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In arecent paper we have extended the classical Herstein’s theorem on Jordan derivations on
prime rings to Jordan superderivations on prime associative superalgebras. In the present
paper we extend this result to semiprime associative superalgebras.
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1. Introduction. Throughout the paper, by an algebra we will mean an algebra over
a fixed unital commutative ring ®, and we assume that ® contains the element 1/2.

Let & be an associative superalgebra, that is, a Z,-graded associative algebra. This
means that there exist ®-submodules #, «; of & such that o = Ag@ A4, AgAg S Ao (Ao
is a subalgebra of ), dosd; < Ay, A1 Ay € Ay (A, is an Ay-bimodule), and ;4 < Ay.
We say that « is the even and #; is the odd part of «. An element a € #;, i = 0 or
i =1, is said to be homogeneous of degree i, and in this case we write |a| = i. An ideal
U of o is said to be graded if U = Unsdy® U nd;. A superalgebra o is called prime if
the product of any two nonzero graded ideals in & is nonzero, and is called semiprime
if it does not contain nonzero nilpotent graded ideals.

Introducing a new product in & by xosy = (1/2) (xy + (= 1)*X!¥lyx), x,y € slgU sy,
A becomes a Jordan superalgebra. Over the recent years there has been a considerable
interest in the relation between Jordan, Lie, and associative structures in associative su-
peralgebras. The present paper continues this line of investigations. Some more details
about the background of this research and a more comprehensive list of references are
given in our preceding paper [6].

Leti=0ori=1.A ®-linear map D; : d — s such that D(sd;) € o444, i,j € 2, is
called a superderivation of degree i if it satisfies

Di(xy) =Di(x)y+(-1)"™xDi(y) Vx,y €U, (1.1)

and is called a Jordan superderivation of degree i if it satisfies
Di(xo5y) = Di(x)osy + (=1)™xoDi(y) Vx,y € sloUdd;. (1.2)
A (general) superderivation is the sum of a superderivation of degree 0 and a su-
perderivation of degree 1. Similarly, a Jordan superderivation is defined as the sum
of Jordan superderivations of degrees 0 and 1. Superderivations are obviously Jordan

superderivations, while the converse may not be true. In [6] we proved that every Jordan
superderivation on a prime associative superalgebra s is a superderivation, unless s,
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is a commutative algebra. The case when sy is commutative is indeed exceptional, as
shown by examples in [6].

The concept of a Jordan superderivation can be viewed as a generalization of the
concept of a Jordan derivation of an associative algebra. Namely, in the case of triv-
ial superalgebras (i.e., the odd part is 0), these two notions coincide. Herstein’s clas-
sical result [7] from 1957 implies that every Jordan derivation on a prime algebra
over ® is a derivation. In 1975, Cusack [5] proved that the same result holds true in
semiprime algebras (see also [3]). It is therefore natural to ask whether our result from
[6] can be extended to semiprime superalgebras. Our main goal is to prove the following
generalization.

THEOREM 1.1. Let o = do® A, be a semiprime associative superalgebra and let D =
Do+ D1 be a Jordan superderivation. Then there exist graded ideals U and V of 4 such
thatDi(ux) = D;(uw)x+(-1)!"uD;(x),i=0,1, forallu € U and x € s, and [vy, xo] =
0 for all vy € Vy and xo € Ag. Moreover, UNnV =0 and U @V is an essential ideal of A.
IfU = 0, then sy is commutative, and if V = 0, then D is a superderivation.

In particular, this theorem shows that the restriction of D to U is a superderivation
and the superalgebra V has a commutative even part. The next example (a modification
of the one given in [1, page 458]) shows that, in general, U and V cannot be chosen so
that their sum is equal to A.

EXAMPLE 1.2. Let A = Ag® A; and B = By @ B; be prime associative superalgebras
satisfying the following conditions: none of them contains an identity element, A is a
noncommutative algebra, B is commutative (as an algebra) and B, # 0. For example, one
can take the trivial superalgebra of all finite-rank operators on an infinite-dimensional
vector space (over a field ®) for A, and B = X®[X] (i.e., the algebra of polynomials over
& with constant term 0) with graduation By = ®[X?] and B; = X®[X?].Let sl = A®Bod
be the unitization of the algebra A& B. Set g = A9 @ Bo® ®1 and «;, = A; ® B; and
note that thereby ¢ becomes a semiprime associative superalgebra whose even part
is noncommutative. Let by + b1 = b € B be such that by # 0 and define D : sl — s by
D(X0+X1 + Yo+ +A) = b_’)/] for all Xo € Ao, X1 € Ay, Yo € By, Y1 € B, and A € ®.
Then D is a Jordan superderivation which is not a superderivation. Since & is a unital
algebra whose only central idempotents are O and 1, ¢ does not contain proper ideals
Uand V suchthatd =UeV.

