

THE EQUIVALENCE OF MANN ITERATION AND ISHIKAWA ITERATION FOR ψ -UNIFORMLY PSEUDOCONTRACTIVE OR ψ -UNIFORMLY ACCRETIVE MAPS

B. E. RHOADES and ŞTEFAN M. SOLTUZ

Received 2 December 2003

We show that the Ishikawa iteration and the corresponding Mann iteration are equivalent when applied to ψ -uniformly pseudocontractive or ψ -uniformly accretive maps.

2000 Mathematics Subject Classification: 47H10.

1. Introduction. Let X be a real Banach space, B a nonempty, convex subset of X , and T a self-map of B , and let $x_0 = u_0 \in B$. The Mann iteration (see [2]) is defined by

$$u_{n+1} = (1 - \alpha_n)u_n + \alpha_n Tu_n, \quad n = 0, 1, 2, \dots \quad (1.1)$$

The Ishikawa iteration is defined (see [1]) by

$$\begin{aligned} x_{n+1} &= (1 - \alpha_n)x_n + \alpha_n Ty_n, \\ y_n &= (1 - \beta_n)x_n + \beta_n Tx_n, \quad n = 0, 1, 2, \dots \end{aligned} \quad (1.2)$$

The sequences $\{\alpha_n\} \subset (0, 1)$, $\{\beta_n\} \subset [0, 1)$ satisfy

$$\lim_{n \rightarrow \infty} \alpha_n = \lim_{n \rightarrow \infty} \beta_n = 0, \quad \sum_{n=1}^{\infty} \alpha_n = +\infty. \quad (1.3)$$

The map $J : X \rightarrow 2^{X^*}$ given by

$$Jx := \{f \in X^* : \langle x, f \rangle = \|x\|, \|f\| = \|x\|\}, \quad \forall x \in X, \quad (1.4)$$

is called *the normalized duality mapping*.

REMARK 1.1. The above J satisfies

$$\langle x, j(y) \rangle \leq \|x\| \|y\|, \quad \forall x \in X, \forall j(y) \in J(y). \quad (1.5)$$

PROOF. Denote $j(y)$ by f . Since $f \in X^*$, we have

$$\langle x, f \rangle \leq \|f\| \|x\|. \quad (1.6)$$

From (1.4), we know that $\|f\| = \|y\|$. Hence (1.5) holds. \square

Let

$$\Psi := \{\psi \mid \psi : [0, +\infty) \rightarrow [0, +\infty) \text{ is a nondecreasing map such that } \psi(0) = 0\}. \quad (1.7)$$

The following definition is from [3].

DEFINITION 1.2. Let X be a real Banach space. Let B be a nonempty subset of X . A map $T : B \rightarrow B$ is called ψ -uniformly pseudocontractive if there exist the map $\psi \in \Psi$ and $j(x - y) \in J(x - y)$ such that

$$\langle Tx - Ty, j(x - y) \rangle \leq \|x - y\|^2 - \psi(\|x - y\|), \quad \forall x, y \in B. \quad (1.8)$$

The map $S : X \rightarrow X$ is called ψ -uniformly accretive if there exist the map $\psi \in \Psi$ and $j(x - y) \in J(x - y)$ such that

$$\langle Sx - Sy, j(x - y) \rangle \geq \psi(\|x - y\|), \quad \forall x, y \in X. \quad (1.9)$$

Taking $\psi(a) := \psi(a) \cdot a$, for all $a \in [0, +\infty)$, $\psi \in \Psi$, we get the usual definitions of ψ -strongly pseudocontractivity and ψ -strongly accretivity. Taking $\psi(a) := \gamma \cdot a^2$, $\gamma \in (0, 1)$, for all $a \in [0, +\infty)$, $\psi \in \Psi$, we get the usual definitions of strong pseudocontractivity and strong accretivity.

Denote by I the identity map.

REMARK 1.3. T is ψ -uniformly pseudocontractive if and only if $S = (I - T)$ is ψ -uniformly accretive.

Let $F(T)$ denote the fixed point set with respect to B for the map T .

In [9], the following conjecture was given: “if the Mann iteration converges, then so does the Ishikawa iteration.” In a series of papers [5, 6, 7, 8, 9, 10], the authors have given a positive answer to this conjecture, showing the equivalence between Mann and Ishikawa iterations for several classes of maps. In this paper, we show that the convergence of Mann iteration is equivalent to the convergence of Ishikawa iteration, for the most general class of ψ -uniformly pseudocontractive and ψ -uniformly accretive maps.

LEMMA 1.4 [4]. *Let X be a real Banach space and let $J : X \rightarrow 2^{X^*}$ be the duality mapping. Then the following relation is true:*

$$\|x + y\|^2 \leq \|x\|^2 + 2\langle y, j(x + y) \rangle, \quad \forall x, y \in X, \forall j(x + y) \in J(x + y). \quad (1.10)$$

LEMMA 1.5 [3]. *Let $\{\theta_n\}$ be a sequence of nonnegative real numbers, let $\{\lambda_n\}$ be a real sequence satisfying*

$$0 \leq \lambda_n \leq 1, \quad \sum_{n=0}^{\infty} \lambda_n = +\infty, \quad (1.11)$$

and let $\psi \in \Psi$. If there exists a positive integer n_0 such that

$$\theta_{n+1}^2 \leq \theta_n^2 - \lambda_n \psi(\theta_{n+1}) + \sigma_n, \quad (1.12)$$

for all $n \geq n_0$, with $\sigma_n \geq 0$, for all $n \in \mathbb{N}$, and $\sigma_n = o(\lambda_n)$, then $\lim_{n \rightarrow \infty} \theta_n = 0$.

2. Main result. We are now able to prove the following result.

THEOREM 2.1. *Let X be a real Banach space, let B be a nonempty, convex subset of X , and let $T : B \rightarrow B$ be a uniformly continuous and ψ -uniformly pseudocontractive map with $T(B)$ bounded. If $\{\alpha_n\}$, $\{\beta_n\}$ satisfy (1.3), and $u_0 = x_0 \in B$, then the following are equivalent:*

- (i) *the Mann iteration (1.1) converges (to $x^* \in F(T)$),*
- (ii) *the Ishikawa iteration (1.2) converges (to the same $x^* \in F(T)$).*

PROOF. The implication (ii) \Rightarrow (i) is obvious by setting, in (1.2), $\beta_n = 0$, for all $n \in \mathbb{N}$. We will prove the implication (i) \Rightarrow (ii). Let x^* be the fixed point of T . Suppose that $\lim_{n \rightarrow \infty} u_n = x^*$. Using

$$\lim_{n \rightarrow \infty} \|x_n - u_n\| = 0, \quad (2.1)$$

$$0 \leq \|x^* - x_n\| \leq \|u_n - x^*\| + \|x_n - u_n\|, \quad (2.2)$$

we get

$$\lim_{n \rightarrow \infty} x_n = x^*. \quad (2.3)$$

The proof is complete if we prove the relation (2.1).

Set

$$M := \{\|x_0 - u_0\| + \sup \{\|Tx - Ty\|, x, y \in B\}\} \geq 0. \quad (2.4)$$

The condition that $T(B)$ is bounded leads to

$$0 \leq M < +\infty. \quad (2.5)$$

It is clear that $\|x_0 - u_0\| \leq M$. Supposing that $\|x_n - u_n\| \leq M$, we will prove that $\|x_{n+1} - u_{n+1}\| \leq M$. Indeed, from (1.1) and (1.2), we have

$$\begin{aligned} \|x_{n+1} - u_{n+1}\| &\leq (1 - \alpha_n) \|x_n - u_n\| + \alpha_n \|Ty_n - Tu_n\| \\ &\leq (1 - \alpha_n) M + \alpha_n M = M. \end{aligned} \quad (2.6)$$

That is,

$$\|x_n - u_n\| \leq M, \quad \forall n \in \mathbb{N}. \quad (2.7)$$

The real function $f : [0, +\infty) \rightarrow [0, +\infty)$, $f(t) = t^2$, is increasing and convex. For all $\lambda \in [0, 1]$ and $t_1, t_2 > 0$, we have

$$((1 - \lambda)t_1 + \lambda t_2)^2 \leq (1 - \lambda)t_1^2 + \lambda t_2^2. \quad (2.8)$$

