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The Lie algebras Lsr ,t introduced by the author (2003) are classified from an algebraic point
of view. A matrix representation of least degree is given for each isomorphism class.
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1. Introduction. The aim of this note is to classify a family of Lie algebras, Lsr ,t , which

were introduced in [4] as a generalization of the Tavis-Cummings model, L1
2,1. The Lie

algebras Lsr ,t were presented by generators K1, K2, K3, K4 and relations

[
K1,K2

]= sK3,
[
K3,K1

]= rK1,
[
K3,K2

]=−rK2,
[
K3,K4

]= 0,
[
K4,K1

]=−tK1,
[
K4,K2

]= tK2, for r ,s,t ∈R. (1.1)

From [1],
[

0 1
0 0

]
,
[

0 0
1 0

]
,
[

1 0
0 −1

]
, and

[
0 0
0 1

]
are representation matrices of a faithful rep-

resentation of L1
2,1, for K1, K2, K3, and K4, respectively. Thus, the Lie algebras L1

2,1 and

gl (2,R) are isomorphic.

Note that the Lie subalgebra Lsr , of Lsr ,t , generated by K1, K2, K3 and relations

[
K1,K2

]= sK3,
[
K3,K1

]= rK1,
[
K3,K2

]=−rK2 (1.2)

was introduced in [2, 3, 6] as a generalization of the coupled quantized harmonic oscilla-

tors [7], namely, the model of light amplifier L−2
1 , and the model of two-level optical atom

L2
1, whose Hamiltonian model H = K0+λ(K+ +K−), λ is the coupling parameter. The

matrix representations of Lsr of least degree satisfying the physical properties K2 =K†1
(† stands for Hermitian conjugation and K0 is a real diagonal operator representing

energy) were discussed in [2, 3, 6].

Faithful matrix representations of least degree of Lsr ,t for appropriate values of r , s,
and t were given in [4], subject to the physical conditions, namely, K2 =K†1 , and K3, K4

are real diagonal operators representing energy. It was found that

(1) for rs > 0, t ∈ R, Lsr ,t has faithful representations of degree 2 as the least de-

gree, where the matrices
[

0 a±i
√
rs/2−a2

0 0

]
,
[

0 0
a∓i
√
rs/2−a2 0

]
,
[
r/2 0
0 −r/2

]
, and

[
b 0
0 b+t

]

are representation matrices for K1, K2, K3, and K4, respectively, with a,b ∈ R,
b ≠−t/2, and |a| ≤ √rs/2, i=√−1,

(2) for r = s = t = 0, L0
0,0 has faithful representation of degree 4 as the least degree,

where the representation matrices are linearly independent diagonal matrices,

while the representation matrices of K3 and K4 are real matrices.
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These are the only cases where Lsr ,t has faithful representations satisfying the men-

tioned physical conditions.

The Lie algebras Lsr ,t , r ,s,t ∈R, are classified from an algebraic point of view. A matrix

representation of least degree is given for each isomorphism class. The classification

is given by the following theorem.

Theorem 1.1. Let r , s, t be any nonzero real numbers; then

(1) Lsr ,t � Lsr ,0 � gl (2,R),
(2) Ls0,t � L1

0,1,

(3) L0
r ,t � L0

1,1,

(4) L0
r ,0 � L0

0,t ,

(5) Ls0,0 � L1
0,0,

(6) the Lie algebras gl (2,R), L1
0,1, L0

1,1, L0
1,0, L1

0,0, and L0
0,0 are nonisomorphic Lie alge-

bras.

Corollary 1.2. A system of representatives for the isomorphism classes of the Lie

algebras of the form Lsr ,t consists of gl (2,R), L1
0,1, L0

1,1, L0
1,0, L1

0,0, and L0
0,0.

Unless otherwise stated, whenever X and Y are Lie algebras and f is a mapping

f :X → Y , then X is the Lie algebra of type Lsr ,t for the assigned values of r , s, t and is

generated by K′1, K′2, K′3, and K′4 satisfying (1.1), respectively, and Y is the Lie algebra

of type Lsr ,t for the assigned values of r , s, t and is generated by K1, K2, K3, and K4

satisfying (1.1), respectively.

2. Isomorphism classes for rs ≠ 0

Theorem 2.1. The Lie algebras Lsr ,t and Lsr ,0 are isomorphic to the general linear Lie

algebra gl (2,R) for r ,s,t ∈R∗.

Proof. The mapping φ : Lsr ,0 → Lsr ,t defined by φ(K′i) = Ki, i = 1,2,3, and φ(K′4) =
(1/r)K3+(1/t)K4 is a Lie algebra isomorphism. It was found in [5] that when rs ≠ 0, the

Lie algebras Lsr and L1
rs are isomorphic, and the lie algebras L1

d and L1
c are isomorphic

whenever cd ≠ 0, where, in particular, an element u ∈ L1
c should satisfy that adu

has eigenvalues 0, d, and −d. Using [5, Lemma 5 and Theorem 6], the isomorphism

φ1 : Lsr ,t → gl (2,R) defined by φ1(K′1) =
[

0 1
0 0

]
, φ1(K′2) =

[
0 0
rs 0

]
, φ1(K′3) =

[r 0
0 −r

]
, and

φ1(K′4)=
[

0 0
0 t
]
, where rst ≠ 0, can be suggested.

3. Isomorphism classes for rst = 0. The case when t = 0 and rs ≠ 0 is discussed in

the previous section.