In the proof of Theorem 1.1 we will, on the one hand, use several computations from
[6], and, on the other hand, we will use some ideas from [2, 3, 4].

2. Preliminaries. We first fix the notation. Throughout the paper, by A = o ® A1
we will denote a semiprime associative superalgebra. It is easy to see that o is also
semiprime as an algebra (i.e, if a € o and asla = 0, then a = 0) and also «, is a
semiprime algebra [9, Lemma 1.2]. As usual, we will write [a,b] = ab — ba and a o
b = (1/2)(ab + ba) for a,b € d. By Z(dA) (resp., Z(HAg)) we denote the center of o«
(resp., o). Further, D = Dy + D; will denote a Jordan superderivation of ¢, where, of
course, D;, i = 0,1, denotes a Jordan superderivation of degree i. Define a bilinear map
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O0i:dAxA— d by
5:(x,¥) =Di(xy)—D;i(x)y — (-1)!*IxD;(») (2.1)

for all x,y € dpu ;. Clearly, §; = 0 if and only if D; is a superderivation of degree i.
If x and y are elements in « such that xs{y = 0, then it follows that xy = yx =
ydx = 0. Namely, we have ya(x«dy)ax = 0 for all a € o, which in turn implies y«dx =
0 by the semiprimeness of . Similarly, from x(y#x)y =0 and y(xdy)x = 0 we get
xy = yx = 0. For such elements x, y, we will write x L y.
The proof of Theorem 1.1 consists of several steps. First, we gather some auxiliary
results which will be needed later.

LEMMA 2.1. Suppose that a € s, is such that ax,,x1a € Z(dy) for all x, € sd,. Then
a’t e Z(d).

PROOF. We have 0 = [a?,ax;] = al[a?,x;] and 0 = [a?,x;a] = [a?,x;]a for all
x1 € o;. Therefore [a?,[a?,s41]] = 0, which, together with [a?,[a?,sdy]] = 0, gives
[a?,[a?,s4]] = 0. But then a? € Z(s) by [8, Lemma 1.1.9]. O

The next lemma is a slight extension of [6, Lemma 2.3].

LEMMA 2.2. Let U be a graded ideal of A.
(i) Ifu Uyu, =0, where u; € Uy, then u, = 0.
(ii) Ifuo € Up and u, € Uy are such that uoU;u; = u1Ujug =0, wherei=0ori=1,
then ugUu; = u1Uug = 0.
(iii) If u1Ug =0 or Upu; = 0, where u, € Uy, then u; = 0.

PROOF. (i) We have uUuUu € u1Uu U uq +uiUgu Uug +uUyug for all ug €
U;. Since u1Uyu; = 0, it follows that u;UuUu, = 0, and so, since o is a semiprime
algebra, it follows that 1, = 0.

(ii) Assume that uoUpu, = ui1Upug = 0. Hence (uoUiuq)Ug(uoUiuq) = 0. Since Uy
is a semiprime algebra, we get uoU,u; = 0. This, together with our assumption, gives
uoUu; =0.

Now let ugUyu; = u1Urug = 0. Hence (uoUpu1) Uy (uoUopuy) = 0, and so by (i) we get
uoUouq = 0. Since, by our assumption, also uqU;u; = 0, it follows that uoUu; = 0, as
desired.

(iii) Suppose that 1; Uy = 0. Hence u,Upx1u; = 0 and x3u;Upu; = 0 for all x; € ;.
From (ii) it follows that u;Ux;u; = O for all x1 € #;. Therefore x;1;Ux;u; = 0, which
in turn implies #;u; = 0, since U is semiprime. Using (i), we get u; = 0. O

LEMMA 2.3. LetU be a graded ideal of sA. Suppose that a, €, is such that [Upa,,Uy]=
0. Then Upa, < Z(A).