Set $t_1 := \|x_n - u_n\|$, $t_2 := T\gamma_n - Tu_n$, $\lambda := \alpha_n$ in (2.8), to obtain

$$\begin{aligned} \|x_{n+1} - u_{n+1}\|^2 &= \|(1 - \alpha_n)(x_n - u_n) + \alpha_n(T\gamma_n - Tu_n)\|^2 \\ &\leq ((1 - \alpha_n)\|x_n - u_n\| + \alpha_n\|T\gamma_n - Tu_n\|)^2 \\ &\leq (1 - \alpha_n)\|x_n - u_n\|^2 + \alpha_n M^2 \\ &\leq \|x_n - u_n\|^2 + \alpha_n M^2. \end{aligned} \quad (2.9)$$

From (1.1), (1.2), (1.5), and (1.10), with

$$\begin{aligned} x &:= (1 - \alpha_n)(x_n - u_n), \\ y &:= \alpha_n(T\gamma_n - Tu_n), \\ x + y &= x_{n+1} - u_{n+1}, \end{aligned} \quad (2.10)$$

we get

$$\begin{aligned} \|x_{n+1} - u_{n+1}\|^2 &= \|(1 - \alpha_n)(x_n - u_n) + \alpha_n(T\gamma_n - Tu_n)\|^2 \\ &\leq (1 - \alpha_n)^2\|x_n - u_n\|^2 + 2\alpha_n \langle T\gamma_n - Tu_n, j(x_{n+1} - u_{n+1}) \rangle \\ &= (1 - \alpha_n)^2\|x_n - u_n\|^2 + 2\alpha_n \langle Tx_{n+1} - Tu_{n+1}, j(x_{n+1} - u_{n+1}) \rangle \\ &\quad + 2\alpha_n \langle T\gamma_n - Tx_{n+1}, j(x_{n+1} - u_{n+1}) \rangle \\ &\quad + 2\alpha_n \langle Tu_{n+1} - Tu_n, j(x_{n+1} - u_{n+1}) \rangle \\ &\leq (1 - \alpha_n)^2\|x_n - u_n\|^2 + 2\alpha_n\|x_{n+1} - u_{n+1}\|^2 - 2\alpha_n \psi(\|x_{n+1} - u_{n+1}\|) \\ &\quad + 2\alpha_n \langle T\gamma_n - Tx_{n+1}, j(x_{n+1} - u_{n+1}) \rangle \\ &\quad + 2\alpha_n \langle Tu_{n+1} - Tu_n, j(x_{n+1} - u_{n+1}) \rangle \\ &\leq (1 - \alpha_n)^2\|x_n - u_n\|^2 + 2\alpha_n\|x_{n+1} - u_{n+1}\|^2 - 2\alpha_n \psi(\|x_{n+1} - u_{n+1}\|) \\ &\quad + 2\alpha_n\|T\gamma_n - Tx_{n+1}\|\|x_{n+1} - u_{n+1}\| \\ &\quad + 2\alpha_n\|Tu_{n+1} - Tu_n\|\|x_{n+1} - u_{n+1}\| \\ &\leq (1 - \alpha_n)^2\|x_n - u_n\|^2 + 2\alpha_n\|x_{n+1} - u_{n+1}\|^2 - 2\alpha_n \psi(\|x_{n+1} - u_{n+1}\|) \\ &\quad + 2\alpha_n\|T\gamma_n - Tx_{n+1}\|M + 2\alpha_n\|Tu_{n+1} - Tu_n\|M \\ &= (1 - \alpha_n)^2\|x_n - u_n\|^2 + 2\alpha_n\|x_{n+1} - u_{n+1}\|^2 - 2\alpha_n \psi(\|x_{n+1} - u_{n+1}\|) \\ &\quad + 2\alpha_n(b_n + c_n), \end{aligned} \quad (2.11)$$

where

$$\begin{aligned} b_n &:= \|T\gamma_n - Tx_{n+1}\| M, \\ c_n &:= \|Tu_{n+1} - Tu_n\| M. \end{aligned} \quad (2.12)$$

From (1.2), we have

$$\begin{aligned} \|x_{n+1} - \gamma_n\| &= \|(\beta_n - \alpha_n)x_n + \alpha_n T\gamma_n - \beta_n Tx_n\| \\ &\leq (\beta_n - \alpha_n)\|x_n\| + \alpha_n\|T\gamma_n\| + \beta_n\|Tx_n\|. \end{aligned} \quad (2.13)$$

Analogously as for (2.6), we obtain the boundedness of $\{x_n\}$. Conditions (2.13) and (1.3) lead to

$$\lim_{n \rightarrow \infty} \|x_{n+1} - \gamma_n\| = 0; \quad (2.14)$$

the uniform continuity of T leads to

$$\lim_{n \rightarrow \infty} \|T\gamma_n - Tx_{n+1}\| = 0; \quad (2.15)$$

thus, we have

$$\lim_{n \rightarrow \infty} b_n = 0. \quad (2.16)$$

The convergence of the Mann iteration $\{u_n\}$ implies $\lim_{n \rightarrow \infty} \|u_{n+1} - u_n\| = 0$. The uniform continuity of T implies $\lim_{n \rightarrow \infty} \|Tu_{n+1} - Tu_n\| = 0$, that is,

$$\lim_{n \rightarrow \infty} c_n = 0. \quad (2.17)$$

Substituting (2.9) in (2.11) and using (2.7), we get

$$\begin{aligned} &(1 - \alpha_n)^2 \|x_n - u_n\|^2 + 2\alpha_n \|x_{n+1} - u_{n+1}\|^2 \\ &\leq (1 - \alpha_n)^2 \|x_n - u_n\|^2 + 2\alpha_n (\|x_n - u_n\|^2 + \alpha_n M^2) \\ &= [(1 - \alpha_n)^2 + 2\alpha_n] \|x_n - u_n\|^2 + 2\alpha_n^2 M^2 \\ &= (1 + \alpha_n^2) \|x_n - u_n\|^2 + 2\alpha_n^2 M^2 \\ &= \|x_n - u_n\|^2 + \alpha_n^2 \|x_n - u_n\|^2 + 2\alpha_n^2 M^2 \\ &\leq \|x_n - u_n\|^2 + 3\alpha_n^2 M^2. \end{aligned} \quad (2.18)$$

Substituting (2.18) into (2.11), we obtain

$$\begin{aligned} &\|x_{n+1} - u_{n+1}\|^2 \\ &\leq (1 - \alpha_n)^2 \|x_n - u_n\|^2 + 2\alpha_n \|x_{n+1} - u_{n+1}\|^2 \\ &\quad - 2\alpha_n \psi(\|x_{n+1} - u_{n+1}\|) + 2\alpha_n (b_n + c_n) \\ &\leq \|x_n - u_n\|^2 + 3\alpha_n^2 M^2 - 2\alpha_n \psi(\|x_{n+1} - u_{n+1}\|) + 2\alpha_n (b_n + c_n) \\ &= \|x_n - u_n\|^2 - 2\alpha_n \psi(\|x_{n+1} - u_{n+1}\|) + \alpha_n (3\alpha_n M^2 + 2b_n + 2c_n). \end{aligned} \quad (2.19)$$

Denote

$$\begin{aligned}\theta_n &:= \|x_n - u_n\|^2, \\ \lambda_n &:= 2\alpha_n, \\ \sigma_n &:= \alpha_n(3\alpha_n M^2 + 2b_n + 2c_n).\end{aligned}\tag{2.20}$$

Condition (1.3) assures the existence of a positive integer n_0 such that $\lambda_n = 2\alpha_n \leq 1$, for all $n \geq n_0$. Relations (1.3), (2.16), (2.17), (2.19), (2.20), and Lemma 1.5 lead to $\lim_{n \rightarrow \infty} \theta_n = 0$; hence $\lim_{n \rightarrow \infty} \|x_n - u_n\| = 0$. \square

The above result does not completely generalize the main result, stated below, from [8], because the map T in this result is not uniformly continuous.

