

EXTENSION OF ZHU'S SOLUTION TO LOTTO'S CONJECTURE ON THE WEIGHTED BERGMAN SPACES

ABEBAW TADESSE

Received 21 January 2002 and in revised form 18 July 2002

We reformulate Lotto's conjecture on the weighted Bergman space A_α^2 setting and extend Zhu's solution (on the Hardy space H^2) to the space A_α^2 .

2000 Mathematics Subject Classification: 47B10, 47B33, 47B38, 30H05.

1. Background and terminology. Let H denote the space of analytic maps on the unit disk D and let A_α^2 , the weighted Bergman space, be defined (for $\alpha > -1$) as

$$A_\alpha^2 = \left\{ f \in H : \iint_D |f(z)|^2 (1-|z|^2)^\alpha dx dy < \infty \right\}. \quad (1.1)$$

Given $\phi \in H$ with $\text{Range}(\phi) \subset D$, the composition operator C_ϕ on A_α^2 is defined by

$$C_\phi(f)(z) = f(\phi(z)), \quad z \in D. \quad (1.2)$$

The following facts are well known:

- (i) A_α^2 is a Hilbert space (with the norm $\|f\| = (\iint_D |f(z)|^2 (1-|z|^2)^\alpha dx dy)^{1/2}$);
- (ii) C_ϕ is a bounded linear operator on A_α^2 and the compactness of C_ϕ is characterized in [3] as the following theorem illustrates.

THEOREM 1.1. *Suppose $0 < p < \infty$ and $\alpha > -1$ are given, then C_ϕ is compact on A_α^p if and only if ϕ has no angular derivative at any point of ∂D .*

The Schatten p -class $\mathcal{S}_p(A_\alpha^2)$ is defined as

$$\mathcal{S}_p(A_\alpha^2) = \left\{ T \in \mathcal{L}(A_\alpha^2) : \sum_{n=0}^{\infty} s_n(T)^p < \infty \right\}, \quad (1.3)$$

where $s_n(T)$ are the singular numbers for T , given by

$$s_n(T) = \inf \{ \|T - K\| : K \text{ has rank } \leq n \} \quad (1.4)$$

and $\mathcal{L}(A_\alpha^2)$ denotes the space of bounded linear operators on A_α^2 . The classes $\mathcal{S}_1(A_\alpha^2)$ (the trace class) and $\mathcal{S}_2(A_\alpha^2)$ (the Hilbert-Schmidt class) are best known.

It is known that $\mathcal{S}_2(A_\alpha^2)$ is a two-sided ideal in $\mathcal{L}(A_\alpha^2)$ [2] and, as a consequence of this, some important comparison properties [4], which are used for the construction of compact but non-Schatten ideals on A_α^2 , hold.

Lotto [1] began the investigation of the connection between the geometry of $\phi(D)$ and the membership of C_ϕ in $\mathcal{S}_p(H^2)$. He considered the Riemann map ϕ from D onto the semidisk

$$\left\{ z : \operatorname{Im}(z) > 0 \text{ and } \left| z - \frac{1}{2} \right| < \frac{1}{2} \right\} \quad (1.5)$$

which fixes 1 (see [4, Figure 1.1]), and computed an explicit formula for ϕ given by

$$\phi(z) = \frac{1}{1 - ig(z)}, \quad g(z) = \sqrt{i \frac{1-z}{1+z}}. \quad (1.6)$$

Lotto [1] proved that C_ϕ is a compact composition operator on H^2 but not Hilbert-Schmidt (i.e., $C_\phi \notin \mathcal{S}_p(A_\alpha^2)$) and came up with the following conjectures.

CONJECTURE 1.2. *The composition operator C_ϕ belongs to the Schatten- p ideal $\mathcal{S}_p(H^2)$ if $p > 2$.*

CONJECTURE 1.3. *Given p , $0 < p < \infty$, there exists a simple example of a domain G_p with $G_p \subseteq D$, or there are easily verifiable geometric conditions on G_p , such that the Riemann map from D onto G_p induces a compact operator that is not in $\mathcal{S}_p(H^2)$.*

Zhu [4] proved both Lotto's conjectures and constructed a Riemann map that induces a compact composition operator which is not in any of the Schatten ideals on H^2 .

The goal of this paper is to extend Zhu's solution of Lotto's conjectures on the weighted Bergman space $\mathcal{S}_p(A_\alpha^2)$.

In the $\mathcal{S}_p(A_\alpha^2)$ setting, Lotto's question can be summarized as follows: consider the Riemann map ϕ described above.

- (1) Find p , $0 < p < \infty$, such that $C_\phi \notin \mathcal{S}_p(A_\alpha^2)$.
- (2) Given p , $0 < p < \infty$, look for analogous geometric conditions on $G_p \subseteq D$ such that the Riemann map $\phi_p : D \rightarrow G_p$ induces a compact composition operator that is not in $\mathcal{S}_p(A_\alpha^2)$, and use this fact to construct C_ϕ which is compact but not in any $\mathcal{S}_p(A_\alpha^2)$ for all $0 < p < \infty$.

The compactness criterion (Theorem 1.1) assures us that C_ϕ is compact on A_α^2 . And note here that the compactness of C_ϕ is independent of α .

In the next section, we address both of these questions. For $\alpha = 0$, we extend Zhu's solution [4] to prove that $C_\phi \in \mathcal{S}_p(A_0^2) \Leftrightarrow p > 1$, showing that the trace class $\mathcal{S}_1(A_0^2)$ "draws" the "borderline" of membership of the C_ϕ 's in the Schatten ideals on $\mathcal{S}_p(A_0^2)$. Likewise, we extend Zhu's results on Conjecture 1.3 firstly in $\mathcal{S}_p(A_0^2)$ and then for the general $\mathcal{S}_p(A_\alpha^2)$, $\alpha > -1$.

2. Extension of Zhu's solution to weighted Bergman spaces A_α^2 . To answer the first question, we first need Luecking-Zhu theorem [2] to characterize membership in $\mathcal{S}_p(A_\alpha^2)$ which reads

$$C_\phi \in \mathcal{S}_p(A_\alpha^2) \Leftrightarrow N_{\phi, \alpha+2}(z) \left(\log \left(\frac{1}{|z|} \right) \right)^{-\alpha-2} \in \mathcal{L}^{p/2}(d\lambda), \quad (2.1)$$

where

$$N_{\phi,\beta}(z) = \sum_{\omega \in \phi^{-1}(z)} \log \left(\frac{1}{|\omega|} \right)^\beta, \quad (2.2)$$

the generalized Nevanlinna counting function, and $d\lambda(z) = (1 - |z|^2)^{-2} dx dy$, the Möbius invariant measure on D .

For ϕ a univalent self-map of D into itself,

$$N_{\phi,\beta}(z) = \left(\log \left(\frac{1}{|\phi^{-1}(z)|} \right) \right)^\beta \approx (1 - |\phi^{-1}(z)|)^\beta, \quad \text{for } |\phi^{-1}(z)| \rightarrow 1. \quad (2.3)$$

Thus, we have the following lemma.

LEMMA 2.1. *For ϕ univalent with $\phi(1) = 1$,*

$$C_\phi \in \mathcal{S}_p(A_\alpha^2) \iff \chi_{\phi(D)} \cdot \left(\frac{1 - |\phi^{-1}(z)|}{1 - |z|} \right)^{\alpha+2} \in \mathcal{L}^{p/2}(d\lambda). \quad (2.4)$$

We use [Lemma 2.1](#) to update [\[4, Theorem 3.1\]](#) on $\mathcal{S}_p(A_\alpha^2)$ setting. To emphasize the case $\alpha = 0$, we differentiate two cases.

(1) $\alpha = 0$: for the case $\alpha = 0$, the analogue of [\[4, Theorem 3.1\]](#) reads as follows.

THEOREM 2.2. *Let ϕ be a Riemann map from D onto the semidisk*

$$G = \left\{ z : \operatorname{Im}(z) > 0 \text{ and } \left| z - \frac{1}{2} \right| < \frac{1}{2} \right\} \quad (2.5)$$

such that $\phi(1) = 1$. Then the composition operator C_ϕ belongs to the Schatten ideals $\mathcal{S}_p(A_0^2)$ if and only if $p > 1$.

REMARK 2.3. It is interesting to compare [Theorem 2.2](#) with the corresponding result in the H^2 case (see [\[4, Theorem 3.1\]](#)) which holds for $p > 2$ showing here that the trace class $\mathcal{S}_1(A_0^2)$ is the “borderline” case for membership of the C_ϕ ’s in the Schatten- p ideals. For the proof, see the general case next.

(2) $-1 < \alpha$ arbitrary: we start with [Lemma 2.1](#). That is, check if (or when) the integral

$$\iint_G \left(\frac{1 - |\phi^{-1}(z)|}{1 - |z|} \right)^{((\alpha+2)/2)p} \frac{dA(z)}{(1 - |z|^2)^2} < \infty. \quad (2.6)$$

Since $\partial G \cap \partial D = \{1\}$, [\(2.6\)](#) is equivalent to

$$\iint_{G \cap \Delta(\epsilon)} \left(\frac{1 - |\phi^{-1}(z)|}{1 - |z|} \right)^{((\alpha+2)/2)p} \frac{dA(z)}{(1 - |z|^2)^2} < \infty, \quad (2.7)$$

where $\Delta(\epsilon) = \{z; |z - 1| < \epsilon\}$ (for $\epsilon > 0$ small) as in the proof of [\[4, Theorem 3.1\]](#), and ϕ is the Riemann map from $D \rightarrow G$. For $\alpha = 0$, the left-hand side of [\(2.7\)](#) reduces to

$$\iint_{G \cap \Delta(\epsilon)} \left(\frac{1 - |\phi^{-1}(z)|}{1 - |z|} \right)^p \frac{dA(z)}{(1 - |z|^2)^2} \quad (2.8)$$

which converges if and only if $p > 1$ (see equations (3.2), (3.7), and (3.8) in the proof of [4, Theorem 3.1] replacing the parameter p with $p/2$), which proves **Theorem 2.2**.

Once more, replacing $p/2$ by $((\alpha+2)/2)p$ in equations (3.2) and (3.7) in the proof of [4, Theorem 3.1] reveals that (2.7) is finite if and only if

$$\iint_G \left(\frac{r^2 \sin(2\theta)}{r \cos \theta} \right)^{((\alpha+2)/2)p} \frac{r dr d\theta}{(r \cos \theta)^2} < \infty, \quad (2.9)$$

where r is such that $z = 1 - re(i\theta) \in G$ as in the proof of [4, Theorem 3.1]. Again, replacing $p/2$ by $((\alpha+2)/2)p$ in [4, equations (3.7) and (3.8)],

$$\iint_G \left(\frac{r^2 \sin(2\theta)}{r \cos \theta} \right)^{((\alpha+2)/2)p} \frac{r dr d\theta}{(r \cos \theta)^2} \approx \int_0^{\pi/2} \frac{d\theta}{(\cos \theta)^{2 - ((\alpha+2)/2)p}}. \quad (2.10)$$

But then the right-hand side converges if and only if $p > 2/(\alpha+2)$, which certainly agrees with case (1), when $\alpha = 0$. Thus, we proved the following theorem.

THEOREM 2.4. *For $-1 < \alpha$, under the assumptions of Theorem 1.1, $C_\phi \in \mathcal{S}_p(A_\alpha^2)$ if and only if $p > 2/(\alpha+2)$.*

In the following, we address the second question.

For $0 < \beta < 1$, let G_β be the crescent-shaped region bounded by

$$G = \left\{ z : \operatorname{Im}(z) > 0 \text{ and } \left| z - \frac{1}{2} \right| = \frac{1}{2} \right\} \quad (2.11)$$

and a circular arc in the upper half of D joining 0 to 1, with the two arcs forming an angle of $\beta\pi$ at 0 and 1 (see [4, Figure 1.2]). Let ϕ_β be the Riemann map of D onto G_β with $\phi_\beta(1) = 1$. To see if (when) $C_{\phi_\beta} \in \mathcal{S}_p(A_\alpha^2)$, we only need to look at equation (4.9) and the last line(s) (in all the three cases) of the proof of [4, Theorem 4.1] (and note here that we replace α by β and $p/2$ by $2/(\alpha+2)$), which means

$$C_{\phi_\beta} \in \mathcal{S}_1(A_\alpha^2) \iff 2 - \left(\frac{1}{\beta} - 1 \right) \left(\frac{\alpha+2}{2} p \right) < 1, \quad (2.12)$$

which converges if and only if $p > 2\beta/(1-\beta)(\alpha+2)$ and this conforms to Theorems 2.2 and 2.4 when $\beta = 1/2$. Thus, we proved the following theorem.

THEOREM 2.5. (1) $C_{\phi_\beta} \notin \mathcal{S}_{2\beta/(1-\beta)(\alpha+2)}(A_\alpha^2)$;
 (2) $C_{\phi_\beta} \in \mathcal{S}_p(A_\alpha^2)$ for all $p > 2\beta/(1-\beta)(\alpha+2)$.

REMARK 2.6. (1) Note that here β characterizes the geometry of $\phi_\beta(D)$.

(2) The same argument as in Zhu's construction of a compact composition operator that is not in any of the Schatten- p ideals (see [4, Section 5]) can be transferred to the Bergman space case with a slight modification. (Here, of course, we use the corresponding facts on A_α^2 mentioned in Section 1.)

The modification is as follows.

Rewriting the basic steps of the construction, let $\theta_n = \pi/(n+1)$, $z_n = e^{i\theta_n}$, $r_n = (1/2) \sin \theta_n$, and $c_n = (1 - r_n)z_n$, where $n = 1, 2, \dots$

Define Ω_n to be the region bounded by the semicircle

$$\{z : \operatorname{Im}(z) \geq 0 \text{ and } |z - |c_n|| = r_n\} \quad (2.13)$$

and a circular arc that is inside D joining $1 - 2r_n$ to 1 forming an angle of $((n+1)/(n+2))\pi$ (for the $\alpha = 0$ case) and $(n+1)(\alpha+2)/(2+(n+1)(\alpha+2))$ (for the $\alpha > -1$ case). (This modification is made so as to apply [Theorem 2.5](#).)

Let

$$\Omega'_n = \{ze^{i\theta_n} : z \in \Omega_n\}, \quad (2.14)$$

$$\Omega = \bigcup_{n=1}^{\infty} \Omega'_n. \quad (2.15)$$

The same argument (in the A_α^2 setting) as in the proof of [[4](#), Theorem 5] yields the following theorem.

THEOREM 2.7. *Suppose Ω is defined as in (2.15), then*

- (1) *Ω is a simply connected domain contained in the upper half of D ;*
- (2) *any Riemann map ϕ that maps D onto Ω induces a compact composition operator C_ϕ that does not belong to any of the Schatten- p ideals $\mathcal{S}_p(A_\alpha^2)$, $p > 0$.*

ACKNOWLEDGMENTS. I would like to express my deep gratitude to my advisor Professor T. A. Metzger for introducing me to the subject and suggesting that the result of [[4](#)] extend to the (A_α^2) case. I also owe a lot to his insight, enthusiasm, and understanding. I also thank J. C. Sasmor for his helpful tips in document preparation.

REFERENCES

- [1] B. A. Lotto, *A compact composition operator that is not Hilbert-Schmidt*, Studies on Composition Operators (Laramie, Wyo, 1996), Contemp. Math., vol. 213, American Mathematical Society, Rhode Island, 1998, pp. 93–97.
- [2] D. H. Luecking and K. H. Zhu, *Composition operators belonging to the Schatten ideals*, Amer. J. Math. **114** (1992), no. 5, 1127–1145.
- [3] B. D. MacCluer and J. H. Shapiro, *Angular derivatives and compact composition operators on the Hardy and Bergman spaces*, Canad. J. Math. **38** (1986), no. 4, 878–906.
- [4] Y. Zhu, *Geometric properties of composition operators belonging to Schatten classes*, Int. J. Math. Math. Sci. **26** (2001), no. 4, 239–248.

Abebaw Tadesse: Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

E-mail address: abt4@pitt.edu

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk