (3.5) and Lemma 3.1 that

ﬂ f @K (g(z,@)dA(z)
A\A(a,1/2)

- Jl ZK(log%)rL)zn [ (fo@al(re’?) —f(a))'!zdedr

1/

1 1 (3.8)
<dqr | K(log ) (M(SF.f o@a—f (@)’ (1-r) 'rdr

1/2 s

1
sqncnfns&L/ZK(log%)(1ogi) 1) 'rdr.
On the other hand, we have
ﬂ £ (2)|°K(g(z,a))dA(z)
Aa,1/2)
<IfI3 ﬂA [(1-121) K (g(z,)dA()
! (3.9)

||f||ﬁﬂA(0 o |w|2)_2K<logﬁ>dA(w)

1/2
541T|\f\|%J’0 <log )rdr.

Combining the upper bounds given by (3.8), (3.9), and (2.5), we see that f € Qg, which
proves part (i) of Theorem 2.1.

To prove (ii), we assume that f is an areally mean g-valent function in A which is
also in . By Lemma 3.2(i), it suffices to prove that f € Q. By Lemma 3.2(ii), there
exists an 7y, 1/2 <7y < 1, such that

lim ﬂ | f'(2)|°K(g(z,a))dA(z) = 0. (3.10)
Ala,ry)

lal—1

Now we show that

lim H |f'(2)|’K(g(z,a))dA(z) = (3.11)
lal=1JJA\A(a,ry)
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By the proof of part (i) and assumption (2.5), we see that

ﬂ £ (2)|°K(g(z,a))dA(2)
A\A(a,ry)

- Jl K(logﬁrﬁjn |(fo@alre®) - f(a) |*dodr

10

(3.12)
1
<aqm | K(log ) (M(JF.f o@a—f(@)*(1-r) 'rdr
1
! 1 L+7)?
2 4 1+r -1
qurIIfH%LOK(IogT>(loglir) (1-7)"rdr <o
for all a € A. Thus, for any given ¢ > 0, there exists an 77, ¥y < 1 < 1, such that
1
J K(log%)(M(ﬁ,fo(pa—f(a)))2(l—r)‘lrdr<e (3.13)
T
for all a € A. Hence, what we need to prove is that
L8 1 2
‘li‘ml K(log;)(M(\/?,fo(paff(a))) (1-v)"Ydr=0. (3.14)
al— 10
In fact, we have
sl 1 P 1
[ k(108 ) M (/P f o @a—fan) (1 -r)trdr
i r (3.15)

< C(mm)K(log}o)(M(rz,focpa—fm)))z,

where 1> = /71 and C (9, 71) is a constant depending on 7 and ;. Define f;(z) = f(tz)
for 0 <t <1 and then

(M (72, fo@a—f(a))

1 , 1 2 . (3.16)
<2(3 -l (108 1E2) 02 oo futa))
Since f € By, |f — filla — 0, t — 1. Also,
1-|al? ,
max | fio@a(z) - fi(a)| < ——=max | f (w)], (3.17)
|z|<7p (1_7/2) lw|<t
which implies that
lim M (72, fi o @a — fi(a)) = 0. (3.18)

lal—1
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Thus we have (3.14). Hence

lim ﬂ | f'(2)] (z,a))dA(z) = (3.19)

lal—

which shows that f € Qg . The proof of Theorem 2.1 is complete. O

PROOF OF THEOREM 2.2. Assume that f is a nonvanishing circumferentially mean
g-valent function in A. According to [7, Theorem 5.1], we have logf € %. From
[7, Lemma 5.2] and the argument in the beginning of the proof of [7, Theorem 5.1],
we see that we can define a single-valued branch of f(z)!/4 which is circumferentially
mean 1-valent in A and such that on each circle {|w| = R} there exists a point which is
not assumed by f(z)!/4. It follows that

ro <logp+1¢ logf)d¢> J n(pe'®, fH9de¢ < 2m,
o (3.20)

ﬂ‘ | n(w,log f)dA(w) < 41mRq,
w|<R

which means that log f is areally mean g;-valued in A for some g; > 0. It follows from
Theorem 2.1 that log f € Qk. O

4. Further discussion. In[10] we studied the conditions for analytic univalent Bloch
function f to belong to Qk spaces. The log-order of the function K (r) is defined as

pzl—log log" K (¥)

, (4.1)
T logr

where log" x = max{logx,0}, and if 0 < p < o, the log-type of the function K (r) is
defined as

Tm —log* K(r)

r—o P

(4.2)

THEOREM 4.1. Let f be an analytic univalent function in A and let K : [0,00) — [0, o)
satisfy that K(t) = O((tlog1/t)") as t — O for some p > 0. If the log-order p and the
log-type o of K satisfy one of the conditions

(i 0<=p<1,
(i) p=1ando <2,
then f € B if and only if f € Qk.

We note that Theorem 4.1 can be viewed as a consequence of Theorem 2.1. In fact,
conditions (i) and (ii) of Theorem 4.1 show that the space Qg is not trivial. That is,
the integral (1.7) is convergent in this case. Suppose that K(t) = O((tlog1/t)?),t — 0
There exist an 7y € (1/2,1) and a constant C > 0 such that both log1/» <2(1—7) and

K(log%) <C(log log(log1>_1)p (4.3)
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hold for 1y <7 < 1. Thus

Ll (logi) (1-7)~ 1K(10g%>rd1f
7 o Vo s{ent

1 )\° 1 ("o 1
1_1/0) (1-79) I K(log;)rdr

0

< (log

p

1 2 -1
+C (log%) 1-7)" 1<log—10g(log1> ) rdr (4.4)
0

1 1 2+p
< +C2I (log i) (1-r)P"rdr

10 1

[

<C1+C J e PSs2tP s
Ro

<C+Cp 3 PIB3+p) < .

For a general analytic function f, we have the following theorem.

THEOREM 4.2. Suppose that (2.5) holds. If

aeAJIZKr (fopa(2)|"dA) = ((10311,,)2), (4.5)

then
(i) feBifandonlyif f € Qk;
(i) feBoifandonlyif f € Qko-

PROOF. We know that

f"!(f o @a(re?)) | d9<*ﬂm N Fowat2) Paa@

0
2
< - 4.6
<1—ro(<10g1—ﬁ) ) (4.6
. C (1 1 )2
=1 \%1 )
The proof can be completed by an argument similar to that used in the proof of

Theorem 2.1. O
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