THEOREM 2.2 [8]. *Let X be a real Banach space with a uniformly convex dual and B a nonempty, closed, convex, bounded subset of X . Let $T : B \rightarrow B$ be a continuous and strongly pseudocontractive operator. Then for $u_1 = x_1 \in B$, the following assertions are equivalent:*

- (i) *the Mann iteration (1.1) converges to the fixed point of T ;*
- (ii) *the Ishikawa iteration (1.2) converges to the fixed point of T .*

REMARK 2.3 [8]. (i) If T has a fixed point, then Theorem 2.2 holds without the continuity of T .

(ii) If B is not bounded, then Theorem 2.2 holds if $\{x_n\}$ is bounded.

3. The Lipschitzian case. The following result can be found in [6].

COROLLARY 3.1 [6]. *Let X be a real Banach space, B a nonempty, convex subset of X , and $T : B \rightarrow B$ a Lipschitzian and ψ -uniformly pseudocontractive map with $T(B)$ bounded. If $\{\alpha_n\}$, $\{\beta_n\}$ satisfy (1.3), then the following are equivalent:*

- (i) *the Mann iteration (1.1) converges (to $x^* \in F(T)$),*
- (ii) *the Ishikawa iteration (1.2) converges (to the same $x^* \in F(T)$).*

PROOF. If the Lipschitzian constant $L \in (0, 1)$, then the conclusion holds on basis of [9, Theorem 3]. If $L \geq 1$, then all the assumptions in Theorem 2.1 are satisfied because a Lipschitzian map is uniformly continuous. \square

Corollary 3.1 does not completely generalize the main result, stated below, from [9], because neither boundedness of B nor that of $T(B)$ is required.

THEOREM 3.2 [9]. *Let B be a closed, convex subset of an arbitrary Banach space X and let T be a Lipschitzian strongly pseudocontractive self-map of B . Consider the Mann iteration and the Ishikawa iteration with the same initial point and $\{\alpha_n\}$, $\{\beta_n\}$ satisfying (1.3). Then the following conditions are equivalent:*

- (i) *the Mann iteration (1.1) converges to $x^* \in F(T)$,*
- (ii) *the Ishikawa iteration (1.2) converges to $x^* \in F(T)$.*

4. Application. Let S be a ψ -uniformly accretive map. Suppose the equation $Sx = f$ has a solution for a given $f \in X$. [Remark 1.3](#) assures that

$$Tx = x + f - Sx, \quad \forall x \in X, \quad (4.1)$$

is a ψ -uniformly pseudocontractive map. A fixed point for T is a solution of $Sx = f$, and conversely. For the same $\{\alpha_n\} \subset (0, 1)$, $\{\beta_n\} \subset [0, 1)$ as in [\(1.3\)](#), the iterations [\(1.2\)](#) and [\(1.1\)](#) become

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n(f + (I - S)y_n), \quad (4.2)$$

$$y_n = (1 - \beta_n)x_n + \beta_n(f + (I - S)x_n), \quad n = 0, 1, 2, \dots, \quad (4.3)$$

$$u_{n+1} = (1 - \alpha_n)u_n + \alpha_n(f + (I - S)u_n), \quad n = 0, 1, 2, \dots. \quad (4.4)$$

We are now able to give the following result.

COROLLARY 4.1. *Let X be a real Banach space and $S : X \rightarrow X$ a uniformly continuous and ψ -uniformly accretive map with $(I - S)(X)$ bounded. If $\{\alpha_n\}$, $\{\beta_n\}$ satisfy [\(1.3\)](#) and $u_0 = x_0 \in B$, then the following are equivalent:*

- (i) *the Mann iteration [\(4.3\)](#) converges to a solution of $Sx = f$,*
- (ii) *the Ishikawa iteration [\(4.2\)](#) converges to a solution of $Sx = f$.*

PROOF. Set $Tx := f + (I - S)x$. If S is uniformly continuous, then T is also uniformly continuous. The boundedness of $(I - S)(X)$ assures the boundedness of $\{\|y_n + f - Sx_n\|\}$ and $\{\|x_n + f - Sx_n\|\}$. Hence [Theorem 2.1](#) gives our conclusion. \square

From [Corollary 3.1](#), we obtain, (see [6]) the following result.

COROLLARY 4.2 [6]. *Let X be a real Banach space and $S : X \rightarrow X$ a Lipschitzian and ψ -uniformly accretive map with $(I - S)(X)$ bounded. If $\{\alpha_n\}$, $\{\beta_n\}$ satisfy [\(1.3\)](#), then the following are equivalent:*

- (i) *the Mann iteration [\(4.3\)](#) converges to a solution of $Sx = f$,*
- (ii) *the Ishikawa iteration [\(4.2\)](#) converges to a solution of $Sx = f$.*

PROOF. Set, in [Corollary 3.1](#), $Tx := (I - S)x$ and use [Remark 1.3](#). \square

5. The equivalence between T -stabilities of Mann and Ishikawa iterations. All the arguments for the equivalence between T -stabilities of Mann and Ishikawa iterations are similar to those from [5]. The following nonnegative sequences are well defined for all $n \in \mathbb{N}$:

$$\varepsilon_n := \|x_{n+1} - (1 - \alpha_n)x_n - \alpha_n T y_n\|, \quad (5.1)$$

$$\delta_n := \|u_{n+1} - (1 - \alpha_n)u_n - \alpha_n T u_n\|. \quad (5.2)$$

DEFINITION 5.1. If $\lim_{n \rightarrow \infty} \varepsilon_n = 0$ (resp., $\lim_{n \rightarrow \infty} \delta_n = 0$) implies that $\lim_{n \rightarrow \infty} x_n = x^*$ (resp., $\lim_{n \rightarrow \infty} u_n = x^*$), then [\(1.2\)](#) (resp., [\(1.1\)](#)) is said to be T -stable.

REMARK 5.2 [5]. Let X be a normed space, B a nonempty, convex, closed subset of X , and $T : B \rightarrow B$ a continuous map. If the Mann (resp., Ishikawa) iteration converges, then $\lim_{n \rightarrow \infty} \delta_n = 0$ (resp., $\lim_{n \rightarrow \infty} \varepsilon_n = 0$).

THEOREM 5.3. *Let X be a real Banach space, B a nonempty, convex subset of X , and $T : B \rightarrow B$ a uniformly continuous and ψ -uniformly pseudocontractive map with $T(B)$ bounded. If $\{\alpha_n\}$, $\{\beta_n\}$ satisfy (1.3) and $u_0 = x_0 \in B$, then the following are equivalent:*

- (i) *the Mann iteration (1.1) is T -stable,*
- (ii) *the Ishikawa iteration (1.2) is T -stable.*

PROOF. The equivalence (i) \Leftrightarrow (ii) means that $\lim_{n \rightarrow \infty} \varepsilon_n = 0 \Leftrightarrow \lim_{n \rightarrow \infty} \delta_n = 0$. The implication $\lim_{n \rightarrow \infty} \varepsilon_n = 0 \Rightarrow \lim_{n \rightarrow \infty} \delta_n = 0$ is obvious by setting $\beta_n = 0$, for all $n \in \mathbb{N}$, in (1.2) and using (5.2). Conversely, we suppose that (1.1) is T -stable. Using Definition 5.1, we get

$$\lim_{n \rightarrow \infty} \delta_n = 0 \Rightarrow \lim_{n \rightarrow \infty} u_n = x^*. \quad (5.3)$$

Theorem 2.1 assures that $\lim_{n \rightarrow \infty} u_n = x^*$ leads us to $\lim_{n \rightarrow \infty} x_n = x^*$. Using Remark 5.2, we have $\lim_{n \rightarrow \infty} \varepsilon_n = 0$. Thus, we get $\lim_{n \rightarrow \infty} \delta_n = 0 \Rightarrow \lim_{n \rightarrow \infty} \varepsilon_n = 0$. \square

Set $Tx = f + (I - S)x$ in Theorem 5.3. Corollary 3.1 leads to the following result.

COROLLARY 5.4. *Let X be a real Banach space and $S : X \rightarrow X$ a uniformly continuous and ψ -uniformly accretive map with $(I - S)(X)$ bounded. If $\{\alpha_n\}$, $\{\beta_n\}$ satisfy (1.3) and $u_0 = x_0 \in B$, then the following are equivalent:*

- (i) *the Mann iteration (4.3) is T -stable,*
- (ii) *the Ishikawa iteration (4.2) is T -stable.*

Analogously, we obtain the following corollary.

COROLLARY 5.5 [5]. *Let X be a real Banach space and $S : X \rightarrow X$ a Lipschitzian and ψ -uniformly accretive map with $(I - S)(X)$ bounded. If $\{\alpha_n\}$, $\{\beta_n\}$ satisfy (1.3), then the following are equivalent:*

- (i) *the Mann iteration (4.3) is T -stable,*
- (ii) *the Ishikawa iteration (4.2) is T -stable.*

If the map T is multivalued, then the definition of a ψ -uniformly pseudocontractive map has the following form.

DEFINITION 5.6. Let X be a real Banach space. Let B be a nonempty subset. A map $T : B \rightarrow 2^B$ is called ψ -uniformly pseudocontractive if there exist $\psi \in \Psi$ and $j(x - y) \in J(x - y)$ such that

$$\langle \xi - \theta, j(x - y) \rangle \leq \|x - y\|^2 - \psi(\|x - y\|), \quad (5.4)$$

for all $x, y \in B$, $\xi \in Tx$, $\theta \in Ty$.

Let $S : X \rightarrow 2^X$. The map S is called ψ -uniformly accretive if there exist $\psi \in \Psi$ and $j(x - y) \in J(x - y)$ such that

$$\langle \xi - \theta, j(x - y) \rangle \geq \psi(\|x - y\|), \quad (5.5)$$

for all $x, y \in X$, $\xi \in Sx$, $\theta \in Sy$.

We remark that all the results from this paper hold in the multivalued case, provided that these multivalued maps admit an appropriate selection.

ACKNOWLEDGMENT. The authors are indebted to the referee for carefully reading the paper and for making useful suggestions.

REFERENCES

- [1] S. Ishikawa, *Fixed points by a new iteration method*, Proc. Amer. Math. Soc. **44** (1974), 147-150.
- [2] W. R. Mann, *Mean value methods in iteration*, Proc. Amer. Math. Soc. **4** (1953), 506-510.
- [3] C. Moore and B. V. C. Nnoli, *Iterative solution of nonlinear equations involving set-valued uniformly accretive operators*, Comput. Math. Appl. **42** (2001), no. 1-2, 131-140.
- [4] C. H. Morales and J. S. Jung, *Convergence of paths for pseudocontractive mappings in Banach spaces*, Proc. Amer. Math. Soc. **128** (2000), no. 11, 3411-3419.
- [5] B. E. Rhoades and Ș. M. Șoltuz, *The equivalence between T -stabilities of Mann and Ishikawa iterations*, submitted to Math. Commun.
- [6] ———, *The equivalence of Mann and Ishikawa iteration for a Lipschitzian psi-uniformly pseudocontractive and psi-uniformly accretive map*, to appear in Tamkang J. Math.
- [7] ———, *The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically pseudocontractive map*, J. Math. Anal. Appl. **283** (2003), no. 2, 681-688.
- [8] ———, *The equivalence of Mann iteration and Ishikawa iteration for non-Lipschitzian operators*, Int. J. Math. Math. Sci. **2003** (2003), no. 42, 2645-2651.
- [9] ———, *On the equivalence of Mann and Ishikawa iteration methods*, Int. J. Math. Math. Sci. **2003** (2003), no. 7, 451-459.
- [10] ———, *The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps*, J. Math. Anal. Appl. **289** (2004), no. 1, 266-278.

B. E. Rhoades: Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA

E-mail address: rhoades@indiana.edu

Ștefan M. Șoltuz: "Tiberiu Popoviciu" Institute of Numerical Analysis, P.O. Box 68-1, 400110 Cluj-Napoca, Romania

E-mail address: soltuzul@yahoo.com

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru