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We define a space (X,T) to be I-Lindelof if every cover � of X by regular closed subsets
of the space (X,T) contains a countable subfamily �′ such that X = ⋃{int(A) : A ∈ �′}.
We provide several characterizations of I-Lindelof spaces and relate them to some other
previously known classes of spaces, for example, rc-Lindelof, nearly Lindelof, and so forth.
Our study here of I-Lindelof spaces also deals with operations on I-Lindelof spaces and,
in its last part, investigates images and inverse images of I-Lindelof spaces under some
considered types of functions.
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1. Definitions and characterizations. In [2], a topological space (X,T) is called I-
compact if every cover � of the space by regular closed subsets contains a finite subfam-

ily {A1,A2, . . . ,An} such that X =⋃nk=1 int(Ak). Recall that a subset A of (X,T) is regular

closed (regular open, resp.) ifA=cl(int(A)) (int(cl(Ak)), resp.). We let RC(X,T)(RO(X,T),
resp.) denote the family of all regular closed (all regular open, resp.) subsets of a space

(X,T). A study that contains some properties of I-compact spaces appeared in [10]. In

the present work, we study the class of I-Lindelof spaces.

Definition 1.1. A space (X,T) is called I-Lindelof if every cover � of the space

(X,T) by regular closed subsets contains a countable subfamily {An :n∈N} such that

X =⋃n∈N int(An).

To obtain characterizations of I-Lindelof spaces, we need the definitions of some

classes of generalized open sets.

Definition 1.2. A subset G of a space (X,T) is called semiopen (preopen, semi-

preopen, resp.) if G ⊆ cl(int(G))(G ⊆ int(cl(G)), G ⊆ cl(int(cl(G))), resp.). SO(X,
T)(SPO(X,T), resp.) is used to denote the family of all semiopen (all semi-preopen,

resp.) subsets of a space (X,T). The complement of a semiopen subset (semi-preopen

subset, resp.) is called semiclosed (semi-preclosed, resp.). It is clear that a subset G is

semiopen if and only if U ⊆G ⊆ cl(U), for some open set U . A subset G is called regular

semiopen if there exists a regular open set W such that W ⊆G ⊆ cl(W).
The following diagram relates some of these classes of sets:

regular closed �⇒ regular semiopen �⇒ semiopen �⇒ semi-preopen. (1.1)

It is well known that if G is a semi-preopen set, then cl(G) is regular closed (see [6]).

The next result gives several characterizations of I-Lindelof spaces and its proof is now

clear.
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Theorem 1.3. The following statements are equivalent for a space (X,T).
(a) (X,T) is I-Lindelof.

(b) Every cover � of the space (X,T) by semi-preopen subsets contains a countable

subfamily �′ such that X =⋃{int(cl(A)) :A∈�′}.
(c) Every cover � of the space (X,T) by semiopen subsets contains a countable sub-

family �′ such that X =⋃{int(cl(A)) :A∈�′}.
(d) Every cover � of the space (X,T)by regular semiopen subsets contains a countable

subfamily �′ such that X =⋃{int(cl(A)) :A∈�′}.
Next we give another characterization of I-Lindelof spaces using the fact that a subset

G is regular closed if and only if its complement is regular open.

Theorem 1.4. A space (X,T) is I-Lindelof if and only if every family � of regular

open subsets of (X,T) with
⋂{U : U ∈ �} = ∅ contains a countable subfamily �′ such

that
⋂{cl(U) :U ∈�′} =∅.

Proof. To prove necessity, let �= {Uα :α∈A} be a family of regular open subsets

of (X,T) such that
⋂{Uα : α∈A} =∅. Then the family {X−Uα : α∈A} forms a cover

of the I-Lindelof space (X,T) by regular closed subsets and therefore A contains a

countable subset A′ such that X =⋃{int(X−Uα) :α∈A′}. Then

∅=X−
⋃
{int(X−Uα) :α∈A′}

=
⋂
{X− int(X−Uα) :α∈A′} =

⋂
{cl(Uα) :α∈A′}.

(1.2)

To prove sufficiency, let � = {Gα : α ∈ A} be a cover of the space (X,T) by regular

closed subsets. Then {X−Gα :α∈A} is a family of regular open subsets of (X,T) with⋂{X−Gα : α ∈ A′} = ∅. By assumption, there exists a countable subset A′of A such

that
⋂{cl(X−Gα) : α ∈A} =∅. So X = X−⋂{cl(X−Gα) : α ∈A′} =⋃{X−cl(X−Gα) :

α∈A′} =⋃{int(Gα) :α∈A′}. This proves that (X,T) is I-Lindelof.

In [7], a space (X,T) is called rc-Lindelof if every cover � of the space (X,T) by

regular closed subsets contains a countable subcover for X. It is clear, by definitions,

that every I-Lindelof space is rc-Lindelof. However, the converse is not true as we show

in Example 1.7.

Recall that a space (X,T) is extremally disconnected (e.d.) if cl(U) is open for each

open U ∈ T . It is easy to show that a space (X,T) is e.d. if and only if, given any two

regular open subsets U and V with U
⋂
V =∅, cl(U)

⋂
cl(V)=∅.

Proposition 1.5. Every I-Lindelof space (X,T) is e.d.

Proof. Suppose that (X,T) is not e.d. Then we find U,V ∈ RO(X,T) such that

U
⋂
V =∅ but cl(U)

⋂
cl(V) ≠∅, say t ∈ cl(U)

⋂
cl(V). Now, the family {X−U,X−V}

forms a cover of the I-Lindelof space (X,T) by regular closed subsets. Thus X = int(X−
U)
⋃

int(X−V). Assume t ∈ int(X−U). But t ∈ cl(U) and therefore∅≠ int(X−U)⋂U ⊆
(X−U)⋂U , a contradiction. The proof is now complete.

Theorem 1.6. A space (X,T) is I-Lindelof if and only if it is an e.d. rc-Lindelof space.
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Proof. As necessity is clear, we prove only sufficiency. We let � be a cover of (X,T)
by regular closed subsets. If A ∈ �, then A is regular closed and can be written as

A = cl(U) for some U ∈ T . Since (X,T) is e.d., the set A = cl(U) is open. Now, since

(X,T) is rc-Lindelof, the cover � contains a countable subfamily �′ such that X =⋃{A :

A∈�′} =⋃{int(A) :A∈�′} becauseA= int(A) for eachA∈�. This proves that (X,T)
is I-Lindelof as required.

Example 1.7. We construct an rc-Lindelof space which is not I-Lindelof. We let X
be a countable infinite set and we fix a point t ∈ X. We provide X with the topology

T = {U ⊆ X : t ∉ U}⋃{U ⊆ X : t ∈ U and X−U is finite}. It is immediate that (X,T) is

rc-Lindelof. However, (X,T) is not e.d. and therefore, by Theorem 1.6, is not I-Lindelof.

To see that (X,T) is not e.d., we write X = A⋃B, where A and B are disjoint infinite

subsets. Assume that t ∈A. Then B is an open subset of (X,T) and cl(B)= B⋃{t}. But

cl(B) is not open and hence (X,T) is not e.d.

Definition 1.8. A space (X,T) is called:

(a) nearly Lindelof if every open cover � of (X,T) contains a countable subfamily

�′ such that X =⋃{int(cl(U)) :U ∈�′} (see [3]);

(b) countably nearly compact if every countable open cover � of (X,T) contains a

finite subfamily �′ such that X =⋃{int(cl(U)) :U ∈�′}.
It is clear that a space (X,T) is I-compact if and only if it is I-Lindelof and countably

nearly compact.

Theorem 1.9. A space (X,T) is I-Lindelof if and only if it is an e.d. nearly Lindelof

space.

Proof. To prove necessity, we see that (X,T) is, by Proposition 1.5, e.d. Now, let �

be an open cover of (X,T). Then {cl(U) :U ∈�} is a cover of the I-Lindelof space(X,T)
by regular closed subsets. So � contains a countable subfamily �′ such that X =⋃{int(cl(U)) : U ∈ �′}. This proves that (X,T) is nearly Lindelof. Next, to prove suf-

ficiency, we let � be a cover of (X,T) by regular closed subsets. Since (X,T) is e.d.,

then each A∈� is open. So � is an open cover of the nearly Lindelof space (X,T) and

therefore � contains a countable subfamily �′ such that X =⋃{int(cl(A)) : A ∈�′} =⋃{int(A) :A∈�′} and we conclude that (X,T) is I-Lindelof.