Lemma 3.1. For st ≠ 0, the Lie algebras Ls0,t and L1
0,1 are isomorphic. Moreover, Ls0,t is

not isomorphic to gl (2,R) and has faithful representation of degree 3 as the least degree.

Proof. In gl (2,R), a central element has trace zero if and only if it is the zero

element. Since in L1
0,1, K3 = [K1,K2] is a central element and of trace zero, thus Ls0,t 	�

gl (2,R). The mapping φ : Ls0,t → L1
0,1 defined by φ(K′i) = Ki, i = 1,2, φ(K′3) = (1/s)K3,

and φ(K′4) = (1/t)K4 is a Lie algebra isomorphism. Clearly,
[0 1 0

0 0 0
0 0 0

]
,
[0 0 0

0 0 1
0 0 0

]
,
[0 0 1/s

0 0 0
0 0 0

]
,
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and
[0 0 0

0 t 0
0 0 0

]
are representation matrices for K1, K2, K3, and K4, respectively, of a faithful

representation of least degree of Ls0,t .

Lemma 3.2. For rt ≠ 0, the Lie algebras L0
r ,t and L0

1,1 are isomorphic. Moreover, L0
r ,t is

not isomorphic to gl (2,R) and has faithful representation of degree 3 as the least degree.

Proof. The mapping φ : L0
r ,t → L0

1,1 defined by φ(K′i) = Ki, i = 1,2, φ(K′3) = rK3,

and φ(K′4) = tK4 is a Lie algebra isomorphism. The elements K1+K2, K1−K2, K3+K4

are linearly independent generators of an abelian Lie subalgebra of L0
r ,t . Thus, L0

r ,t has

no faithful representation of degree 2. Thus, L0
r ,t 	� gl (2,R). Obviously,

[0 1 0
0 0 0
0 0 0

]
,
[0 0 1

0 0 0
0 0 0

]
,

[0 0 0
0 −r 0
0 0 r

]
, and

[−t 0 0
0 0 0
0 0 −2t

]
are representation matrices for K1, K2, K3, and K4, respectively,

of a faithful representation of least degree of L0
r ,t .

Lemma 3.3. For rt ≠ 0, the Lie algebras L0
r ,0 and L0

0,t are isomorphic. Moreover, L0
0,t is

not isomorphic to gl (2,R) and has faithful representation of degree 3 as the least degree.

Proof. The mapping φ : L0
r ,0 → L0

0,t defined by φ(K′i) = Ki, i = 1,2, φ(K′3) =
−(r/t)K4, andφ(K′4)=K3 is a Lie algebra isomorphism. The elementsK1,K2,K3 are lin-

early independent generators of an abelian Lie subalgebra of L0
0,t . Thus, L0

0,t 	� gl (2,R).

Clearly,
[0 0 0

1 0 0
0 0 0

]
,
[0 0 0

0 0 1
0 0 0

]
,
[1 0 0

0 1 0
0 0 1

]
, and

[ t 0 0
0 0 0
0 0 −t

]
are representation matrices for K1, K2, K3,

and K4, respectively, of a faithful representation of least degree of L0
0,t .

Lemma 3.4. For s ≠ 0, the Lie algebras Ls0,0 and L1
0,0 are isomorphic. Moreover, Ls0,0 is

not isomorphic to gl (2,R) and has faithful representation of degree 3 as the least degree.

Proof. The mapping φ : Ls0,0 → L1
0,0 defined by φ(K′i) = Ki,i = 1,3,4, and φ(K′2) =

sK2 is a Lie algebra isomorphism.

The elements K1, K3, K4 are linearly independent generators of an abelian Lie sub-

algebra of Ls0,0. Thus, Ls0,0 	� gl (2,R). Obviously,
[0 1 0

0 0 0
0 0 0

]
,
[0 0 0

0 0 s
0 0 0

]
,
[0 0 1

0 0 0
0 0 0

]
, and

[1 0 0
0 1 0
0 0 1

]
are

representation matrices for K1, K2, K3, and K4, respectively, of a faithful representation

of least degree of Ls0,0.

Theorem 3.5. The Lie algebras L1
0,1, L0

1,1, L0
0,1, L1

0,0, and L0
0,0 are not isomorphic.

Proof. The Lie algebra L0
0,0 is an abelian Lie algebra, while L1

0,1, L0
1,1, L0

0,1, and L1
0,0

are nonabelian Lie algebras. From (1.1), the dimension of the center of L1
0,0 is 2. Let

Z = a1K1 +a2K2 +a3K3 +a4K4 be a central element of L0
0,1. Since [Z,K1] = 0, then

a4 = 0, and since [Z,K4] = 0, then a1K1−a2K2 = 0. For the linear independence of K1

and K2, we must have a1 = a2 = 0. Thus, the center of L0
0,1 can be generated by K3.

Thus, L1
0,0 	� L0

0,1. Similarly, it can be proved that the center of L0
1,1 is trivial. Thus, L0

1,1

is not isomorphic to either L1
0,0 or L0

0,1. Thus, the Lie algebras L0
1,1, L0

0,1, and L1
0,0 are not

isomorphic.

The dimensions of [L0
1,1,L

0
1,1], [L

1
0,0,L

1
0,0], and [L0

0,1,L
0
0,1] are 2,1, and 2, respectively,

while the dimension of [L1
0,1,L

1
0,1] is 3. Thus, L1

0,1 is not isomorphic to any of the Lie

algebras L0
1,1, L0

0,1, and L1
0,0.
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