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We study certain properties of derivations on semiprime rings. The main purpose is to
prove the following result: let R be a semiprime ring with center Z(R), and let f, g be
derivations of R such that f(x)x +xg(x) € Z(R) for all x € R, then f and g are central.
As an application, we show that noncommutative semisimple Banach algebras do not admit
nonzero linear derivations satisfying the above central property. We also show that every
skew-centralizing derivation f of a semiprime ring R is skew-commuting.

2000 Mathematics Subject Classification: 47A50, 47B50.

1. Introduction and preliminaries. Throughout, R denotes a ring with center Z(R).
We write [x,y] for xy — yx. We will frequently use the identities [xy,z] = x[y,z] +
[x,z]y and [x,yz] = y[x,z]+[x,y]z for all x,y,z € R. We recall that R is semiprime
if aRa = (0) implies a = 0 and it is prime if aRb = (0) implies a = 0 or b = 0. A prime
ring is semiprime but the converse is not true in general. An additive mapping d : R — R
is called a derivation if d(xy) = d(x)y + xd(y) for all x,y € R. A mapping f:R — R
is called centralizing if [ f(x),x] € Z(R) for all x € R; in particular, if [f(x),x] =0
for all x € R, then it is called commuting. A mapping f : R — R is called central if
f(x) € Z(R) for all x € R. Every central mapping is obviously commuting but not
conversely, in general. A lot of work has been done on centralizing mappings (see, e.g.,
[3, 4, 5] and the references therein). A mapping f : R — R is called skew-centralizing
if f(x)x+xf(x) € Z(R) for all x € R; in particular, if f(x)x +xf(x) = 0 for all
X € R, then it is called skew-commuting. We denote the radical of a Banach algebra A
by rad(A).

We now recall some facts concerning semiprime rings and their extended centroids.
For any semiprime ring R, one can construct the ring of quotients Q of R [1]. As R
can be embedded isomorphically in Q, we consider R as a subring of Q. If the element
q € Q commutes with every element in R, then g belongs to C, the center of Q. C
contains the centroid of R and is called the extended centroid of R. In general, C is a
von Neumann regular ring, and it is a field if and only if R is a prime [1, Theorem 5].
For more information on extended centroid of R, we refer to [2].

BresSar [6, Theorem 2] has proved that if R is a prime ring of characteristic not 2 and
f R — R is an additive skew-commuting mapping (i.e., f satisfies f(x)x +xf(x) =0
for all x € R), then f = 0.

Moreover, BreSar [5, Theorem 4.1] has considered a pair of derivations on a prime
ring and has proved the following. Let R be a prime ring and U a nonzero left ideal of R.
Suppose that the derivations d and g of R are such that d(u)u—-ug(u) € Z(R) for all
ueU.If d # 0, then R is commutative.
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A mapping h: R — R defined by h(x) = ax +xb (x € R) for some a,b € R is called
a generalized inner derivation [8]. Generalized inner derivations are called elementary
operators and have been extensively studied in operator algebras. We note that the
condition that h is centralizing on R can be written in the form [a,x]x +x[b,x] € Z(R)
for all x € R. Thus, introducing inner derivations f and g by f(x) = [a,x] and g(x) =
[b,x], we obtain the condition as in [5, Theorem 4.1], that is, f(x)x +xg(x) € Z(R)
for all x € R.

Recently, Thaheem [9] has proved the following result.

THEOREM 1.1. Iff, g is a pair of derivations on a semiprime ring R satisfying f (x)x +
xg(x) =0 forall x € R, then f(x),g(x) € Z(R) and f(u)[x,y] =gu)[x,y]=0 for
allu,x,y €R.

Inspired by the works of Bresar [5, 6] and Thaheem [9] and the above remarks re-
garding generalized inner derivations, we consider a general situation regarding a pair
of derivations of a semiprime ring and prove the following. Let f, g be a pair of deriva-
tions of a semiprime ring R satisfying f(x)x +xg(x) € Z(R) for all x € R, then f and
g are central (Theorem 2.2). We also show that every skew-centralizing derivation f of
a semiprime ring R is skew-commuting (Corollary 2.3).

We will need the following result of Bresar [7, Theorem 3.1] in the sequel.

