

QUASI β -POWER INCREASING SEQUENCES

H. BOR and L. DEBNATH

Received 1 March 2003 and in revised form 20 October 2003

We prove a theorem of Mazhar (1999) on $|\bar{N}, p_n|_k$ summability factors under weaker conditions by using a quasi β -power increasing sequence instead of an almost increasing sequence.

2000 Mathematics Subject Classification: 40D15, 40F05, 40G99.

1. Introduction. A positive sequence (b_n) is said to be almost increasing if there exist a positive increasing sequence (c_n) and two positive constants A and B such that $Ac_n \leq b_n \leq Bc_n$ (see [1]). Obviously, every increasing sequence is almost increasing. However, the converse need not be true as can be seen by taking the example, say $b_n = ne^{(-1)^n}$. Let $\sum a_n$ be a given infinite series with partial sums (s_n) . Let (t_n) denote the n th $(C, 1)$ mean of the sequence (na_n) . A series $\sum a_n$ is said to be summable $|C, 1|_k$, $k \geq 1$, if (see [6, 8])

$$\sum_{n=1}^{\infty} \frac{|t_n|^k}{n} < \infty. \quad (1.1)$$

Let (p_n) be a sequence of positive numbers such that

$$P_n = \sum_{v=0}^n p_v \rightarrow \infty \quad \text{as } n \rightarrow \infty, \quad P_{-i} = p_{-i} = 0, \quad i \geq 1. \quad (1.2)$$

The sequence-to-sequence transformation

$$\sigma_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v \quad (1.3)$$

defines the sequence (σ_n) of the (\bar{N}, p_n) mean of the sequence (s_n) , generated by the sequence of coefficients (p_n) (see [7]). The series $\sum a_n$ is said to be summable $|\bar{N}, p_n|_k$, $k \geq 1$, if (see [3])

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |\Delta \sigma_{n-1}|^k < \infty, \quad (1.4)$$

where

$$\Delta \sigma_{n-1} = -\frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v, \quad n \geq 1. \quad (1.5)$$

In the special case when $p_n = 1$ for all values of n , $|\bar{N}, p_n|_k$ summability is the same as $|C, 1|_k$ summability. Also if we take $p_n = 1/(n+1)$, then $|\bar{N}, p_n|_k$ summability reduces to $|\bar{N}, 1/(n+1)|_k$ summability.

Mazhar [9] has proved the following theorem on $|C, 1|_k$ summability factors of an infinite series.

THEOREM 1.1. *If (X_n) is a positive nondecreasing sequence such that*

$$\lambda_m X_m = O(1) \quad \text{as } m \rightarrow \infty, \quad (1.6)$$

$$\sum_{n=1}^m n X_n |\Delta^2 \lambda_n| = O(1) \quad \text{as } m \rightarrow \infty, \quad (1.7)$$

$$\sum_{n=1}^m \frac{|t_n|^k}{n} = O(X_m) \quad \text{as } m \rightarrow \infty, \quad (1.8)$$

then the series $\sum a_n \lambda_n$ is summable $|C, 1|_k$, $k \geq 1$.

Bor [5] has extended Theorem 1.1 for $|\bar{N}, p_n|_k$ summability method in the following form.

THEOREM 1.2. *Under the conditions (1.6), (1.7),*

$$P_n = O(np_n), \quad (1.9)$$

$$\sum_{n=1}^m \frac{p_n}{P_n} |t_n|^k = O(X_m) \quad \text{as } m \rightarrow \infty, \quad (1.10)$$

the series $\sum a_n \lambda_n$ is summable $|\bar{N}, p_n|_k$, $k \geq 1$.

For $p_n = 1$, (1.10) is the same as (1.8), and (1.9) holds. In this case, Theorem 1.2 reduces to Theorem 1.1. Also if we assume that $(np_n) = O(P_n)$, then (1.10) is equivalent to (1.8) and $|\bar{N}, p_n|_k$ is equivalent to the $|C, 1|_k$ summability (see [2, 4]). Hence, under the additional assumption $(np_n) = O(P_n)$, Theorem 1.1 is equivalent to Theorem 1.2.

Quite recently, Mazhar [10] obtained a further generalization of Theorem 1.2 under weaker conditions by using an almost increasing sequence instead of positive nondecreasing sequence. Also it is clear that (1.9) and (1.10) imply (1.8). On the other hand, (1.9) implies that

$$\sum_{n=1}^m \frac{P_n}{n} = O(P_m) \quad \text{as } m \rightarrow \infty. \quad (1.11)$$

It may be remarked that (1.9) implies (1.11), but the converse need not be true. His theorem is as follows.

THEOREM 1.3. *If (X_n) is an almost increasing sequence and the conditions (1.6), (1.7), (1.8), (1.10), and (1.11) hold, then the series $\sum a_n \lambda_n$ is summable $|\bar{N}, p_n|_k$, $k \geq 1$.*

2. The main result. The aim of this note is to prove Theorem 1.3 under weaker conditions. For this we need the concept of quasi β -power increasing sequence. A positive

sequence (γ_n) is said to be quasi β -power increasing sequence if there exists a constant $K = K(\beta, \gamma) \geq 1$ such that

$$Kn^\beta \gamma_n \geq m^\beta \gamma_m \quad (2.1)$$

holds for all $n \geq m \geq 1$. It should be noted that every almost increasing sequence is a quasi β -power increasing sequence for any nonnegative β , but the converse need not be true as can be seen by taking the example, say $\gamma_n = n^{-\beta}$ for $\beta > 0$. So we are weakening the hypotheses of [Theorem 1.3](#), replacing an almost increasing sequence by a quasi β -power increasing sequence. Now, we will prove the following theorem.

THEOREM 2.1. *Let (X_n) be a quasi β -power increasing sequence for some $0 < \beta < 1$. If the conditions (1.6), (1.7), (1.8), (1.10), and (1.11) are satisfied, then the series $\sum a_n \lambda_n$ is summable $|\bar{N}, p_n|_k$, $k \geq 1$.*

We need the following lemma for the proof of [Theorem 2.1](#).

LEMMA 2.2. *If (X_n) is a quasi β -power increasing sequence for some $0 < \beta < 1$, then under the conditions (1.6) and (1.7),*

$$nX_n |\Delta \lambda_n| = O(1), \quad (2.2)$$

$$\sum_{n=1}^{\infty} X_n |\Delta \lambda_n| < \infty. \quad (2.3)$$

PROOF. The condition (1.6) implies that $\lambda_n = O(1)$ and it is easy to see that (1.7) implies that $n\Delta\lambda_n = O(1)$. Thus $\Delta\lambda_n \rightarrow 0$, $n \rightarrow \infty$. Since $0 < \beta < 1$, for any $v \geq n$ we have $nX_n \leq KvX_v$, by (2.1). Hence, by (1.7), we get that

$$nX_n |\Delta \lambda_n| \leq nX_n \sum_{v=n}^{\infty} |\Delta^2 \lambda_v| \leq K \sum_{v=n}^{\infty} vX_v |\Delta^2 \lambda_v| < \infty, \quad (2.4)$$

thus $nX_n |\Delta \lambda_n| = O(1)$ as $n \rightarrow \infty$. Also,

$$\begin{aligned} \sum_{n=1}^{\infty} X_n |\Delta \lambda_n| &= \sum_{n=1}^{\infty} X_n \left| \sum_{v=n}^{\infty} \Delta^2 \lambda_v \right| \leq \sum_{v=1}^{\infty} |\Delta^2 \lambda_v| \sum_{n=1}^v X_n \\ &= \sum_{v=1}^{\infty} |\Delta^2 \lambda_v| \sum_{n=1}^v n^\beta X_n n^{-\beta} \leq \sum_{v=1}^{\infty} |\Delta^2 \lambda_v| K v^\beta X_v \sum_{n=1}^v n^{-\beta} \\ &\leq K \sum_{v=1}^{\infty} |\Delta^2 \lambda_v| v^\beta X_v \int_1^v \frac{dx}{x^\beta} \leq K \sum_{v=1}^{\infty} |\Delta^2 \lambda_v| K(\beta) v X_v < \infty, \end{aligned} \quad (2.5)$$

where $K(\beta)$ is a constant depending only on β . This completes the proof of the lemma. \square

3. Proof of Theorem 2.1. Let (T_n) denote the (\bar{N}, p_n) mean of the series $\sum a_n \lambda_n$. Then, by definition, and changing the order of summation, we have

$$T_n = \frac{1}{P_n} \sum_{v=0}^n p_v \sum_{i=0}^v a_i \lambda_i = \frac{1}{P_n} \sum_{v=0}^n (P_n - P_{v-1}) a_v \lambda_v. \quad (3.1)$$

Then, for $n \geq 1$, we have

$$T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v \lambda_v = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n \frac{P_{v-1} \lambda_v}{v} v a_v. \quad (3.2)$$

By Abel's transformation, we have

$$\begin{aligned} T_n - T_{n-1} &= \frac{n+1}{nP_n} p_n t_n \lambda_n - \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} p_v t_v \lambda_v \frac{v+1}{v} \\ &\quad + \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} P_v \Delta \lambda_v t_v \frac{v+1}{v} + \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} P_v t_v \lambda_{v+1} \frac{1}{v} \\ &= T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}. \end{aligned} \quad (3.3)$$

Since

$$|T_{n,1} + T_{n,2} + T_{n,3} + T_{n,4}|^k \leq 4^k (|T_{n,1}|^k + |T_{n,2}|^k + |T_{n,3}|^k + |T_{n,4}|^k), \quad (3.4)$$

to complete the proof of [Theorem 2.1](#), it is enough to show that

$$\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n} \right)^{k-1} |T_{n,r}|^k < \infty, \quad \text{for } r = 1, 2, 3, 4. \quad (3.5)$$

In view of [\(1.6\)](#), (λ_n) is bounded. Hence, we have that

$$\begin{aligned} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{k-1} |T_{n,1}|^k &= \sum_{n=1}^m \frac{p_n}{P_n} |\lambda_n|^{k-1} |\lambda_n| |t_n|^k = O(1) \sum_{n=1}^m |\lambda_n| \frac{p_n}{P_n} |t_n|^k \\ &= O(1) \sum_{n=1}^{m-1} \Delta |\lambda_n| \sum_{v=1}^n \frac{p_v}{P_v} |t_v|^k + O(1) |\lambda_m| \sum_{n=1}^m \frac{p_n}{P_n} |t_n|^k \\ &= O(1) \sum_{n=1}^{m-1} |\Delta \lambda_n| X_n + O(1) |\lambda_m| X_m \\ &= O(1) \quad \text{as } m \rightarrow \infty, \end{aligned} \quad (3.6)$$

by virtue of [\(1.6\)](#), [\(1.10\)](#), and [\(2.3\)](#). Now, when $k > 1$, applying Hölder's inequality with indices k and k' , where $1/k + 1/k' = 1$, as in $T_{n,1}$, we have that

$$\begin{aligned} \sum_{n=2}^{m+1} \left(\frac{P_n}{p_n} \right)^{k-1} |T_{n,2}|^k &= O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}} \left\{ \sum_{v=1}^{n-1} p_v |\lambda_v|^k |t_v|^k \right\} \left\{ \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} p_v \right\}^{k-1} \\ &= O(1) \sum_{v=1}^m p_v |\lambda_v|^{k-1} |\lambda_v| |t_v|^k \sum_{n=v+1}^{m+1} \frac{p_n}{P_n P_{n-1}} \\ &= O(1) \sum_{v=1}^m |\lambda_v| \frac{p_v}{P_v} |t_v|^k = O(1) \quad \text{as } m \rightarrow \infty. \end{aligned} \quad (3.7)$$

In view of [\(2.3\)](#), it is clear that

$$\sum_{n=1}^{\infty} |\Delta \lambda_n| < \infty, \quad (3.8)$$

hence

$$\begin{aligned}
\sum_{n=2}^{m+1} \left(\frac{p_n}{p_n} \right)^{k-1} |T_{n,3}|^k &= O(1) \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}} \left\{ \sum_{v=1}^{n-1} P_v |\Delta \lambda_v| |t_v|^k \right\} \left\{ \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} P_v |\Delta \lambda_v| \right\}^{k-1} \\
&= O(1) \sum_{v=1}^m P_v |t_v|^k |\Delta \lambda_v| \sum_{n=v+1}^{m+1} \frac{p_n}{P_n P_{n-1}} = O(1) \sum_{v=1}^m |\Delta \lambda_v| |t_v|^k \\
&= O(1) \sum_{v=1}^{m-1} \Delta(v |\Delta \lambda_v|) \sum_{i=1}^v \frac{1}{i} |t_i|^k + O(1)m |\Delta \lambda_m| \sum_{v=1}^m \frac{1}{v} |t_v|^k \\
&= O(1) \sum_{v=1}^{m-1} v |\Delta^2 \lambda_v| X_v + O(1) \sum_{v=1}^{m-1} |\Delta \lambda_{v+1}| X_{v+1} \\
&\quad + O(1)m |\Delta \lambda_m| X_m = O(1) \quad \text{as } m \rightarrow \infty,
\end{aligned} \tag{3.9}$$

by virtue of (1.7), (1.8), (2.2), and (2.3). Since (λ_n) is bounded, finally we have that

$$\begin{aligned}
\sum_{n=2}^{m+1} \left(\frac{p_n}{p_n} \right)^{k-1} |T_{n,4}|^k &\leq \sum_{n=2}^{m+1} \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^{n-1} P_v |\lambda_{v+1}|^k |t_v|^k \frac{1}{v} \left\{ \frac{1}{P_{n-1}} \sum_{v=1}^{n-1} \frac{P_v}{v} \right\}^{k-1} \\
&= O(1) \sum_{v=1}^m P_v |\lambda_{v+1}| |t_v|^k \frac{1}{v} \sum_{n=v+1}^{m+1} \frac{p_n}{P_n P_{n-1}} \\
&= O(1) \sum_{v=1}^m |\lambda_{v+1}| \frac{|t_v|^k}{v} \\
&= O(1) \sum_{v=1}^{m-1} \Delta |\lambda_{v+1}| \sum_{r=1}^v \frac{1}{r} |t_r|^k + O(1) |\lambda_{m+1}| \sum_{v=1}^m \frac{1}{v} |t_v|^k \\
&= O(1) \sum_{v=1}^{m-1} |\Delta \lambda_{v+1}| X_{v+1} + O(1) |\lambda_{m+1}| X_{m+1} \\
&= O(1) \quad \text{as } m \rightarrow \infty,
\end{aligned} \tag{3.10}$$

by virtue of (1.6), (1.8), (1.11), and (2.3). Therefore, we get that

$$\sum_{n=1}^m \left(\frac{p_n}{p_n} \right)^{k-1} |T_{n,r}|^k = O(1) \quad \text{as } m \rightarrow \infty, \text{ for } r = 1, 2, 3, 4. \tag{3.11}$$

This completes the proof of [Theorem 2.1](#).

Finally, if we take $p_n = 1$ for all values of n in [Theorem 2.1](#), then we get a new result concerning the $|C, 1|_k$ summability factors. Furthermore, if we take $p_n = 1/(n+1)$, then we get another new result for $|\bar{N}, 1/(n+1)|_k$ summability factors.

REFERENCES

- [1] S. Aljanić and D. Arandelović, *0-regularly varying functions*, Publ. Inst. Math. (Beograd) (N.S.) **22(36)** (1977), 5-22.
- [2] H. Bor, *On two summability methods*, Math. Proc. Cambridge Philos. Soc. **97** (1985), no. 1, 147-149.
- [3] ———, *On $|\bar{N}, p_n|_k$ summability factors*, Proc. Amer. Math. Soc. **94** (1985), no. 3, 419-422.
- [4] ———, *A note on two summability methods*, Proc. Amer. Math. Soc. **98** (1986), no. 1, 81-84.
- [5] ———, *On absolute summability factors*, Proc. Amer. Math. Soc. **118** (1993), no. 1, 71-75.
- [6] T. M. Flett, *On an extension of absolute summability and some theorems of Littlewood and Paley*, Proc. London Math. Soc. (3) **7** (1957), 113-141.
- [7] G. H. Hardy, *Divergent Series*, Clarendon Press, Oxford University Press, London, 1949.
- [8] E. Kogbetliantz, *Sur les séries absolument sommables par la méthode des moyennes arithmétiques*, Bull. Sci. Math. **49** (1925), 234-256 (French).
- [9] S. M. Mazhar, *On $|C, 1_k|$ summability factors of infinite series*, Indian J. Math. **14** (1972), 45-48.
- [10] ———, *Absolute summability factors of infinite series*, Kyungpook Math. J. **39** (1999), no. 1, 67-73.

H. Bor: Department of Mathematics, Erciyes University, 38039 Kayseri, Turkey

E-mail address: bor@erciyes.edu.tr

L. Debnath: Department of Mathematics, University of Texas - Pan American, Edinburg, TX 78539, USA

E-mail address: debnathl@panam.edu

Special Issue on Time-Dependent Billiards

Call for Papers

This subject has been extensively studied in the past years for one-, two-, and three-dimensional space. Additionally, such dynamical systems can exhibit a very important and still unexplained phenomenon, called as the Fermi acceleration phenomenon. Basically, the phenomenon of Fermi acceleration (FA) is a process in which a classical particle can acquire unbounded energy from collisions with a heavy moving wall. This phenomenon was originally proposed by Enrico Fermi in 1949 as a possible explanation of the origin of the large energies of the cosmic particles. His original model was then modified and considered under different approaches and using many versions. Moreover, applications of FA have been of a large broad interest in many different fields of science including plasma physics, astrophysics, atomic physics, optics, and time-dependent billiard problems and they are useful for controlling chaos in Engineering and dynamical systems exhibiting chaos (both conservative and dissipative chaos).

We intend to publish in this special issue papers reporting research on time-dependent billiards. The topic includes both conservative and dissipative dynamics. Papers discussing dynamical properties, statistical and mathematical results, stability investigation of the phase space structure, the phenomenon of Fermi acceleration, conditions for having suppression of Fermi acceleration, and computational and numerical methods for exploring these structures and applications are welcome.

To be acceptable for publication in the special issue of Mathematical Problems in Engineering, papers must make significant, original, and correct contributions to one or more of the topics above mentioned. Mathematical papers regarding the topics above are also welcome.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Edson Denis Leonel, Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Avenida 24A, 1515 Bela Vista, 13506-700 Rio Claro, SP, Brazil ; edleonel@rc.unesp.br

Alexander Loskutov, Physics Faculty, Moscow State University, Vorob'evy Gory, Moscow 119992, Russia; loskutov@chaos.phys.msu.ru