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ring of integers of an imaginary quadratic field K, are introduced and applied to find systems
of fundamental units in families of totally complex algebraic number fields of degrees four,
six, and eight.
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1. Introduction. Let F be an algebraic number field of degree n. There exist exactly n
field embeddings of F in C. Let s be the number of embeddings of F whose images lie
in R, and let 2t be the number of nonreal complex embeddings, so that n = s+ 2t. The
pair (s,t) is said to be the signature of F. Let Zf be the ring of integers of the field F.
A unit in F is an invertible element of Zr. The set of units in F forms a multiplicative
group which will be denoted by Zy. In 1840, P. G. Lejeune-Dirichlet determined the
structure of the group Z;. He showed that Zj is a finitely generated Abelian group of
rank v = s+t — 1, that is, Z7 is isomorphic to ur x Z", where py is a finite cyclic group.
ur is called the torsion subgroup of Zj. Thus, there exist units €y,..., €, such that every
element of Z; can be written in a unique way as Ce{” --€/", where n; € Zand C is a
root of unity in F. Such a set {€1,...,6,} is called a system of fundamental units of F.
Finding a system of fundamental units of F is one of the main computational problems
of algebraic number theory (see, e.g., [4, page 217]). Much work has been done to solve
this problem for certain classes of algebraic number fields (see, e.g., [11]). In the case
of the real quadratic fields, the continued fraction algorithm provides a very efficient
method for solving this problem (see, e.g., [11, page 119]). This approach goes back
to L. Euler, who applied continued fractions to solve Pell’s equation x2 —dy? = +1.
(If a square-free positive integer d = 2 or 3mod4 and x, v is an integral solution of
this equation, then x ++/dy is a unit in the real quadratic field Q(+/d). Moreover, any
unit in Q(+/d) can be obtained this way.) Many attempts have been made to develop
a similar algorithm that would find a system of fundamental units in other algebraic
number fields. In the case of a cubic field, one of the most successful such algorithms
was introduced by Voronoi [16]. A review of the multidimensional continued fraction
algorithms and their properties that were known by 1980 can be found in [1].

Let d > 0 be a square-free integer. Let Zg be the ring of integers of the field K =
Q(+/=d). The group of units pg of K is a finite cyclic group of order 6 if d = 3, 4 if
d =1, and pug = {+1} otherwise. Let w = (1 ++/—d)/2 if d = 3(mod4) and w = v/—-d
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otherwise. Then {1,w} is a Z-basis of Zg. Let F/K be a relative extension of relative
degree n, so that the signature of F is (0,n).

In [24], the (multidimensional continued fraction) Algorithm II associated with the
discrete group GL,,(Z)/{+1} acting on the symmetric space ?,, = SL,,(R) /SO, (R) was
introduced and applied to the problem of finding a system of fundamental units in an
algebraic number field. In the present paper, an analog of Algorithm II associated with
the group I' = GL,, (Zx ) / uk acting on the Hermitian symmetric space # = SL,,(C)/SU(n)
is applied to the problem of finding a system of fundamental units in the relative ex-
tension F/K and in the field F. The space % can be identified with the set of positive
definite Hermitian forms in n complex variables with the leading coefficient one. De-
note by X the positive definite quadratic form in 2n real variables associated with a
Hermitian form X € %. The set {X: X € %} is a totally geodesic submanifold of %>, of
dimension n? -1 (see, e.g., [2, Chapter IL.10]).

Assume that g € GL, (C). Let ga; = A;a;, i = 1,...,n, so that a; is an eigenvector of
g corresponding to its eigenvalue A;. For simplicity, assume that all the eigenvalues
of g are distinct. Let P = (a,...,a,) be the matrix with columns ai,...,a,. The set of
points in ¥ fixed by g will be called the axis Lp of g. The axis Lp of g depends only on
eigenvectors of g, that is, on P, but not on its eigenvalues (see Section 3). Lp is a totally
geodesic submanifold of 9 of dimension n—1.

In Section 2, the notion of the height of a point in ¥ is introduced. Let w = (1,0,...,0)T
and W = ww?. In what follows, the point W which belongs to the boundary of ¥ is anal-
ogous to the point « in the upper half-space model H"*! = {(z,t):z € R", t > 0} of
the (n + 1)-dimensional hyperbolic space (see [21, 22]). The set K, = K(w) in # is de-
fined so that, for every point X € #, the points in the I'-orbit of X with the largest
height belong to K(w). The images K,,[g] of K;,, g €T, under the action of I' form the
K-tessellation of #. The K-tessellation of 7 is I'-invariant.

If LpnKy[g] #+ @, g €T, then the vector u = g~'w € Z} is called a convergent of Lp.
In Section 3, it is shown that if u is a convergent of Lp, then |[{(a,u) - - - (an,u)/detP],
where (-, -) denotes the complex dot product in C", is small (Theorem 3.3). Algorithm II,
which is introduced in [24], can be applied in ¥ to find the sets R(g~'w) = Lp nK,[g] #
@, which form a tessellation of Lp, and the set of convergents of Lp.

It is proved in Section 4 that a system of fundamental units in the relative extension
F/K is a system of fundamental units in the field F provided Zx is a free Zgx-module.

The upper half-space H3 = {(z,t) : z € C, t > 0} with the metric ds? = t~2(|dz|*> +
dt?) can be used as a model of the three-dimensional hyperbolic space. SL,(C) is the
group of orientation-preserving isometries of H*. In Section 5, for n = 2, a bijection
of % and H? is introduced, so that  is also a bijection between the K-tessellations of #
and H3. Thus, Algorithm I from [21] in H? coincides with Algorithm II from [24] in %
in this case. In Examples 5.3, 5.4, and 5.6, Algorithm I is applied to find fundamental
units in some families of number fields with signature (0,2).

If g €T = GL,(Zx)/uk, then there are only finitely many sets R(u) which are not
congruent modulo the action of I'. The union of noncongruent sets R(u) forms a fun-
damental domain of I} in Lp. Assume that the characteristic polynomial p(x) of g
is irreducible over K. Let p(€) = 0. In Section 6, the problem of finding a system of
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fundamental units in F/K is solved for some families of fields F = Q(e) with signature
(0,m), n < 4, by reducing it, as explained in Section 4, to the problem of finding a set
of generators of I;. Here, the families of fields with signature (0,n) are obtained from
some families of fields with signature (1n,0) by complexification, that is, by replacing a
real parameter t € Z by a nonreal complex parameter m € Zg.

In Example 5.3 (and, for 6 = —1, in Example 6.1), the following result is obtained.

THEOREM 1.1. Letd be a square-free positive integer and let K = Q(+/—d). Let {1, w}
be the standard Z-basis of Zx. Let p(x) = x2 —mx + 8, where nonreal m € Zg, |m| > 4,
and § € Z¥. Assume that either m? — 48 or m?/4 — § is a square-free ideal in Zg. Let
p(e) =0and F = Q(e).

Then {1,w,e~', e ' w} is a Z-basis of Zr and 7§ | ur = (€).

Similar results (Theorems 5.5 and 5.7) are proved in Examples 5.4 and 5.6, where
I' = B;/uk and By is the extended Bianchi group (see [19, 20]). Complexification of the
family of simplest cubic fields of Shanks [15] leads to the following result obtained in
Example 6.2.

THEOREM 1.2. Letd be a square-free positive integer and let K = Q(+/—d). Let f (x) =
x3—-mx?—(m+3)x—1, where nonrealm € Zg, |m| = /20 +3. Assume thatm?+3m+9
is a square-free ideal in Zg. Let f(€) =0 and F = Q(€).

Then {1,€,€%} is a Zx-basis of Zr,x and ZF | ur = (€,€ +1).

In Example 6.4, the fundamental domain of I} in Lp is found for the family of the
simplest quartic fields of Gras [8]. By complexification of this family, in Example 6.5,
we prove the following.

THEOREM 1.3. Letd be a square-free positive integer and let K = Q(+/—d). Let f (x) =
x* - 2mx? - 6x2 + 2mx + 1, where nonreal m € Zy, gcd(m,2) = 1, and |m| > /84.
Assume that m? + 4 is a square-free ideal in Zx. Let f(€) =0 and F = Q(e).

Then {1,€,(e®> —1)/2,e(€®> —1)/2} is a Zx-basis of Zr/x, and Z} | ur = (€,(e — 1) /(€ +
1),(e—€e1)/2).

Note that the families of algebraic number fields F considered in the theorems above
are parameterized by complex parameters m = a + wb € Zk, a,b € Z, or by three real
parameters a, b, and d.

In [23], Algorithm IT is used to find a system of fundamental units in a two-parameter
family of complex cubic fields. In [24], it is used to find a system of fundamental units
in some families of algebraic number fields F of degree less than or equal to 4, which
have at least one real embedding. Thus, the present paper, where Algorithm Il is applied
only to the totally complex algebraic number fields, can be considered as a complement
of [24].

2. Fundamental domains and K-tessellation. Almost all the definitions in this sec-
tion and in Section 3 are similar to the corresponding definitions from [24, Sections 2
and 3]. We reproduce them here for completeness.

Let n > 2 be a positive integer. Let V,, be the vector space of Hermitian n X n matrices.
A complex matrix X € V,, if and onlyif X = X* = X" The real dimension of Vpis N = n2.
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The action of g € G = GL(n,C) on X € V,, is given by
X — X[gl=g*Xg. (2.1)

For a subset S of V,,, denote S[g] = {X[g] € V,,: X € S}.

The one-dimensional subspaces of V,, form the real projective space V of dimension
N —1, so that for any fixed nonzero X € V,, all the vectors kX € V,;, 0 # k € R, represent
one point in V. Denote by % C V the set of (positive) definite elements of V and by % the
boundary of 7 (% can be identified with nonnegative elements of V of rank less than n).
The group G preserves both % and % as does its arithmetic subgroup GL(n,Zg).

The space V,, (and V) can be also identified with the set of Hermitian forms A[x] =
x*Ax, A € Vy,, x € C*. With each point a = (a4,...,a,)T € C*, we associate the matrix
A =aa* € B and the Hermitian form

Alx] = |{a,x)|° = |@aix1+ - - +anxn|’. (2.2)

Here, (a,x) = (x,a) = a*x. For g € G, we have (ga,x) =a*g*x = (a,g*x).

Let w = (1,0,...,0)T and W = ww*. Then (w,x)? = x? and W[g] = U = uu*, where
u=g*w.

Denote by G and I'x, the stabilizers of w in G and I' = GL(n,Zf) / ur, respectively.
Then

Go={g€G:gw=wl={geG:g1 =w}, (2.3)

where g, is the first column of g. Thus, g € G« if and only if W[g*] =W.

We will say that A € V is extremal if |A[x]| = |A[w]| = |a11/? for any x € Z%, x #
(0,...,0). Let oAy, = {X € V: X[w] # 0}. It is clear that 9 C si,. For X € #,,, we will say
that ht(X) = |det(X)|""/|X[w]]| is the height of X and, for a subset S of V, we define
the height of S as ht(S) = maxht(X), X € S.

The elements of #,, will be normalized so that X[w] = 1. For a fixed g €T, the set
{Xedy: | X[gw]| <1} is called the g-strip. It is clear that the gh-strip coincides with
the g-strip for any h € I',. Since X[gw] € R for any g € G, the boundary of the g-strip
consists of two planes X[gw] = +1. The plane

L (gw) =L"(g) = {X € sl : X[gw] = 1} (2.4)

is the boundary of the g-strip, which cuts 7. Let ®,, be the set of all extremal points
of V. Denote

Kn =K(w) =#HNRy. (2.5)

Note that K(w) C «, is bounded by the planes L*(g). If h € T'x, then X[hw] = X[w]
and, therefore, ht(X[h]) = ht(X). Thus,

Kulh] =Ky, hel,. (2.6)

By (2.6), Kn[hg] = Ku[g] for any g €T and h € I's. Thus, the sets K,,[g] are param-
eterized by the classes I'x\I' or by primitive vectors u = g 'h~'w = g~ 'w, so that +u
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represent the same K, [g]. The sets K,,[g], g € Tx\I, form a tessellation of % which
will be called the K-tessellation. It is clear that the K-tessellation of ¥ is I'-invariant.