THEOREM 1.2. Let S be a set and R a semiprime ring. If functions f and g of S
into R satisfy f(s)xg(t) = g(s)xf(t) foralls,t €S, x € R, then there exist idempotents
€1,€2,€3 € C and an invertible element A € C such thateie; =0, fori + j, €1 +€x+€3 =1,
and e1 f(s) =Ae1g(s), €29(s) =0, e3f(s) =0 hold for all s € S.

2. The results. We now prove our results.

LEMMA 2.1. Let f, g be a pair of derivations of a semiprime ring R satisfying f (x)x +
xg(x) € Z(R), then cf and cg are central for all c € Z(R).

PROOF. If ¢ =0, then obviously c¢f and cg are central. Let ¢ be a nonzero element
of Z(R). Linearizing f(x)x+xg(x) € Z(R), we get

SX)y+f(y)x+xg9(y)+yg(x) € Z(R) Vx,y €R. (2.1)
Taking y = c in (2.1), we get
fx)c+f(c)x+xg(c)+cg(x) e Z(R) Vx€ER. (2.2)
Replacing v = c? in (2.1), we obtain
Fx)e?+2cf(e)x+x(2cg(c)) +c*g(x) € Z(R), (2.3)
that is,

c[f(x)c+ceg(x)+flc)x+xg(c)]+c[f(c)x+xg(c)] € Z(R). (2.4)
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Noting that the first summand is contained in Z(R) by (2.2), from (2.4), we obtain

c[f(c)x+xg(c)] € Z(R) VxeR. (2.5)
Thus
[c(fc)x+xg(c)),¥]=0 Vx,yeR. (2.6)
This implies
clfe)x+xg(c),¥y]=0 Vx,y€R. (2.7)
Further, (2.2) implies
[f(x)ct+egx),y]=~[fle)x+xg(c),y] Vx,¥eR. (2.8)

From (2.7) and (2.8), we obtain c[ f(x)c+cg(x),y] = 0, which implies
Alf(x)+g(x),¥y]=0 Vx,y€R. (2.9)
Replacing v by zy in (2.9), we get c?z[f (x) +g(x),y] = 0, which implies
cze[f(x)+g(x),y]=0 Vx,v,z€R. (2.10)

Replacing zby [ f(x)+g(x),y]zin(2.10),we getc[ f(x)+g(x),y]zc[f(x)+g(x),y] =
0, which, by semiprimeness of R, implies c[ f(x) + g(x),y] = 0; that is, [c(f(x) +
g(x)),y]1=0forall x,y € R. Thus,

c[f(x)+g(x)]€ Z(R) Vx€ER. (2.11)

Since ¢ € Z(R) and f, g are derivations, therefore c f, cg, and c(f +g) are derivations
of R. Further, (2.11) implies that c(f + g) is central and hence, by [3, Lemma 4], a
commuting derivation. Thus, by Thaheem and Samman [10, Proposition 2.3], we get
(c(f+g))(u)[x,y]=0 forall u,x,y € R. That is,

c(ftu)+gu))lx,¥]1=0 Vu,x,y €R. (2.12)

Using (2.12) and the fact that cf(u) +cg(u) € Z(R), we get [(cf(u) +cg(u))u,y] =
(cf(u)+cgu)[u,y1+[cf(u)+cg(u),ylu = 0; that is,

[cf(u)u+cg(u)u,y]=0 Vu,y eR. (2.13)
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Since ¢ € Z(R) and f(u)u+ug(u) € Z(R), therefore c f(u)u+cug(u) € Z(R). Thus
[cf(w)u+cug(u),y]=0 Yu,y eR. (2.14)

Subtracting (2.14) from (2.13), we get [cg(u)u —cug(u),y] = 0; that is, [c(g(u)u —
ugu)),yl = [clgu),ul,v] = [[cg(u),ul,y] = 0 for all u,y € R, which implies
[cg(u),u] € Z(R). Thus, cg is a centralizing derivation. By [3, Lemma 4], we get that
cg is a commuting derivation. By Thaheem and Samman [10, Proposition 2.3], we get
cg(u) € Z(R). Thus cg is central.

Since cf(u) +cg(u) € Z(R) and cg(u) € Z(R), therefore cf(u) € Z(R). So cf is
central. |

THEOREM 2.2. Let R be a semiprime ring and f, g a pair of derivations of R such
that f(x)x+xg(x) € Z(R) forall x € R. Then f and g are central.