PROOF. We have 0 = [ugpai,xovol = [uoai,xolvo +xoluoa, vo] for all ug,vo € Uy,
xo € dg. Therefore [ugai,xo0lUy = 0. Since [upai,xo] € U, we arrive at [Upa, o] =
0 by Lemma 2.2(iii). Hence 0 = [ugai,(uoa1)x1] = upailupai,x1] and 0 = [upay,
x1(upay)] = [upar, x1Juoa, forallug € Uy and x; € ;. Therefore [uga,[uoa, 1 11=
0, which in turn implies [ugaq, [uoai,s4]] = 0 for all ug € Uy and a; € ;. Since A is
semiprime, the result follows by [8, Lemma 1.1.9]. ]
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LEMMA 2.4. If x and y are homogeneous elements in < such that x 1L 7y, then
xosDi(y)=0,1=0,1.

PROOF. Since xo;y = 0, it follows that0 = D;(xo;y) =D;(x)osy+(—1)XlixoD;(y).
Using our assumptions and multiplying this identity on the left by xa, a € s, we arrive
at xa(xosD;i(y)) = 0, which in turn implies (xo;D;(y))d(xosD;i(y)) = 0. Since o is
semiprime, the result follows. O

LEMMA 2.5 [6, Lemma 2.6]. It holds that
(i) 6i(x0,¥0) = =6i(y0,Xx0), 6i(x0,¥1) = =8i(y1,X0) and 6;(x1,y1) = 8;(y1,x1)
for all xy, vy € Ao, x1,Y1 € A1;
(i) Di([x%,»]) =[[Di(x1),x115,¥1s + [x{,Di(¥)] for all x, € sy, y € .

The next lemma is also just a slight extension of [6, Lemma 2.6].

LEMMA 2.6. Let U be a graded ideal of . Suppose that 6;(Uy, ) = 0. Then
(@) [6i(sd1,541),Up] = 0;
(i) 6i(uo,x1)y1 =u0bi(x1,¥1) —8i(uox1,1) for allug € Uy, x1,1 € 1]
(i) 6i(xo,u1)¥1 = x06i(U1,21)—8i(xou1,21) forallxg € do, w1 € Uy, and y1 € sy ;
Av) (=1)iy18;(uo,x1) = Si(x1U0, V1) — 6i(x1, 1)U for all ug € Uy, x1 € si1, and
1 € sy
V) (=1)iy18;(x0,u1) = 8;(u1x0,y1) — 8i(u1,y1)x0 for all xg € o, uy € Uy, and
1 € dy;
(Vi) 80(Ug,st1) L [sdo,Upl;
(vii) 61(Uo,sd1)sd1[Ao,Uo] = [do,Uglsd161(Ug,sd1) = 0.

PROOF. We have D;([x?,uo]) = [D;(x?),uo] +[x?,D;(uo)] for all x; € sd1, ug € Up.
From Lemma 2.5(ii), it follows that [J;(x1,x1),up] = 0 for all ug € Uy and x7 € #A,.
Linearizing, we get [0;(#A1,51),Up] = 0.

Now consider the expression D; (ugx1y1) with ug € Uy, x1,¥1 € 1. On the one hand,

Di(uo(x131)) = Di(uo)x1y1 +uoDi(x11) 2.2)

Di(uo)x1y1+uo(8i(x1, 1) +Di(x1) y1 + (=1)'x1D; (31)),

and on the other hand,

Di((uox1)y1) = 8i(uox, »1) +Di(uox1) y1 + (=1)'uox1Di (y1)
= 0i(uox1,31) + (6i(uo,x1) +Di(uo) x1 + uoDi(x1)) 1 (2.3)
+(—1)iuoX1Di(yl)-

Comparing these two relations, we obtain (ii). In a similar fashion, by computing
D;(y1x1up) in two different ways (and using Lemma 2.5), we get (iv), by computing
Di(xou1y1), X0 € Ao, u1 € Uy, y1 € A1, we get (iii), and by computing D;(y;u;Xx0), we
get (v).
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Using (i) and (ii), it follows that [§;(ug, 1)1, u0] = 0 for all ug € Uy. For any zg € g
and z; € o1, we have z,zg € #1, and so

8i(uo,x1)z1[z0,u0] = [6: (1o, x1) 2120, U0] — [8i (10, x1)21,u0]20 = 0, (2.4)
proving that
51'(140,%1)%1[%0,110] =0 Vuo S Uo. (2.5)

Comparing (i) and (iv), we get [4;6; (1o, 1), Uo] = 0, and then, considering an element
zpz1 € 1, one obtains

[%0,%0]%161(’%0,%1) =0 VYugeUU. (2.6)

A linearization of (2.5) gives 6;(uo,x1)Y1[20,v0] + 6i(vVo,x1)¥1[20,u0] = 0 for all
U, Vo € Uy, 2o € Ao, X1,¥1 € ;. Using (2.6), it follows that

(6i(uo,x1) 120, v0]) a1 (8i (w0, x1) ¥1[20,v0])

(2.7)
= —=06;i(uo,x1)¥1[2z0,vola16:(vo,x1)y1[z0,u0] =0
for all a; € ;. Similarly,
([zo,v0]>16i (w0, x1)) a1 ([z0,vo]¥16i (w0, x1)) = 0. (2.8)

Suppose that i = 0. Using (2.5) and (2.6), we arrive at [g,ug] L d¢(uo,d1) by Lemma
2.2(ii). A linearization of this implies

(60(uo,x1)y[20,v0])a(d0(uo, x1)y[20,v0])

2.9
= —00(u0,x1)¥[20,v0]ado(vo,x1)y[20,u0] =0 =9

for all a € A. Therefore [z, vo] L 6¢(uUg,Xx1) since o is semiprime. Assume now that
i = 1. Therefore [z, vo]sd101(Ug,x1) = 0 and 61 (ug,x1)HA1[20,V0] = 0 by (2.7), (2.8),
and Lemma 2.2(i). Thereby the proof is completed. |

3. Jordan superderivations of degree 0. By [+, o] we will mean the additive sub-
group of «f generated by elements of the form [xg, o] for all xo,yo € #o. In what
follows, we will denote by U the ideal of « generated by [y, do]. Note that U is a
graded ideal.

THEOREM 3.1. 6¢(U,«d) =0.

PROOF. Since Dy is a Jordan derivation on s, it follows that
0o (o, o) =0 (3.1)
by [5]. Therefore we have

8o (sdo,str) L [Ao, o] (3.2)
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by Lemma 2.6(vi). In particular,

[v100(x0,X1),0]2[¥100(x0,X1), 0]

(3.3)
= (¥100(x0,X1) Y0z — Yoy160(x0,Xx1)2) [160(x0,X1),¥0] = 0

for all xo,yo € Ao, x1,71 € #1, and z € A, since y;100(xp,x1) € dp. In view of the
semiprimeness of ¢, we may conclude that [y;8¢(x0,Xx1),Y0] =0 for all yy € . Sim-
ilarly, [60(x0,Xx1)Y1,Y0] =0, and therefore

160 (Ao, 1), 80 (Ao, 1)1 € Z(sdo)- (3.4)
By Lemma 2.1 we arrive at
So(slo,sd1)° < Z(sd). (3.5)

Pick any ug € Uy. We have 6o (uo,x1)y1 L v forall v e Uyu U, and x1,y; € o, by (3.2).
Using Lemma 2.4, it follows that

8o (uo,x1)¥1Do (V) + Do (V)60 (Uo,x1)¥1 = 0. (3.6)

Replacing v, by 8¢ (10,x1) and using (3.5), we obtain &o(uq,x1)2Do(v) =0 for all v €
Uy U;. Since

(80(wo,x1)31)° = 8010, 1) ¥1 (Do (wox1) — Do (10)x1 — o Do (x1)) 1 (3.7)

for all x1,y; € o, we infer that §o(ug,x1)* = 0. Again, using (3.5), it follows that
So(ug,x1)% = 0 since s is semiprime. Let v € U;. Therefore, multiplying (3.6) on the
left by 6o (1o, x1) Y1, we get

0 = (80(10,x1)¥1)°Do (V) + 80 (10, x1) ¥1 (Do (v) 80 (10, x1)) 1
= (80(u0,x1) 1) Do(v) + Do (v) 80 (10, x1)° ¥ (3.8)
= (80 (u0,x1) 1) Do (V).

If v € Uy, then 6o (1o, x1)¥1Do(v) = 0by (3.6). Using (3.7), we arrive at (5o (1o, x1)¥1)3 =
0, which yields 6 (1,x1)y1 = 0 for all uy € Uy, x1, 1 € «1 by the semiprimeness of s,
and (3.4). Using Lemma 2.2(i), it follows that 8¢ (u1,x1) = 0 for all uy € Uy and x; € A;.
Analogously, we can show that d¢(xg,u;) = 0 for all xg € sy and u; € U;. Therefore

60 (Uo,sd1) = 60(Uy,slo) = 0. (3.9

Pick any u; € U; and x; € ;. Since x? € s, it follows from (3.9) that 8¢ (x%,u;) = 0.
Hence

Do([x7,u1]) = [Do(x7),u1] + [x7,Do(u1)]. (3.10)
On the other hand,

Do([x%,u1]) = [Do(x1)x1+x1Do(x1),u1] + [x%,Do(u1)] (3.11)
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by Lemma 2.5(ii). Comparing both identities, we arrive at [6¢(x1,x1),u;] = 0forallu; €
U; and x; € o1. Lemma 2.6(i) implies [d¢(x1,x1),U] =0 for all x; € ;. A linearization
of this expression gives

[00(sty,541),U] =0 (3.12)

by Lemma 2.5(@i). From (3.4) and Lemma 2.6(i) and (ii), we get [x0d¢(x1,Y1),Y0] = 0 for
all xo, o € Ao and x1,y1 € 1, which in turn implies

[Ao, o] 00 (sty,541) = 0. (3.13)

Hence a,[x0,Y0]00(x1,y1) = 0 for all a; € A, by (3.13). Using a1[xo,Y0] € Uy and
(3.12), it follows that &g (sd,91)A ;1 [do, o] = 0. Again, using Lemma 2.6(i) and (3.13),
it follows that 6o (1, 1) Aol Ay, Aol = 0. Thus

[do,slo] L 0o (sty,sdy). (3.14)

Pick any u; € U;. According to (3.14), we have 6¢(u1,x1) L v for all v € Uyu U; and
x1 € d1. Whence 6¢(uy,x1)Dg(6o(u1,x1)v) = 0. By (3.1) and (3.9), we obtain dg(u1,
x1)2Do(v) = 0 since 8¢ (u1,x1)Do(50(u1,x1))v = 0 by (3.14). Obviously,

50(141,)(1)3 = 60(M1,X1)2(D0(”LL1X1) —Do(ul)xl —ulDo(Xl)) =0. (3.15)

Using that s is semiprime and 6o (u1,x1) € Z(dp), we get o(u1,x1) =0forallu; € Uy
and x; € ;. Hence

So(Uy, ;) = 0. (3.16)

Thereby the proof is completed. O

4. Jordan superderivations of degree 1
LEMMA 4.1. LetD : Ao — A be alinear map satisfying D(xoy) =D(x)oy+xoD(y)
for all x,y € dy. Then, for all x,y,z,w € Ay,
[x,¥v]1L (D(zw)-D(z)w —zD(w)). 4.1)
PROOF. Using [6, Lemma 2.7] (with s{g = B and M = ), it follows that

[x,¥1do[x,¥1sdo(D(xy) —=D(x)y —xD(y)) =0,

4.2
(D(xy)-D(x)y —xD(y))sdolx,y1sdo[x,¥1=0 @2

for all x,y € . Write ¢ = [x,y] and m = D(xy) — D(x)y — xD(y) for brevity.
Therefore (cxom)x;(cxom) = 0 for all xg € Ay and x; € 1. From Lemma 2.2(i) it
follows that csdgm = 0. Analogously, msdgc = 0. Lemma 2.2(ii) implies m L c. Using [4,
Lemma 1.2], the result follows. O

LEMMA 4.2. If a, € s, is such that Upa, € Z(A) and a1[Uy,Uy] =0, then a,U = 0.
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PROOF. We have 0 = x(upa;)[vo, wol = ugai x[vo, wo] for all ug, vy, wo € Uy, and
x € 4. It follows that Uga;s4[Uy,Uy] = 0, which in turn implies a;4[Uy,Ug] = 0 by
Lemma 2.2(iii) and the semiprimeness of Uy. Therefore 0 = a;y[ug,Xxovo] =
a1y [uo,xolvg for all ug,vg € Uy, xo € Ao, and y € A. Hence a,A[dy,Up] = 0 by
Lemma 2.2(iii) and the semiprimeness of U,. In the same way, we can show that
a1 AlAg,AolUy = 0. Again, using Lemma 2.2(iii) and the semiprimeness of Uy, it fol-
lows that a1 A[ Ay, Ag] = 0 since a;A[Ag,Ao] € U. Therefore a,U = 0. |

LEMMA 4.3. Let ao, by € gy be such that ag[ o, bo] = 0. Then [ay,by] = 0.

PROOF. We have 0 = ag[xoyo,bo]l = aoxolyo,bo] for all xo,yy € y. Hence
[ao,boldolag, bo] = 0, which yields [ag, bo] = 0. O

THEOREM 4.4. 6,(U,«d) =0.

