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We prove a theorem of Mazhar (1999) on |N,py|; summability factors under weaker con-
ditions by using a quasi B-power increasing sequence instead of an almost increasing se-
quence.
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1. Introduction. A positive sequence (b;,) is said to be almost increasing if there
exist a positive increasing sequence (c;,) and two positive constants A and B such that
Acy < by < Bey, (see [1]). Obviously, every increasing sequence is almost increasing.
However, the converse need not be true as can be seen by taking the example, say
b, = ne"Y". Let Y a, be a given infinite series with partial sums (s,). Let (t,) denote
the nth (C,1) mean of the sequence (na,,). A series > a,, is said to be summable |C, 1],
k > 1, if (see [6, 8])

® k
L
> [£n (1.1)
n=1 n
Let (py) be a sequence of positive numbers such that
n
Pp=> py—o asn—ow,Pi=p_;=0,iz1. (1.2)
v=0
The sequence-to-sequence transformation
Z Pusy (1.3)

"v()

defines the sequence (o) of the (N,p,) mean of the sequence (s,), generated by the
sequence of coefficients (p;) (see [7]). The series > a,, is said to be summable [N, p, |,
k > 1, if (see [3])

o k-1
> (ﬁ) |AGH-1 ¥ < oo, (1.4)
= \Pn
where
AOp-1 = Z Py_iay, nm=1. (1.5)
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In the special case when p,, = 1 for all values of n, |N,p, |, summability is the same as
|C, 1|, summability. Also if we take p, = 1/(n+1), then |N, p, |, summability reduces
to |[N,1/(n+1)|; summability.

Mazhar [9] has proved the following theorem on |C, 1|, summability factors of an
infinite series.

THEOREM 1.1. If (X)) is a positive nondecreasing sequence such that

AmXm =0(1) asm — oo, (1.6)

Mz

nXy|A%A,| =0(1) asm — o, (1.7)

3
Ul

Mz 75

[t

n

=0(Xy) asm — o, (1.8)

n=1

then the series > ay A\, is summable |C, 1]y, k > 1.

Bor [5] has extended Theorem 1.1 for |N, p,|;, summability method in the following
form.

THEOREM 1.2. Under the conditions (1.6), (1.7),
P, =0 (npy), (1.9

Z O(Xm) asm — oo, (1.10)

the series Y. anAy, is summable |[N,pyly, k > 1.

For p, = 1, (1.10) is the same as (1.8), and (1.9) holds. In this case, Theorem 1.2
reduces to Theorem 1.1. Also if we assume that (np,) = O (P,,), then (1.10) is equivalent
to (1.8) and |N, pyl is equivalent to the |C,1]; summability (see [2, 4]). Hence, under
the additional assumption (np,) = O(Py), Theorem 1.1 is equivalent to Theorem 1.2.

Quite recently, Mazhar [10] obtained a further generalization of Theorem 1.2 under
weaker conditions by using an almost increasing sequence instead of positive nonde-
creasing sequence. Also it is clear that (1.9) and (1.10) imply (1.8). On the other hand,
(1.9) implies that

Z Py,
> 2 =0(Pn) asm — . (1.11)
- n

3

It may be remarked that (1.9) implies (1.11), but the converse need not be true. His
theorem is as follows.

THEOREM 1.3. If (X,,) is an almost increasing sequence and the conditions (1.6), (1.7),
(1.8), (1.10), and (1.11) hold, then the series > anAy, is summable |N,pnl;, k > 1.

2. The main result. The aim of this note is to prove Theorem 1.3 under weaker con-
ditions. For this we need the concept of quasi S-power increasing sequence. A positive
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sequence (yy) is said to be quasi S-power increasing sequence if there exists a constant
K =K(B,y) = 1 such that

KnPy, =mPy, (2.1)

holds for all n > m > 1. It should be noted that every almost increasing sequence is a
quasi S-power increasing sequence for any nonnegative 3, but the converse need not be
true as can be seen by taking the example, say y,, = n=# for > 0. So we are weakening
the hypotheses of Theorem 1.3, replacing an almost increasing sequence by a quasi
B-power increasing sequence. Now, we will prove the following theorem.

THEOREM 2.1. Let (X,,) be a quasi -power increasing sequence for some 0 < 8 < 1.
If the conditions (1.6), (1.7), (1.8), (1.10), and (1.11) are satisfied, then the series > a,An
is summable |N,py i, k > 1.

We need the following lemma for the proof of Theorem 2.1.

LEMMA 2.2. If (X,) is a quasi B-power increasing sequence for some 0 < B < 1, then
under the conditions (1.6) and (1.7),

nX, |Ad, | =0(1), (2.2)
D Xn|AA, | < . (2.3)
n=1

PROOF. The condition (1.6) implies that A,, = O(1) and it is easy to see that (1.7)
implies that nAA;,, = O(1). Thus AA,,— 0, n — o. Since 0 < 8 < 1, for any v > n we have
nX, < KvX,, by (2.1). Hence, by (1.7), we get that

nXn | AA | =Xy D) [A%Ay| <K D vXy|A%Ay | < oo, (2.4)

v=n v=n

thus nX,|AA,| = O(1) as n — . Also,

00 [e8] 00 e v
2. Xn|AAy |=Z >, A2 sZIAZAU\EXn
= n=1 v=n v=1 n=1
z AZAy | ZnBX nf < z | A%, |[KVPX, Zn b (2.5)
=1 n=1 v=1 n=1
<k A o, [ < K 3 020 [K(BIUXy <o

where K () is a constant depending only on . This completes the proof of the lemma.
O

3. Proof of Theorem 2.1. Let (T,) denote the (N,p,) mean of the series > a,A,.
Then, by definition, and changing the order of summation, we have

1 n v 1 n
Tn:FZPvZ A= FZ —Py_1)ayy. (3.1
nv=0 i=0 =0
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Then, for n > 1, we have

Pn " Pvfl)\v

T.—Tn 1= P Ay = . 2
n—4in-1= PnPn IUZI v-1Av Ay Pnpn—l PR vay (3.2)
By Abel’s transformation, we have
n+1 pn =t v+1
Thn—Tyn1=—pPnlndAn— tyAdy ——
n n-1 ’I’an Pnlnin PnPn—l glpv v\ v
v+1 1 (3.3)
PyAAt Pyt,A —
+PnPnlzv vv’U+PnPnlz vvv+1v
:Tn’1+Tn,2+Tn’3+Tn’4.
Since
| g+ Toz+ Tos + T | < 4K (| Tua |+ [ Tua |+ [ Tus [+ | Tus[€), 3.4)
to complete the proof of Theorem 2.1, it is enough to show that
o k-1
> (P—") | Ty |¥ <0, forr=1,2,3,4. (3.5)
n=1 p‘}’l
In view of (1.6), (A;;) is bounded. Hence, we have that
m+1 k-1
P,
S (2) Tl = S 2 Al a1l = 00 3, [ B[t
n—2 \Pn n=1 n=1
Pn
=0(1) AlA | +0(1)|A t
Z Ml 3B S0 Ml B2l

COM)'S |80 [ Xn+0(1) A Xon

n=1

=0(1) asm — oo,

by virtue of (1.6), (1.10), and (2.3). Now, when k > 1, applying Holder’s inequality with
indices k and k', where 1/k+1/k’ =1, as in Ty,;, we have that

m+1 P k— n-1 k-1
n =
gz(pn) | Tna|* O(”prn, {Emlm It }{P va}
m ko1 m+1 p
=0 Y pul A HA [t Y S 3.7
v=1 n=v+l PnPp
m
=0(1) > |A, | |tv| =0(1) asm — o.
=1
In view of (2.3), it is clear that
> [AA ] < oo, (3.8)

n=1
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hence

m+1 P m+ 1 n-1 k-1
%(p—:) | Ty —0(1)2 Pnpn_ {valm,,;|tv| HP—ZPvIMUI}

m+1

=O(1)ZPy|tv|k|A2\v| s P’;’) _o<1)z)m Ak
v=1 n=v+1 - N-N- v=1
m—1 v 1
=O(1)ZA(U\A?\U|)Z;|M +O(1)m|A/\m|Z;|ty
v=1 i=1 v=1

m—1 m—1
=0(1) D> v[A%Ay [ Xy +0(1) > |Adpir | Xva1
v=1 v=1

+0(1)M| AN | X = 0(1) asm — o,
(3.9)

by virtue of (1.7), (1.8), (2.2), and (2.3). Since (A,,) is bounded, finally we have that

m+1 k-1 m+1 n-1 k=1
Pn> K Pn 1 Py
ki3 T P, A — —
nzz:z<pn Toal” = anpnlz vl v+1| |tv {P”‘lvzlv}
kl m+1 p
=01 Y P, |A ty "= —r
vzl U| U+l|| U| vnzzv:ﬂpnpn_l
o 3 a1
= Avs v (3.10)
m-— m 1 X
- Z I?\m\Z [t [0 (A | 3 [0 |
=1 v=1
-1
= Z A?\v+1\XU+1+O(1)|Am+1|Xm+1
=0(1) asm — oo,
by virtue of (1.6), (1.8), (1.11), and (2.3). Therefore, we get that
m P k-1 X
Z(;T") [ Tar|"=0(1) asm — oo, forr=1,2,34. 61D
n

n=1

This completes the proof of Theorem 2.1.

Finally, if we take p,, = 1 for all values of n in Theorem 2.1, then we get a new result
concerning the |C, 1], summability factors. Furthermore, if we take p,, = 1/(n+ 1), then
we get another new result for |N,1/(n +1)|; summability factors.
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