PROOF. Let xo € R and ¢ = f(xg)xo + X0g(x0). Then, by hypothesis, ¢ € Z(R).
By Lemma 2.1, cf and cg are central. Thus [cf(x),y] = 0 for all x,y € R. That is,
cf(x)y—ycf(x) =0, which implies

f(x)yc=cyf(x) Vx,y€eR. (2.15)

Taking S = R, g(x) = ¢ and applying Theorem 1.2 to (2.15), we get that there exist
idempotents €1,€2,€3 € C and an invertible element A € C such that €;ej = 0 for i # j,
€1+€+€3=1, and

e1f(x)=2A€i1c, €c=0, e3f(x)=0, Vx€ER. (2.16)

Replacing x by xy in the first identity of (2.16) and using it again, we get Ae;c =
e f(xy)=e(fx)y+xf(y) =ef(x)y+xe1f(y) = Aercy +xAeic; that is,

A€ic =A€ejcy +xAeic Vx,y €R. (2.17)

Replacing y by —x in (2.17), we get Ae;c = Aejc(—x) +xA€jc = —xA€jc+xAejc = 0.
Thus € f(x) = Ae;c = 0 for all x € R. Hence, using (2.16), we get f(x) = (€1 + €2 +
€3)f(x) = €2f(x), which implies ¢ f(x) = ce>f(x) = €2cf(x) = 0. Thus cf(x) = 0 for
all x € R. Since cg is central, therefore, analogously, it follows that cg(x) = 0 for all
x € R.Hence cf(x)x =0and cxg(x) =0 for all x € R. Thus c(f(x)x+xg(x)) =0.In
particular, 0 = c(f (xg)x0+x0g(xg)) = c2. Since a semiprime ring has no nonzero cen-
tral nilpotents, therefore ¢ = 0; that is, f(x0)xo +Xx0g(xo) = 0. Since xg is an arbitrary
element of R, therefore

fxX)x+xg(x)=0 Vx€ER. (2.18)

Using Theorem 1.1, from (2.18), we get that f and g are central. O

Taking g(x) = f(x) in Theorem 2.2 and considering (2.18), we get the following
corollary.

COROLLARY 2.3. Let f be a skew-centralizing derivation of a semiprime ving R, then
f is skew-commuting.
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COROLLARY 2.4. Let R be a noncommutative prime ring and f, g a pair of derivations
of R such that f(x)+xg(x) € Z(R) forall x eR, then f = g =0.

PROOF. Since R, being prime, is semiprime, therefore, by (2.18), we get f(x)x +
xg(x) =0 for all x € R. Then Theorem 1.1 gives

f)x,y]=0=g)[x,y] Yu,x,yeR. (2.19)

Replacing y by zy in (2.19) and using (2.19) again, we get f(u)z[x,y]=0=g(u)z[x,
v]. Since R is prime and noncommutative, therefore f(u) = 0 = g(u) for all u € R.
Thus f =g =0. O

It is well known that there are no nonzero linear derivations on a commutative
semisimple Banach algebra. Thus, it is natural to identify situations under which non-
commutative semisimple Banach algebras do not admit nontrivial derivations. The
following corollary, which follows as an application of our results, identifies such a
situation.

COROLLARY 2.5. Let A be a noncommutative semisimple Banach algebra with center
Z(A) and let f, g be a pair of linear derivations of A such that f(x)x +xg(x) € Z(A)
forallx € A. Then f = g =0.

PROOF. Since A is semisimple, therefore it is semiprime. Thus, by Theorem 2.2, f
and g are central and trivially commuting as well as centralizing. Hence, by [4, Corollary
3.7], f and g map A into Z(A) nrad(A). Since A is semisimple, therefore rad(A) = (0).
Thus f(x) =0=g(x) for all x € A. Hence f =0 and g = 0. O

REMARK 2.6. (i) Taking g(x) = f(x) in Corollary 2.5, we get that noncommutative
semisimple Banach algebras do not admit nontrivial linear skew-centralizing deriva-
tions.

(i) Taking g(x) = f(x) in Theorem 2.2, we get that every skew-centralizing deriva-
tion f of a semiprime ring R is central.
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