Letwsy, = (1,0,...,0)T € ®,,,. Denote by K (w»,,) the set of woy-extremal points in Py.
Denote ¥y = {X:X €9} and Ky = K(w2,) NPy.Let X € o,,. AHermitian matrix can be
reduced to a diagonal form by a unitary transformation. Hence det()? ) = det®(X) and,
therefore, ht()?) = (ht(X))?2, where ht()?) is the height of Xe Pon (see [24]). It follows
that X — X is a bijection between the K-tessellations of # and ?y. In Sections 5 and 6,
to show that X € ¥ is extremal, we will show that X is Minkowski-reduced (see, e.g., [6,
pages 396-397]).

3. Axes of elements of G. Letg € G.Letga; = A;a;, i =1,...,n,where, for simplicity,
we assume that A; # A; if i # j. Here, a; is an eigenvector of g corresponding to its
eigenvalue A;. Assume that (a;,w) # 0, i = 1,...,n. Then we can choose a; so that

(aj,w)=1, i=1,...,n. (3.1)

g €T is said to be K-irreducible if its characteristic polynomial is irreducible over the
field K. If g €T is K-irreducible, then all its eigenvalues are distinct. Let Ay # +1. Let
= (aiy,...,an) be the matrix with columns a,...,a,, and let H = diag(A4,...,A,). Then
g=PHP™L
The totally geodesic submanifold Lp of ¥ fixed by g = PHP~! will be called the axis
of g. The dimension of Lp is n—1. A point g € Lp can be represented as

n n
a=2 WAk Ax=axag, k=0, > p=1. (3:2)
k=1 k=1

It can also be identified with the set of Hermitian forms in «,,

n
ZIJkAk x]= ZIJkHX ar)|®, =0, > k=1 (3.3)
k=1 k=1 k=1

Hence
detq = piy - - - pn | detP|?. (3.4)

It follows from (3.3) that Lp is the axis of h € G if and only if a;, i = 1,...,n, are
eigenvectors of h. Hence, the axis of g depends only on its set of eigenvectors, that is,
on P, but not on the eigenvalues of g.

Thus, Lp is the simplex with vertices Ay, k = 1,...,n. All the faces of Lp belong to %.
Note that Lp[g*] = Lp.

Denote K, (g 'w) = K, [g] and

R(g™'w) =KnlglnLlp + B, geT,\I. (3.5)

The sets R(u), u = g~'w, form a tessellation of Lp which is invariant modulo the
action of T since the K-tessellation of % is I'-invariant. We say that this tessellation is
periodic if there are only a finite number of noncongruent sets R (1) modulo the action
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of Stab(Lp,T). In that case, the union of all noncongruent sets R(u) is a fundamental
domain of Stab(Lp,T). The number of noncongruent sets R (1) in the tessellation of Lp
will be called the period length.

Let Np(x) = (x,a1)---{(x,an), where {x,ar) = x*ay. Define

V(Lp) =inf W

Np(gw) . (3.6)
where the infimum is taken over all g € T. It is clear that v(Lp) = v(Lyp[h]) for any
h €T and M = diag(u,...,Uun), where puy,...,u, € C and py - - - yuy, # 0. The projective
invariant v (Lp) is well known in the geometry of numbers (see, e.g., [3] or [9]).

Let n = 2. The approximation constants sup v(Lp) are known ford =1,2,3,5,6,7,11,
15,19 (see, e.g., [20, 22], where in the cases of d = 5,6, and 15, T is the extended Bianchi
group). Ford = 1,3, and 11, more information is available (see [12, 13, 14, 17, 18]). Thus,
when d = 1, it is proved in [17, 18] that if v(Lp) > 1/2, then v(Lp) = (4—|m/|*)"1/2 or
14.7671/4 where (m,m’) is a solution of the Diophantine equation (mm’)2+ (m'm)? =
|m|%+|m’|? innonzero m,m’ € Zg, the ring of integers of the Gaussian field K = Q(i).

A point gy, € Lp is said to be the summit of Lp if |det(g,,)| = max|det(q)|, the max-
imum being taken over all g € Lp. It is clear that if R = Lp N K, (w) # &, then g, € R.
The following two lemmas are analogous to [24, Lemmas 5 and 6].

LEMMA 3.1. Let Lp be the totally geodesic manifold fixed by g € G and defined by
(3.3), where ga; = Aja;. Let P = (ay,...,an) be the matrix with columns a,,...,a,. Then

1 n
am = > Ak (3.7)
k=1
is the summiit of Lp,
2/n
bty < L[ P
n p(w) (3.8)
v(Lp) =inf (nht(Lp[g])) "?, geT.

LEMMA 3.2. Let Lp be the totally geodesic manifold fixed by g € G and defined by
(3.3), where ga; = Ajai. Then

v(Lp) =inf (nht(Lp[g;])) ™%, LrnKn(gjw)+ @, g,€<T. (3.9)

Assume that Lp nK, (gw) # &, where g € I'. Denote
hy, =inf (ht(X)), X €K,. (3.10)

Since Lp[g]nKy(w) # &, by Lemma 3.1,

2/n

1|_detp > Ny (3.11)

ht(Lelgl) =ht(Lowr) = | 7000
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But Ng+p(x) = (x,g*a1)---{x,g%an) = (gx,a1)---(gx,an). Hence Ngp(w) =
Np(gw).

A vector gw € Z¢, such that Lp N K, (gw) # @, will be called a convergent of Lp. We
have proved the following.

THEOREM 3.3. If a vector u is a convergent of Lp (i.e., if Lp N K, (u) # &), then

[Np(u)| < CHM?|detP], (3.12)

where C,, = 1/(nhy,). Hence, if Lp cuts infinitely many sets K,,(u), then this inequality
has infinitely many solutions in u € Z¢.

A component of the boundary of a set R(u) of codimension one will be called a face
of R(u).

Algorithm II from [24] can be applied in ¥. In this case, a simplex L C % has vertices
at A; € B, where A; = a;af, fori=1,...,n, and det(as,...,an) # 0.

The following result shows that any matrix g in the stabilizer of the simplex L is
uniquely determined by the first row of g.

PROPOSITION 3.4. Let f(x) be an irreducible polynomial over Zx of degree n with
coefficients in Zg. Let E* be the companion matrix of f(x). Let Lp be the axis of E. Let
g = (gij) € Gy, the torsion-free subgroup of the stabilizer of Lp in G. Then

g=gul+gnE+---+ginE" L (3.13)

PROOEF. The first row of Ei~1 is the standard unit vector ¢; = (0,...,0,1,0,...,0). O

4. Fundamental units in Zr and Z,kx. Let Zr be the ring of integers of the field F.
Assume that Zf is a free Zx-module. Let {1, c>,...,x,} be a Zg-basis of Zr. Then the
Z-basis of Zr is {1,w, X2, W X2, ..., &n, W&, }. Let a; = (1,,...,a,)T. Let y € Zp. Then
Y& =2 MjkXg or ya; = Mya,, where &; = 1, mj, € Zg, and M, = (mj;) is a square
matrix of order n. Let 0; be the n distinct embeddings of F/K in C. Let ax = ox(a;) and
Yk = 0k (y), where y; = y. Then yray = Myay for k = 1,...,n. Thus, ai is an eigenvector
of M, corresponding to its eigenvalue yy. It is clear that the map y — M, is an iso-
morphism of the ring of integers Zr,x and the commutative ring of Zg-integral square
matrices of order n with the common axis Lp. The relative norm of y equals det(M,)
so that y is a unit in Zg/k if and only if M, € GL, (Zg). The torsion-free subgroup I}, of
the stabilizer of Lp is isomorphic to Zf,x /ur/x. Thus, the problem of finding a system
of fundamental units of F/K is equivalent to the problem of finding a set of generators
of I;. The analog of the (multidimensional continued fraction) Algorithm II introduced
in [24] can be used to solve the latter problem. In Section 6, a set of generators of I,
and, therefore, a system of fundamental units, is found in some families of relative
extensions F/K of relative degree n < 4 and in the fields F.
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Let @) = (1,0, %2, W&, ..., 0y, W&y ). Let mjx = bji + wcjk, where bj,cjx € Z. Then
yo; = Xbjox + Dcjkwag. Let di = (d+1)/4. If d = 3(mod4), then ywa; =
DS(—dici) o+ (bjk+cjir)wag, and ywa; = > (—dcjr) &k + 2. bjrw i otherwise. De-
note M, = (1), where

b. .
[ dl" , Cik ] if d = 3(mod4),
—dic; ik +Ci
i = b.l i C,Jk I (4.1)
it ik otherwise.
—dek bjk

Then ydy = ]\A/Iy&k, where ay = oy (a;), fork=1,...,n, and (/a;B is also an eigenvector
of ]\//Ty corresponding to its eigenvalue y,. Let Lp be the axis of A//Ty in Poy. It is clear
that the map y ~ A//Ty is an isomorphism of the ring of integers Zr and the commutative
ring of Z-integral square matrices of order 2n with the common axis Lp. The norm of
y equals det(l\A/Iy) so that y is a unit in Zf if and only if ]\A/Iy € GL»,,(Z). The torsion-
free subgroup fL of the stabilizer of fp is isomorphic to Zj /pg. Thus, the problem of
finding a system of fundamental units of F is equivalent to the problem of finding a set
of generators of ;. Note that det(ﬁ/[\y) = |det(M,)|? since N(y) = [Nk (y)I2.
We have proved the following.

LEMMA 4.1. Let d > 0 be a square-free integer. Let Zx be the ring of integers of the
field K = Q(v/—d). Let F be an extension of K. Let Zr be the ring of integers of the field F.
Assume that Zr is a free Zx-module. Then a system of fundamental units of the relative
extension F /K is a system of fundamental units of F.

5. 2 X 2 Hermitian matrices. In this section, we consider a model of the three-
dimensional hyperbolic space which is similar to the Klein model of the hyperbolic
plane used in Example 1 from [23] or [24].

When n = 2, the space V consists of all Hermitian 2 x 2 matrices

X X2 +1ix
A= [ 1’ 2+ 3:| ’ (5.1)
X2 —1X3 X4

where (x1,x2,x3,Xx4) € R*. The formula
p(g)A=g*Ag=Alg], (5.2)

where g € PSL(2,C), A € V, defines a representation p of the group PSL(2,C) in the
space V. All the transformations p(g) as well as the complex conjugation A — A pre-
serve the form A(A) = det(A) = x1x4 —x% —x§. The space ¥ of (positive) definite matri-
ces in V, considered with the action of the group p (PSL(2,C)) extended by the complex
conjugation, is isomorphic to the three-dimensional hyperbolic space.
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o B

The action of g = [$ 5] € SL(2,C) on (z,t) € H3 is given by

Yy o
[ (xz+B)(yz+6) + ayt? t
g9(zt) = ( lyz+012+1yl?t>  lyz+012+|y|%t? (5-3)
(see, e.g., [7, page 569]). Thus, the height of g(z,t) is t(|lyz+ 6%+ |y|?t?)~1.
LEMMA 5.1 [7, page 409]. Define @ : % — H? by
W(A) = (M L N I e T (5.4)
X1 [ x| Xp —1X3 X4

Then y(A[g]) = gy (A). Hence @ induces a bijection of % and H?, which commutes with
the action of PSL(2,C).
The height of W (A) is JA(A)/|x1].

Let g €' = PGL(2,Zk). Denote
K(o) = {(Z,t) e H?: |g212+g22|2+ |g12 |2t2 >1,9= (gij) Er}. (5.5)

We have the following.

THEOREM 5.2. Lety be the bijection of % and H? defined in Lemma 5.1. Then @ (K>) =
K (o) and, therefore,  is a bijection between the K -tessellations of % and H3. Hence
is a bijection between the tessellations of the axis of g € SL(2,C) in H? and the axis of g
in %. Thus, Algorithm I from [22] in H3 coincides with Algorithm II from [24] in ¥ in this
case.

PROOF. The height of ¢(A) € H? equals ht(A) in ¥. Hence @ (K>) = K(). O

Let F be a field with signature (0,2), which has an imaginary quadratic subfield K,
so that Zg, the ring of integers of F, is a free Zx-module. Lemma 4.1 and Theorem 5.2
imply that to find a fundamental unit in F, one can apply either Algorithm I in H3 or
Algorithm II in #. But, in general, it is easier to apply Algorithm II in 7 than Algorithm
Iin H3, since to find the point of intersection of the axis Lp of g € T with the boundary
of K(w) in #, one has to solve a system of linear equations. On the other hand, to
solve this problem in H?, we have to find the point of intersection of a semicircle with
a hemisphere. However, the application of Algorithm I in H3 in Examples 5.3, 5.4, and
5.6 is quite simple. In the next section, we apply Algorithm II in % to find a system of
fundamental units in some families of fields with signature (0,n), n < 4. The period
length in any of Examples 5.3, 5.4, 5.6, 6.1, 6.2, 6.4, 6.5 is one.

The discriminant of F is d?{|d1—‘ /x |%, where d is the discriminant of K and dy x is the
discriminant of the extension F/K (see, e.g., [5, page 209]). In all the examples below, we
assume that Zr has a free basis over Zg. In the case when F/K is a quadratic extension,
(i.e., F = K(+/A)), as in Examples 5.3, 5.4, and 5.6, such a basis exists if and only if
Dr/x/+/A is a principal ideal (of Zr) generated by an element of K (see, e.g., [5, page
222]). Here, Drk is the relative different.
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EXAMPLE 5.3. Let

1 m 0 -5 -1 0
U‘[o 1] S_[l o] W‘[o 1] (5.6)

where m = a + wb € Zg, 6 € Z§. Then reflection S fixes the unit hemisphere ¢, with
equation [z|2 + t2 = 1 in the hyperbolic space H3. The axes of reflections U’ = UW
and S’ = WS are perpendicular to the axis A; of g = US = U’'S’ in H3. Let M and
M, be the points of intersection of A, with axes of S" and U’, respectively. Let Ry be
the arc MM; on A,. Since the axis of U’ is the vertical line in H® through the point
m/2 € C, Ry C AgnK() if and only if M € K(o0). For |m]| fixed, it can be easily seen
that the height of M is smallest when A, and the axis of S’ lie in the same vertical plane
in H3. It is clear that the part of the unit hemisphere ¢, which lies above |z| < 1/2
belongs to K(co) for any d. It follows that M € K(o0) and Ry C Ag NK (o) if |m| = 4.
Thus, g is a generator of the torsion-free subgroup of the stabilizer of A, in PGL(2,ZF)
and, by Theorem 5.2, of I, provided |m| > 4. The characteristic polynomial of g is
p(x) = x2 —mx + § with discriminant d(p) = m? —44. Let p(¢) = 0. Let F = Q(e). If
either the ideal d(p) = m? —46 or d(p)/4 is square-free in Zg, then {1,€} is a Zg-basis
of Zpk, and {1,w,e ', e 'w} is a Z-basis of Zr. By Lemma 4.1, Z} / ur = {€). Note that
a=(1,w,e e 1w)T is an eigenvector of g corresponding to its eigenvalue €. We have
proved Theorem 1.1.

EXAMPLE 5.4. Let d =5 or 6. Let B; be the extended Bianchi group (see [19]). Let
c=1++v/-5ford =5 and ¢ = /-6 for d = 6. In that case, the floor of an isometric
fundamental domain of B, in H? lies in the hemisphere ¢, which is the unit hemisphere
defined in Example 5.3, and hemisphere ¢» with center c¢/2 and radius 1/+/2 (see [19,

page 308]). Let
-1 ¢
W= [ 0 J, (5.7)

oo e ) el <)

where nonreal m = a+b+/—d € Zg. The axes of reflections U’ = UW and S;; = WS, are
perpendicular to the axis Ay of g = US; = U’S);. As in Example 5.3, it can be shown
that g is a generator of the torsion-free subgroup of the stabilizer of A, in By, provided
lm| = /6.

The characteristic polynomial of g is p(x) = x? — 2mx + 2 with discriminant d(p) =
4(m?-2).Letp(x) =0and F = K(x). g ¢ GL(Zk) since detg = 2, but (1/2)g? € SL(Zxk).
Hence «®/2 = max—1 € Z§. (Similarly, the case of g’ = US), = U'S4 can be considered.
In this case, «?/2 = ma+1 € Z§.) If either d =5 and (a—b) is odd, or d = 6 and a is
even, then Np/x ((x+c¢)/2) € Zx. If d(p)/8 = m?/2 -1 is a square-free ideal in Zg, then
{(x+c)/2,1} is a Zg-basis of Zp/k, {(x+c)/2,w(x+c)/2,1,w} is a Z-basis of Zf, and
Z¥ up = (€), where € = &> /2 = mx— 1. We have proved the following.

THEOREM 5.5. Letd =5 or6. Letc=1++/-5ford=5 and c = /-6 ford = 6.
Let {1,w} be the standard Z-basis of Zx, where K = Q(+/—d). Let « be a root of p(x) =
x2-2mx + 28, where nonrealm = a+b~/—-d € Zx, |m| = V6, and § = +1. Let F = K(x).
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Assume that eitherd = 5 and (a—Db) is odd, ord = 6 and a is even. If m? /2 —§ is a square-
free integer in Zx, then {(x+c¢)/2,w(x+c)/2,1,w} is a Z-basis of Zr, and 7y | ur = (€),
where € = o?/2 = mx— 1.

Note that a = ((x+c¢)/2,w(x+c)/2,1,w)T is an eigenvector of g corresponding to
its eigenvalue «.

EXAMPLE 5.6. Let d = 15. Let K = Q(+/—15). The floor of an isometric fundamental
domain of Bi5 in H? lies in ¢, which is the unit hemisphere defined in Example 5.3,
and the hemisphere ¢, with center w/2 and radius 1/+/2 (see [22, page 2313]). Let

1 m -1-w 1+w -1 w
U:[o 1]’ S=[1+w 1+w] w [0 1] .8)

where m = a + wb € Zg. Let A, be the axis of g = US = U'S’ in H3, where U’ = UW
and S’ = WS. As above, it can be shown that the arc R = K(c) N Ay is a fundamental
domain of the torsion-free subgroup of the stabilizer of A, in By5 on Ay, and that g is
a generator of this subgroup, provided |m| > 4.

The characteristic polynomial of g is p(x) = x> —m(1 + w)x + 3 with discriminant
d(p) = (1+w)?>(m? + w). Let p(xx) = 0. Let F = Q(x). & ¢ Z§ since det(g) = 3 and
g ¢ GL(Zx). But (1/3)g* € SL(Zg). Hence € = &*/3 = mx(1+w)/3 -1 € Z§. Let B =
(x—1-w)/(1+w). Npjg(B) =—-1-2b+2(a+b)/w € Zr if and only if (a+Db) € 2Z.
Assume that (a + b) is even. Then {f,1} is a Zg-basis of Zg/k, and {B,Bw,1,w} is
a Z-basis of Zp, provided m? + w is a square-free ideal in Zx. We have obtained the
following.

THEOREM 5.7. Let K = Q(v/—15). Let m = a + wb € Zg, where (a + b) € 27Z. Let
p(x)=x?-m(1l+w)x+3 and p(x) = 0. Assume that |m| = 4 and m? + w is a square-
freeidealinZk. LetF = Q(x). Let B = (x—1—-w)/(1+w). Then {B, Bw,1,w} is a Z-basis
of Zp and 7} |y = (€), where € = o?/3=ma(l+w)/3-1.

Note that (B,Bw,1,w)T is an eigenvector of g corresponding to its eigenvalue .

6. Complexification of families of totally real cyclic fields. In this section, systems
of fundamental units are found in some families of totally complex fields of degrees
4, 6, and 8, which are cyclic extensions of imaginary quadratic fields. These families
are obtained by replacing the real parameter ¢t € Z in Examples 1 and 2 from [24] and
Example 6.4 by a nonreal complex parameter m € Z.

EXAMPLE 6.1. Let f(x) = x2—mx —1, where m € Zg. Let f(€) = 0.If m € Z, then we
obtain the family of real quadratic fields Q(€) considered in [24, Example 1]. Assume
that m ¢ Z and that either m?2+4 or m/4 + 1 is a square-free ideal in Zy. Then {1,€} is
a Zg-basis of Zp/k, where F = K(¢€). The family of fields considered here is a particular
case of the family of fields from Example 1.

Let nonreal m = a+ib = a; + wby = €—-1/€, € = u+iv, where a,b,u,v € R and
a,b1 €Z. Letn=nov/d=v/(u?+v2+1) and c = [m|2+4. Then c/b = (1 +4n2)/n.
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Hence ng is a root of the polynomial ¥ (x) = 4b1dx?% —c1x + by, where ¢, = 2c if d =
3(mod4) and c; = ¢ otherwise. The discriminant of 7 (x) is d, = c? —16db? = |d(f)I?,
where d(f) is the discriminant of f.

Let E* be the companion matrix of f(x).Let Lp be the axis of E. Let I; be the torsion-
free subgroup of the stabilizer of Lp inT. Let E*a; = €;a; and A; = a;a;, where € = €,
a; = (1,€;), i = 0,1. Then q(uo, U1) = oA + U1A1, U; > 0, U+ pp = 1 is an equation
of Lp. Let F; be the intersection of Lp and L* (E). Then F; = q(|€|?,1) in the projective
coordinates. Let

1 -m 1 2in
h—[o 1], Fo_[_zm 1] (6.1)

Assume that |€| < 1. Then |n| < |e] < (|m|? —4)"Y2 since |m| = |e+1/€| < |e| +1/|€].

Thus, if [m| = /20, then F, = F;[h] is Minkowski-reduced. Hence, F; and F» = F;[E]
are extremal. Thus, the interval R = [F;,F»] = Lp nK(w) is a fundamental domain of I,
on Lp. It follows that I} = (E) and, therefore, Z§ /ur = (€).

A point X = (x;;) € Py is said to be rational over a field M if all x;; € M. A subset S
of %, is rational over M if the set of rational points of S is dense in S. If the summit of
the axis Lp of g € GL,(Z) is rational over a field M, then Lp is rational over M (see [24,
Section 4]). By (3.7), the summit of Lp is

m
1 ke
2

am = (6-2)

m o m>+[d(f)|
2 4

Hence, E} = {)? : X € Lp} C P4 is rational over the real quadratic field Q(|d(f)|) =
Q(no).

EXAMPLE 6.2. Let m € Zk. Let T = GL(3,Zg). Here, we consider complexification of
the simplest cubic fields (see [15] and [24, Example 2]). These are the relative cyclic
fields of relative discriminant dr/x = (m? + 3m +9)%. Assume that m ¢ Z. The sextic
field F = K(e1) is generated by a root €; of f(x) = x3 —mx? — (m +3)x — 1. Assume
that m2 + 3m +9 is a square-free ideal in Zg. Then {1,61,6%} is a Zk-basis of Zr and
both units €; and €2 = 0 (€1) = —1/(1 +¢€;) are the roots of this polynomial.