Theorem 1.10. Let (X,T) be e.d. Then the following statements are equivalent:

(a) (X,T) is I-Lindelof;

(b) (X,T) is rc-Lindelof;

(c) (X,T) is nearly Lindelof.

Recall that the family of all regular open subsets of a space (X,T) is a base for a

topology Ts on X, weaker than T . The space (X,Ts) is called the semiregularization of

(X,T) (see [7]). A property P of topological spaces is called a semiregular property if a

space (X,T) has property P if and only if (X,Ts) has property P .

We will prove that I-Lindelofness is a semiregular property. First, we need the fol-

lowing result.
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Proposition 1.11 [8, Proposition 2.2]. Given a space (X,T), let G ∈ SO(X,T). Then

clT (G)= clTs (G).

Theorem 1.12. The property of being an I-Lindelof space is a semiregular property.

Proof. First, the property of being an e.d. space is a semiregular property (see [7,

page 99]). Now let (X,T) be an I-Lindelof space. Then (X,T) is, by Proposition 1.5,

e.d. and hence (X,Ts) is also e.d. So RC(X,T)= RO(X,T) and RC(X,Ts)= RO(X,Ts). To

show that (X,Ts) is rc-Lindelof, let � be a cover of (X,T) by regular closed subsets. Then

each A∈� is Ts -open and �⊆ Ts ⊆ T . Thus � contains a countable subfamily �′ such

that X = ⋃{clT (A) : A ∈ �′} = (Proposition 1.11)
⋃{clTs (A) : A ∈ �′} = ⋃{A : A ∈ �′}

and therefore (X,Ts) is rc-Lindelof and hence I-Lindelof. Conversely, let (X,Ts) be I-
Lindelof. Then both (X,T) and (X,Ts) are e.d. We show that (X,T) is rc-Lindelof. We let

� be a cover of (X,T) by regular closed subsets, that is, �⊆ RC(X,T)= RO(X,T)⊆ Ts .
Since (X,Ts) is rc-Lindelof, there exists a countable subfamily �′ of � such that X =⋃{clTs (A) : A ∈ �′} = (Proposition 1.11)

⋃{clT (A) : A ∈ �′} = ⋃{A : A ∈ �′}. This

shows that (X,T) is rc-Lindelof and the proof is complete.

2. Operations on I-Lindelof spaces. We note that the property of being an I-
Lindelof space is not hereditary. Consider the discrete space N of all natural numbers

and let βN be its Stone-Čech compactification. Then βN is an rc-compact Hausdorff

space (see [7, page 102]) and therefore βN is e.d. (see [11]). So βN is an I-Lindelof

space. However, the subspace βN −N is not I-Lindelof as it is not e.d. (see [7, page

102]). Here, (X,T) is called rc-compact or S-closed if every cover of X by regular closed

subsets contains a finite subcover (see [7]).

Recall that a subset A of a space (X,T) is called preopen if A ⊆ int(cl(A)). We let

PO(X,T) denote the family of all preopen subsets of (X,T).

Proposition 2.1 [4, Corollary 2.12]. Let (X,T) be rc-Lindelof and let U ∈ RO(X,T).
Then the subspace (U,T |U) is rc-Lindelof.

Proposition 2.2 [8, Proposition 4.2]. The property of being an e.d. space is heredi-

tary with respect to preopen subspaces.

Remark 2.3. It is well known that a space (X,T) is e.d. if and only if RC(X,T) =
RO(X,T) if and only if SO(X,T)⊆ PO(X,T). Thus if (X,T) is e.d., then

RO(X,T)= RC(X,T)⊆ SO(X,T)⊆ PO(X,T). (2.1)

In view of Propositions 2.1, 2.2, and Remark 2.3, the proof of the following result is

now clear.

Theorem 2.4. Every regular open (and hence every regular closed) subspace of an

I-Lindelof space is I-Lindelof.

Theorem 2.5. If a space (X,T) is a countable union of open I-Lindelof subspaces,

then it is I-Lindelof.
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Proof. Assume that X =⋃{Un :n∈N}, where (Un,T |Un) is an I-Lindelof subspace

for each n∈N. Let � be a cover of the space (X,T) by regular closed subsets. For each

n ∈ N, the family {A⋂Un : A ∈ �} is a cover of Un by regular closed subsets of the

I-Lindelof subspace (Un,T |Un) (see [4, Lemma 2.5]). So we find a countable subfamily

�n of � such that Un =
⋃{intUn(A

⋂
Un) : A ∈�n}. Put � =⋃{�n : n ∈ N}. Then � is

a countable subfamily of � such that X =⋃{Un :n∈N} =⋃n∈N
⋃{intUn(A

⋂
Un) :A∈

�n} =
⋃
n∈N

⋃{intX(A
⋂
Un) :A∈�n} ⊆

⋃{intX(A) :A∈�} ⊆X, that is, X =⋃{int(A) :

A∈�}. Therefore (X,T) is I-Lindelof.

If {(Xα,Tα) : α ∈ A} is a family of spaces, we let ⊕α∈AXα denote their topological

sum. Now we have, as a consequence of Theorem 2.5, the following result.

Theorem 2.6. The topological sum⊕α∈AXα of a family {(Xα,Tα) :α∈A} is I-Lindelof

if and only if (Xα,Tα) is I-Lindelof for each α∈A and that A is a countable set.

Proof. It is clear that sufficiency is a direct consequence of Theorem 2.5. To prove

necessity, we note that (Xα,Tα) is a clopen (and hence regular open) subspace of the

I-Lindelof space ⊕α∈AXα and therefore (Xα,Tα) is, by Theorem 2.5, I-Lindelof for each

α∈A. Moreover, the family {Xα :α∈A} forms a cover of the rc-Lindelof space ⊕α∈AXα
by mutually disjoint regular closed subsets and therefore must contain a countable

subfamily whose union is ⊕α∈AXα . Thus A must be a countable set.

We now turn to products of I-Lindelof spaces. As noted earlier, the space βN is I-
Lindelof while βN×βN is not even e.d. However, we have the next special case.

Theorem 2.7. Let (X,T) be a compact space and (Y ,M) an I-Lindelof space. If the

product X×Y is e.d., then it is I-Lindelof.

Proof. By [1, Theorem 2.4], the space X×Y is rc-Lindelof. Since it is, by assumption,

e.d., then it is, by Theorem 1.6, I-Lindelof.

3. Images and inverse images of I-Lindelof spaces. Let f : (X,T)→ (Y ,M). Recall

that f is semicontinuous (see [9]) if f−1(V)∈ SO(X,T)whenever V ∈M , and f is almost

open (see [8, page 86]) if f−1(cl(V))⊆ cl(f−1(V)) for each V ∈M . Finally, f is preopen

(see [8, page 86]) if f(U) is a preopen subset of (Y ,M) for each U ∈ T . It is mentioned in

[8] that preopenness and almost openness coincide. Accordingly, we have the following

result.

Theorem 3.1. Let f : (X,T)→ (Y ,M) be semicontinuous almost open and let (X,T)
be I-Lindelof. Then (Y ,M) is I-Lindelof.

Proof. First we have, by [8, Proposition 4.4], that (Y ,M) is e.d. Next, by [1, Theorem

3.4], we have that (Y ,M) is rc-Lindelof. Then, by Theorem 1.6, (Y ,M) is I-Lindelof.

Corollary 3.2. Every open continuous image of an I-Lindelof space is I-Lindelof.

Corollary 3.3. If a product space Πα∈IXα is I-Lindelof, then (Xα,Tα) is I-Lindelof,

for each α∈ I.
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We recall that a function f : (X,T) → (Y ,M) is irresolute if f−1(S) ∈ SO(X,T) for

each S ∈ SO(Y ,M). Each irresolute is semicontinuous (see [1, Lemma 3.8]).

Corollary 3.4. Every preopen irresolute image of an I-Lindelof space is I-Lindelof.

We turn now to the inverse image of I-Lindelof spaces under certain class of func-

tions. Recall that A is a semi-preclosed subset of a space (X,T) if its complement is

semi-preopen.

Definition 3.5. A function f : (X,T)→ (Y ,M) is called (weakly) semi-preclosed if

f(A) is a semi-preclosed subset of (Y ,M) for each (regular) closed subset A of (X,T).

The easy proof of the next result is omitted.

Lemma 3.6. A function f : (X,T) → (Y ,M) is (weakly) semi-preclosed if and only if,

for every y ∈ Y and for each (U ∈ RO(X,T)) U ∈ T with f−1(y) ⊆ U , there exists

W ∈ SPO(Y ,M) such that y ∈W and f−1(W)⊆U .

Corollary 3.7. Let f : (X,T) → (Y ,M) be weakly semi-preclosed. If B ⊆ Y and

f−1(B) ⊆ U , with U ∈ RO(X,T), then there exists W ∈ SPO(Y ,M) such that B ⊆W and

f−1(W)⊆U .

We recall that a space (X,T) is km-perfect (see [5]) if, for each U ∈ RO(X,T) and

each point x ∈ X−U , there exists a sequence {Un : n ∈ N} of open subsets of (X,T)
such that

⋃{Un :n∈N} ⊆U ⊆⋃{cl(Un) :n∈N} and x ∉
⋃{cl(Un) :n∈N}.

It is easy to see that every e.d. space is km-perfect.The converse, however, is not true

as the space constructed in Example 1.7 is easily seen to be km-perfect but not e.d.

Lemma 3.8. If (X,T) is a km-perfect P -space (≡ the countable union of closed subsets

is closed), then (X,T) is e.d.

Proof. We show that cl(U) is open for each U ∈ T . Note that int(cl(U)) is regular

open and if x ∉ int(cl(U)), then, since (X,T) is km-perfect, there exists a sequence

{Un :n∈N} of open subsets such that
⋃{Un :n∈N} ⊆ int(cl(U))⊆⋃{cl(Un) :n∈N}

and x ∉
⋃{cl(Un) : n ∈ N}. Since (X,T) is a P -space, then

⋃{cl(Un) : n ∈ N} is closed

and contains int(cl(U)) and so it contains cl(int(cl(U))). Thus x ∉ cl(int(cl(U))) and

we obtain that cl(int(cl(U))) = int(cl(U)). But U ⊆ int(cl(U)) and therefore cl(U) ⊆
int(cl(U)) = cl(int(cl(U))) ⊆ cl(U), that is, cl(U) = int(cl(U)), which shows that cl(U)
is open.

Definition 3.9. A subset A of a space (X,T) is called an rc-Lindelof set (see [4]) if

each cover of A by regular closed subsets of (X,T) contains a countable subcover of A.

We now state our final result which deals with an inverse image of an I-Lindelof

space.

Theorem 3.10. Let (X,T) be a km-perfect P -space. Let f : (X,T)→ (Y ,M) be weakly

semi-preclosed almost open with f−1(y) an rc-Lindelof set for each y ∈ Y . If (Y ,M) is

I-Lindelof, then so is (X,T).
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Proof. It is clear, by Lemma 3.8, that (X,T) is e.d. and therefore we only show that

(X,T) is rc-Lindelof (Theorem 1.6). We let � be a cover of X by regular closed subsets of

the space (X,T). For eachy ∈ Y , � forms a cover of the rc-Lindelof subset f−1(y) so we

find a countable subfamily �y of � such that f−1(y)⊆⋃{A :A∈�y} =Gy . ThenGy is

open, because (X,T) is e.d. and therefore RC(X,T)= RO(X,T). But f−1(y)⊆Gy , then

we find, by Lemma 3.6, a subset Vy ∈ SPO(X,T) such that y ∈ Vy and f−1(Vy) ⊆ Gy .

Now, the family {Vy : y ∈ Y} forms a cover of Y by semi-preopen subsets of the rc-

Lindelof space (Y ,M). By [1, Theorem 1.9], it contains a countable subfamily {Vyn :n∈
N} such that Y =⋃ {cl(Vyn) :n∈N}. We put �′ =⋃ {�yn :n∈N}. Then �′ is count-

able and �′ is a cover of X. To see this, let x ∈X and let y = f(x). Choose k∈ N such

that y ∈ cl(Vyk). Then x ∈ f−1(cl(Vyk))⊆ (f is almost open)cl(f−1(Vyk))⊆ cl(Gyk)=
Gyk (because (X,T) is a P -space and Gyk is a countable union of closed subsets). We

have x ∈Gyk =
⋃{A :A∈�yk} ⊆

⋃{A :A∈�′}. The proof is now complete.
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