PROOF. By Lemma 4.1, we have [, o] L 61 (o, sdo). In particular, [y;6;(x0,Y0),
zolA[y161(x0,Y0),20] = 0 for all xp,Vv0,z0 € Ao and y; € A, since y,181(x0,Y0) €
Ap. Using that o is semiprime, it follows that [y161(x0,Y0),20] = 0. Analogously,
[61(x0,Y0)V1,20] = 0. Hence

A161 (o, o), 01 (o, o) A1 < Z (o). 4.3)
Using Lemma 2.1, we infer that
81(sho,sto)* € Z (). (4.4)

Let ug,vo € Up. Then we have &;(uo,vo)y1 L vo for all yg € dp and y; € sy by
Lemma 4.1. Hence

01 (w0, ¥0)¥1D1(vo) + D1 (v0) 81 (1o, ¥0) 31 =0 (4.5)

by Lemma 2.4. Replacing y; by 61(uo,Y0) and using (4.4), it follows that &;(uo,
v0)2D1 (vg) = 0 for all vy € Up. Since

(81(10,0)31)° = 81 (0, v0) 1 (D1 (10v0) — D1 (10) vo — uoD1 (1)) 31 (4.6)

for all yy € Ao, y1 € s, we obtain &; (1o, yo)* = 0. Using that s is semiprime and (4.4),
we arrive at 81 (1o, )% = 0 for all ug € Uy and Y, € sdg. Multiplying (4.5) on the left by

01(uUo,0)y1, we get

0 = (81 (w0, ¥0) 1) D1 (vo) + 81 (1o, ¥0) 1 (D1 (v0) 81 (o, ¥0)) 71
= (61 (10,0)31)°D1 (Vo) + D1 (v0) 61 (10, ¥0)* ¥? 4.7)
= (61 (wo,20)31) D1 (vo).
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Therefore (51 (ug,Y0)¥1)? = 0 by (4.6). The semiprimeness of s, together with (4.3),
gives 61 (1o, o)1 = 0 for all y, € «. Using Lemma 2.2(i), we obtain

01(Ug,8dp) = 0. (4.8)
Using Lemma 2.6(vii), it follows that

0 =61 (1o, x1)¥1[x0, Y0v0]

(4.9)
=01 (u0,X1)y1Y0[ X0, V0] + 01 (10, X1) ¥1[X0, 0] V0

for all ug, vy € Up, X0, Yo € 5o, and X1,y € sd1, which in turn implies §; (1o, x1) 1[0,
y0lUp = 0 and analogously Up[x0,>013161(uo,x1) = 0. Since 61 (uo,x1)¥1[¥0,X0l,
[0, X0]¥161 (U0, x1) € Uy, it follows that

61 (Uo, A1)y [sdo, o] = [o, o161 (Ug,sdy) =0 (4.10)

by Lemma 2.2(iii). Using Lemma 2.6(i), (ii), and (iv), it follows that &;(ug,x1)y1 —
Y101 (o, x1) = 61(x1U0,)1) — 61 (uox71,¥1) for all ug € Uy, x1,y1 € 1, which yields

[61 (o, x1) 1, V0] = [2161(u0,%1),v0], U0, Vo € Ug, X1,¥1 € Ay. (4.11)

Multiplying this expression on the right by z;[zo, Y01, where z¢, v € Ao and z; € 44,
we obtain

[61(Uo, 1), Uo st [do, o] = [o, o] d1[61 (Uo,sd1) b1, U] =0 (4.12)
by (4.10). Lemma 2.2(ii) implies
[61(Uo, 1)1, Uo] L [sdo,sdo]. (4.13)
In particular,
[61(Uo,st1) sy, Uolst[81 (U, s41) 51, Uo] = 0. (4.14)

Since o is semiprime, it follows that [6; (Ug, 1)1, Ug] = 0. From Lemma 2.6(ii) and
(iv), we get

[Uo61 (sA1,941),Uo] = [81(sd1,541)Uo, Up] = 0. (4.15)

Using Lemma 2.3, we arrive at
Upb1(sd1,541) € Z(A). (4.16)
Using (4.15) and Lemma 2.6(i), we obtain 0 = [u¢x1,vo] = uglx1,vo] + [1g,vo]x; for
all ug,vo € Up and x;1 € 01(sdq,41). Therefore [Uy,Ugld1(sA1,41) = 0, and similarly

01(A1,41)[Up,Up] = 0. Using Lemma 4.2, it follows that

51 (&Ql,&ql) 1 [&Qo,ﬂo]. 4.17)
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In particular,
[61(sty, 541 )l Ao |A[O1 (41,541)s41,540] =0, (4.18)
which in turn implies
O1(sAy,sdy) Ay, 101 (A, 1) = Z (o) (4.19)
since o is semiprime. Lemma 2.1 implies
51 (sty, )% € Z(A). (4.20)