Letnonrealm = a+ib = a, + wb1,€; = u+iv,wherea,,b, € Z,a,b,u,v € R.Letn =
novd=v/(u?+v2+u+1).Since b/n—a-3 = |e1 1?2 +|e2|? + |€3]%, n does not depend
on a chosen root of f(x). Denote ¢ = |m|2+3a+9 € (1/2)Z, so that c —b € Z. Then ng
is the real root of the polynomial ¥ (x) = c1dx3 —9b,;dx?% + c1x — by, where ¢; = 2c if
d = 3(mod4), and c; = ¢ otherwise. The discriminant of 7 (x) is d,, = —4d(c? —27db?)?.

Let E* be the companion matrix of f(x) and let E; = E +1. Let Lp be the axis of E.
Let I; be the torsion-free subgroup of the stabilizer of Lp in I'. Let E*a; = €;a; and
Aj = a;af, where a; = (1,61',612), i=1,2,3. Then q(uy,pz,1u3) = U1 Ay + H2Az + U3Asz,
u; >0, gy + e + 3 = 1, is an equation of Lp.
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Denote E; = EEl‘l. Let F; be the intersection of Lp, L*(E), and L* (E>), and let G; be
the intersection of Lp, L™ (E), and L* (E7). Let m = 3n + k, where n,k = k1 + wky € Zg,
k1] <1 and |k»| < 1. Denote

1 0 -1 1 -X &
h={0 1 -1-m|, Fo=Fl[h]l=|-« 1 «f, (6.3)

0 0 1 « « 1

where & =2n/(n—-1i), and
L0 1w 1 Y13 —ikn
— _n —

_ k(1+1

hi=10 1 -2n |, Go=|Y13 1 w s (6.4)
0 0 1 . k(1-1
ikn k(1= in) 5 n) Y33

where

c (L=3nm)°  [kI* 6.5)

B S N - € k- 0
Y13 = nt, }’33—6 1+9n2 3

2 2
Assume that |e| < 1/2, where € = €;. Then |n| < |e| < ((|/m|—-3)2-4)"1/2 since |m| =
le—1/(e+1)+(e+1)/e|l <1+e|l+1/]le|l+1/(1—]€l) <3+]e|+1/|€|l. Note thatn — 0
and, therefore, « — 0 and y;3 — —1/2, as |m/| — .
Thus, if |m| = /20 + 3, then Fy = Fi[h] and Gy = G1[h; ] with

4n?
1+n?

(1-3n%)°

1+9n2 (6.6)

3
det (Fp) = (1— ) , det(Go) = =(|t|*+3a+9)

|-

are Minkowski-reduced and, therefore, F;,G;, i = 1,2,3, are extremal. Hence, R = Lp N
K(w) is the hexagon with vertices at Fi,F» = Fi[E], F3 = F1[E2], G1,G2 = G1[E1],
G3 = G1[E]. The sides of R are identified as follows: E : F1G1 — F»G3; E; : F3G1 — FoGo;
E; : F1G, — F3G3. Thus, R is a fundamental domain of I} = (E,E;) and, therefore,
Z§ | up = (€,€ + 1). Theorem 1.2 is proved.

Note that f;: = {)? :X € Lp} C Pg isrational over the real cubic field Q(ng). Also, note
that Fi = q(le; +11%,|e1(e1 +1)|3,]€11%) and G; = q(1, €1 +1]2,]€1]?) in the projective
coordinates, and if Fy = q(u1, 2, 13), then Fo = q(uz, p3, 1) and F3 = q(us, p1, 42). The
same relations hold for G, G», and G3. For the summit g, of Lp, we have

1 1 1
am =32 Ai=3 2 Fi=32.Gi (6.7)

REMARK 6.3. The properties of the vertices F; and G; of the fundamental domain
R of I} mentioned above, in the case of the simplest cubic fields, can be explained as
follows.

Letm =t € Z. Then v =0 and F is the simplest cubic field. Let Gal(F) = (o). Since

(W +u+1)*

=t2+3t+9= —,
r 3t+9 u2(u+1)2

(6.8)
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where u = €, the divisor p = u%2 + u + 1 is ramified in F. Thus, o (p) and o2(p) both
are divisible by p, and therefore ¢, = trace(p) = p + o(p) + o%(p) is divisible by p.
But, ¢, € Z, hence t, is divisible by 7. It is easy to verify that t, = . Let u; = o'(p) /7,
i=0,1,2. Then

Hi > 0, zui =1. (69)

The point F, = > u;A; belongs to Lp and it is integral since any entry of F» has a form
Soi(po)/r € Z. Since u,u+1 € Z} and trace(p?®/e®) = 2r, where € = u,u + 1, or
u(u+1), if we choose p; = oi(p?/€?)/(2v), then (6.9) holds, and we obtain one of the
points Gg. Note that (6.9) for F; can be written in the form

W u+D2+ wl+u)’ = wl+u+1)? (6.10)
and, for G;, in the form
w+u+1)2+1=2u?+u+1). 6.11)

EXAMPLE 6.4. Let t be an odd integer. Let f(x) = x* — 2tx3 — 6x° + 2tx + 1. (Out
of the four possible cases enumerated in [10, page 315], here we consider only Case
2.) Let f(e) =0and €, = (e—1)/(e+1). Then f(e;) = f(—-1/€) = f(—=1/€1) = 0. The
discriminant of f(x) is d(f) = 4*(t2 +4)3. Let 0 = (€ —€¢"1)/2. Then 62 -t0 -1 = 0,
0= (t+Vt?+4)/2, and N = Q(+/d), d = t? + 4, is a quadratic subfield of the cyclic
quartic field F = Q(e). If £2 + 4 is square-free, then {1,¢} is a Zy-basis of Zr,y. Hence
{1,€,0,0¢,} or {1,€,(e2—1)/2,(e3—€)/2} is a Z-basis of Zr, provided 6 is a fundamental
unit of N. Let

1 0 0 0
0 1 0 0
T= _% 0 % 0 (6.12)
o L o 1L
2 2

Thenag = (1,€,(e2-1)/2,(e3—€)/2)T =7(1,¢,€2,€3)T. Let (E')T be the companion ma-
trix of f(x) and let ET = 7(E")Tt~'. Then ETa; = €;a;, where a; = (1,€;, (€2 —1)/2, (€} -
€)/2),€0=€,€3=—-1/€,€3=—1/€,. Denote E; = (E-I)(E+I) ' and E. = (E-E1)/2,
where I is the identity matrix. Let Lp be the axis of E in %4. Let

E_=i2(EfI), E+:L(E+I). (6.13)

V2 V2
Then E; = E_E;' and FE = E,E+E2‘1. Let AL = (E,F1,Ez) and I} = (E2,E_,E.). Then A
is a subgroup of index two in I]. Thus, if we show that I] equals the extension of the
torsion-free subgroup I} of the stabilizer of Lp inT by E_, then I} = A;.
Let (uo, p1, Uz, 43) be the coordinates of the point Zi:l UrAg, Where Ay = aka,f, inLp.
Let 6 = u?+1, where u = €. Let i be defined modulo 4. Define

1

B; = g( i'Blz+1’Blz+2’B12+3)’ (6.14)
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where
Bo=(u-1)(u+1), Bi=+2um+1),
(6.15)
Bo=u(u-1)(u+1), Bz=2uu-1)(u+1).
Define
1
Ci = 5()’5,)/12“,)’1&2» Yi?+3)a (616)
where
1 2
Yo =2U, y1=ﬁ(u—1)(u+1) ,
1 (6.17)
yo =2u?, y3=ﬁu(u—1)2(u+1).
Let
10 0 -m 1 00 O
0 1 -m =2 01 0 =2
=lo 0 1 —om|t T o o0 1 —om| ©.18)
00 0 1 00 0 1

where m = t. Then By[hg] = Co[hc] = I. Thus, all the points B;,C; are integral and,
therefore, extremal, with det(B;) = det(C;) = 1. The point By is the intersection of Lp,
L*(E), L*(E;'), and L*(EE;"'), and By = Byo[EE-'],By = Bo[E], B3 = Bo[EE;'], Cy =
BolE;'], Ci = Bo[E. ], C2 = Bo[EE; '], and C3 = By[E_].

The polytope R = Lp n K (w) is bounded by two quadrangles lying in L*(E5') and
eight triangles lying in L* (g*!), g = E+,E,,E+Ez‘l , E,Ez‘l. It has 8 vertices, 16 edges, and
10 faces. Note that at any vertex B; of R, four faces of R meet, but at any C;, only three
do. The projections of R into a plane which is “parallel” to its quadrangular faces are
shown in Figure 6.1. The faces of R are identified as follows: E» : CoB,C2B3 — BoC1B2Cs;
E. :BQCOBS i ClBle; E_ ZBOCQB1 - C3B3Bz;E2EII ZBlB2C2 i B()C3B3; EzE:l ZBngCz g
C1ByB;.Thus, R is a fundamental domain of ] in Lp, T} = (E2,E_,E,),and I} = (E,Eq,E>).
Hence, Z§ /{x1} = (€,(e—1)/(e+1),(e—€~1)/2).

EXAMPLE 6.5. Here, we consider complexification of the cyclic quartic fields from
Example 6.4. Let f(x) = x* —2mx> —6x%+2mx + 1, where m = a+ib = a; + wb; € Zx,
gcd(m,2) =1, a1,by € Z, a,b,u,v € R, and b # 0. Let f(€) = 0. Then F = Q(¢) is a
totally complex field of degree eight. Let € = u+iv and n = nov/d = v/ (u? + v +1).
Denote ¢ = 2|m|%+8 € Z. Then ny is a real root of the polynomial ¥ (x) = b; (16d%x* +
24dx% +1) — c1(4dx3 + x), where ¢; = 2¢ if 4 = 3(mod4), and ¢; = ¢ otherwise. The
discriminant of ¥ (x) is d, = 25643 (64db? — c?)3. Define E, E1, E», E_, E,, hg, and h¢
as in Example 6.4.
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FIGURE 6.1 Fundamental domain of (Ep, E_, E).

The point

1
(1+4n2) (1 +€l2)?

Co = (4|€|2,%|1+€|4|1—E|2,4|€|4,%|1—€|4|1+€|2) (6.19)

is the intersection of Lp, L*(E), L*(E;), and L* (EE>). Let Col[hc] = (cij) = (cji). Then
ci=1,1=1,2,3,4,

. . n

= (o= -2 —Con = —4i—T

C12 C34 i, C14 = C23 ll+4f12’
" (6.20)

C13 = —C24 = C12C14 = —Sm-
The point
1

Bo = S(le2-11%21elP 1 +el?, lel?| €2 —1]%,2elP[1—€l?)  (6.21)

(1+4n2)(1+1el?)

is the intersection of Lp, L*(E), L*(E,), and L* (E;!). Let By[hg] = (bi;) = (bj;). Then
bi=1,i=1,2,3,4,

b1 = —b3y = -2in, b1y =bo3 = 41’%4”2,
v 6.22)
bi3 = ~byy =b12b14 = 8@-

Let & = 2¢/(1 —€?). Then |m| = 2|x—1/x| < 2(|x| +1/|x]). Hence, if |«| < 1, then
x| < 2(|m|?2—16)"Y2 and |e| + 1/|e| > (Jm|? —16)Y/2. Thus, if |e| < 1, then |n| <
le] < (Jm|?—20)71/2, It follows that Bo[hg] — I as |m| — «. If |m| = /84, then |n| <
le] <1/8, Bolhg] and Cy[ h¢] are Minkowski-reduced, and, therefore, By, Cyx, k = 1,...,4,
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which are defined as in Example 6.4, are extremal. Note that det(By) = det(Cy) = (1 —
4n2)6/(1 + 4n2)*. Thus, the polytope R = Lp N K(w) is the same as in Example 6.4,
R is a fundamental domain of I in Lp, I] = (E2,E_,E,), and I} = (E,E1,E>). Hence,
Z¥ up = (€,(e—1)/(e+1),(e—€1)/2). Theorem 1.3 is proved.

Note that f; = {)? : X € Lp} C Pg is rational over the real quadric field Q(ng).
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