Pick u; € Uy, v € Upu Uy, and x1,Yy; € ;. We have 6, (u1,x1)y1 L v by (4.17). Using
Lemma 2.4, it follows that

01(u1,x1)»1 D1 (V) + Dy (v)81 (ur,x1) 1 = 0. 4.21)

Replace y; by &1 (u1,x7). Therefore &7 (u1,x1)?D1(v) =0 for all v € Uy u U; by (4.20).
Since

(61(u1|x1)y1)2 =01 (u1,x1) 1 (D1 (u1x1) =Dy (1) x1 +u1 D1 (x1)) 1 (4.22)

for all y; € o7, we get 51 (u1,x1)* = 0. The semiprimeness of o yields &1 (u1,x1)% =0
for all u; € Uy, x; € ;. Let v € Uy. Multiplying (4.21) on the left by 6, (u1,x1)y1, we
see that

0= (81 (u1,x1)31)° D1 (V) + 61 (w1, 1) y1 (D1 (V)61 (U1, x1)) 1
= (81 (u1,x1)31) D1 (V) + D1 (V)81 (w1, x1)° ¥} (4.23)
= (51(u1,xl)y1)2D1(v).

If v € Uy, then 81 (u1,x1)y1 D1 (v) = 0by (4.21). Therefore (51 (u1,x1)y1)3 = 0by (4.22).
Since o is semiprime and (4.19) holds, we obtain &; (u,x;)y; =0 for all x,y; € o,
and u; € U;. By Lemma 2.2(i), it follows that

61(Uy, 1) = 0. (4.24)
Using Lemma 2.6(iii), we arrive at &; (o, U; ) = 0, which in turn implies
O1(sdo,Uy) L Ay. (4.25)
Therefore
61 (x0,u1)D1(x1) +D1(x1) 81 (x0,u1) =0 (4.26)
for all xg € Ao, x1 € A1, u; € U; by Lemma 2.4. Again, using Lemma 2.4, we obtain

81 (x0,u1) YoD1 (x1) + D1 (x1) 61 (X0, u1) Y0 =0 (4.27)
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for all vy € sy, since 61 (xp,u1) Yo L x1 by (4.25). Multiplying (4.26) on the right by y, €
Ay and comparing the identity so obtained with (4.27), it follows that &, (xq,u1)[ Yo,
Di(x1)] = 0 for all xo,y0 € Ao, u; € Uy, and x; € ;. Using Lemma 4.3, we ob-
tain [61(xo,u1),D1(x1)] = 0. Hence [61(x0,u1)Y0,D1(x1)] = 61(x0,u1)[0,D1(x1)] +
[61(x0,u1),D1(x1)]yo = 0 for all vy € dy. By (4.27), we get 81 (x0,u1)AoD1(x1) =0
for all xo € sy, u; € Uy, and x; € oA;. Therefore ;(xp,u1)Y001(x0,U1) =
01 (x0,u1)Yo(D1(xou1) — D1(x0)u; — xoD1(u1)) = 0 by (4.25). By the semiprimeness
of Ay, it follows that

51(sdo,Up) = 0. (4.28)

Using Lemma 2.6(3ii) and (iv), it follows that 61 (Uy, 1)Uy = U161 (Uy, 1) = 0. Therefore
01 (U, d1)AoU; =0 and Uy Ao (Ug, A1) = 0. By Lemma 2.2(ii), it follows that

51(Uo,&ﬁ1) 1 Uj. (4.29)
Pick any ug € Uy and u; € U,. Then we have 6, (ug,x1)yo L u; for all yy € #y and
x1 € A1. Using (4.28), we get 0 = D ((61 (1o, x1)Y0)u1) = D1 (81 (uo,x1)yo)uU1 + 61 (U,
X1)¥yoD1 (uy1). Multiplying this identity on the left by &; (1o, x1)z0, zo € o, we obtain
61(u0,x1)2061 (1o, x1) YoD1(u1) = 0. Hence 61 (1o, x1) YoD1 (u1)sdoS1 (no,x1) yoD1 (u1)
= 0, which in turn implies

01(Ug,s1)sdoD1(Ur) =0 (4.30)

since o is semiprime. By (4.29), we have &, (uo,x1)vo L y; forall vy € Uy and y; € A;.
Whence

01 (w0, x1)voD1 (1) +D1 (1) 01 (1o, x1)vo =0 (4.31)
by Lemma 2.4. Since also x¢901 (1o, X1)vo L V1, Xo € Ao, we arrive at
X061 (1o, x1)voD1 (V1) + D1 (1) X001 (W0, x1)vo =0 (4.32)

for all ug,vo € Uy, X0 € Ao, X1,V1 € A1 by Lemma 2.4. If we multiply (4.31) on the left
by x¢ and compare the identity so obtained with (4.32), it follows that

[s40, D1 (s41)]81 (Uo, s41) Up = 0. (4.33)

Since [sAg,D1(A1)]101(Uy, 1) < Uy, we obtain [dy,Dq(HA1)]61(Ug,41) = 0 by the
semiprimeness of Uy. Therefore also 61 (Uy, 1) [HAo,D1(s41)] = 0. Using Lemma 4.3, it
follows that [0 (U, sd1),D;1(s41)] = 0, which yields [61 (Ugy, 1), D1(HA1)] = 0. Using
(4.31), we obtain 6 (Uy,d1)UpD1 (A1) = 0. By (4.29), we arrive at

01(10,Xx1) V001 (U0, X1) = 61 (1o, x1) Vo (D1 (uox1) —D1(ug)x1 —uoDi(x1)) =0
(4.34)
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for all vy € Up. Using that Uy is semiprime, it follows that Uy, (Up, ) = 0, which in
turn implies Ud; (Up, 1) = 0. Analogously, 61 (Uy, 1)U = 0. Using (4.8), we obtain

0 =061 (uo,x1)x0D1((61 (o, x1)Y0) Vo) = 61 (U0, Xx1) X001 (Uo,Xx1) D1 (Vo)  (4.35)
for all xq, vy € Ao, Uo, Vo € Uy, and x; € ;. Hence
(01 (w0, x1)x0D1(v0)) 51 (61 (1o, x1)X0D1(v0)) =0, (4.36)
which yields 61 (Uy, 1) doD1(Uy) = 0 by Lemma 2.2(i). Using (4.30), it follows that

01 (10, x1)x001 (1o, Xx1) = 81 (U0, x1)X0 (D1 (wox1) — D1 (uo)x1 —uoD1(x1)) = 0.

(4.37)

Consequently,
61(Uo,s41) = 0. (4.38)
Thereby the proof is completed. |

5. Proof of Theorem 1.1. Theorems 3.1 and 4.4 show that D(ux) = Do(ux) +
Dy (ux) = Do(u)x + uDo(x) +D; (u)x + (=1)"'uD; (x). Therefore D|U is the sum of
superderivations of degrees 0 and 1.

Set V =Ann(U). Pick vg € V. We have

[vo,X0]¥0[vo,X0] = vo(x0)0[vo,X0]) = Xovo(0[Vo,X0]) =0 (5.1
for all vy € Vi, x0,V0 € Ao, since yo[vo,Xx0],X0V0[V0o,X0] € Uy. By the semiprimeness
of Ay, we arrive at [vg,xo] = 0 for all xg € Ao and v € V.

We show that
01(sdo,541) L [so,sdo]. (5.2)
Consider the expression D, (uoxoy1) with ug € Uy, X9 € Ao, V1 € 1. On the one hand,
D1 (uo(x0x1)) = D1(uo) xoy1 +uoDi (x031), (5.3)
and, on the other hand,

D1 ((noxo0)y1) = Di(uoxo) y1 +uoxoD1 (1)

(5.4)
=Dy (uo)xoy1 +uoDi (x0) ¥1 +uoxoD1 (31).

Comparing these two relations, we obtain U6 (o, 1) = 0. In particular,

[do,sdo]oS1 (o, 1) = 0. (5.5)
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We also have o[do,dold101(Ag,d1) = 0. By Lemma 2.2(i), we arrive at [,
Ao lA161 (Ag, 1) = 0 and the result follows. If U = 0, then ¢ is commutative. Note that
0o(x,y),01(x,y) eV,x,y € dgudy, by (3.1),(3.2), (3.14), (4.17), (5.2), and Lemma 4.1.
Therefore V = 0 implies that D is a superderivation.

We have UV = 0, and hence UNV = 0 since « is semiprime. Suppose that (U+V)n
I = 0 for some graded ideal I of #. Hence UI = VI = 0. Therefore I < Ann(U) N
Ann(V) = Ann(U) nAnn(Ann(U)) = 0. Thus U @V is an essential ideal of . The proof
is completed.
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