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We study the structure of manifolds with almost nonnegative Ricci curvature. We prove a
compact Riemannian manifold with bounded curvature, diameter bounded from above, and
Ricci curvature bounded from below by an almost nonnegative real number such that the
first Betti number having codimension two is an infranilmanifold or a finite cover is a sphere
bundle over a torus. Furthermore, if we assume the Ricci curvature is bounded and volume
is bounded from below, then the manifold must be an infranilmanifold.
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1. Introduction. In this paper, we will consider a class of compact n-dimensional
Riemannian manifolds (M, g) satisfying

|Kg| <A, diam(M) < D, Ric(M) = —¢, (1.1)

where Ky, diam(M), and Ric(M) denote the sectional curvature, diameter, and Ricci
curvature, respectively, of a Riemannian manifold (M, g), while D and A are positive
real numbers and € is usually a sufficiently small positive real number.

In [8], Gromov proved that there is an € > 0 depending only on n and a given constant
D > 0 such that if diam(M) < D and Ric(M) > —¢, then the first Betti number of M,
b, (M), is bounded by n, that is, b, (M) < n. Gallot [6] also gave an analytic proof for
this. In [12], Yamaguchi has shown that if a Riemannian manifold (M, g) satisfies the
conditions (1.1), then there is a smooth fibration

F—M — ThO (1.2)

where TP1™) js the b;(M)-dimensional torus. This implies that if b;(M) = n, then
M is diffeomorphic to the n-dimensional torus T™ and if b; (M) = n — 1, then M is
diffeomorphic to an infranilmanifold, that is, a finite covering space of M is a quotient
of a simply connected nilpotent Lie group by a lattice.

In this paper, we study the structure of Riemannian manifolds satisfying the condi-
tions (1.1) and whose first Betti number is n —2 or n — 3. In case the first Betti number
is n — 2, there are at least two known families of manifolds with metrics satisfying
(1.1): infranilmanifolds and compact quotients of the product space M = S2 x R"~2, We
will see below that there are only such cases if the first Betti number b; (M) = n — 2.
In case by (M) = n— 3, since there is lack of examples, we only consider manifolds of
dimension 4.
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Throughout this paper, the dimension of manifolds is denoted by n unless otherwise
stated.

2. Almost nonnegative Ricci curvature and the first Betti number. In this section,
we consider Riemannian manifolds (M, g) satisfying the conditions (1.1) with restric-
tion on the first Betti number b; (M). First of all, we would like to mention a theorem
due to Cheeger and Colding, which is crucially used in the proofs of our results. This
theorem, conjectured originally by Gromov, says that the fundamental groups of a class
of Riemannian manifolds with almost nonnegative Ricci curvature are almost nilpotent.

THEOREM 2.1 [3]. Given a positive integer n and D > 0, there exists € = ¢(n,D) > 0
such that if (M",g) is a compact Riemannian n-manifold satisfying

diam(M) <D, Ric(M) = —¢, (2.1)

then the fundamental group 1, (M) is almost nilpotent, that is, it contains a nilpotent
subgroup of finite index.

Now we prove a structure theorem for manifolds satisfying the conditions (1.1) with
bl (M) =n-2.

PROPOSITION 2.2. Given A > 0, D > 0, and a natural number n, there exists € =
€(A,D,n) > 0 such that if (M",g) is a compact Riemannian n-manifold satisfying

|Kg| <A, diam(M) < D, Ric(M) = —¢, bi(M)=n-2, (2.2)

then M is a fiber bundle over T" 2 with the property that a finite cover of the fiber is
diffeomorphic to T? or S2.

PROOF. Choose € > 0 sufficiently small so that the properties in [12] and Theorem 2.1
hold. First note that, due to [12], M is a fiber bundle over T"2, that is, there is a fibration

F—M—T"?2 (2.3)

where T"? is the (n — 2)-dimensional torus.

By the uniformization theorem, a finite cover Fof Fis diffeomorphic to S?, T2, or =,
a surface of genus greater than or equal to 2. We will show that F cannot be diffeomor-
phic to =. Assume F is diffeomorphic to X. It follows from (2.3) that there is an exact
sequence of homotopy groups

0= (T"?) — 1y (F) — 11 (M). (2.4)

Since 711 (M) is almost nilpotent by Theorem 2.1, the sequence (2.4) shows that 11, (F) is
also almost nilpotent. However, since 3. is a surface of genus greater than or equal to 2,
it is well known that 71, () cannot be almost nilpotent. Hence the proof is complete.

O

Before going ahead, we state a basic algebraic lemma about a geometric group, which
follows actually from [9].
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LEMMA 2.3 [9, 14]. LetT be a finitely generated group of polynomial growth. Then it
contains a torsion-free nilpotent subgroup of finite index.

A solvable group T is called polycyclic if there is a subnormal series
Ir=Iy>I1 D+ DIx = {e}, (2.5)

where factors I;/I;;; are all infinite-cyclic and e denotes the identity element in T.
A solvable group is almost polycyclic if it contains a subgroup of finite index, which is
polycyclic. The number of infinite cyclic factors is independent of the choice of finite-
index subgroup or subnormal series, and is called the Hirsch length of the group.

Now we prove our main theorem as an application of Proposition 2.2 by using Lemma
2.3 and Theorem 2.1

THEOREM 2.4. Given A > 0, D > 0, and a natural number n, there exists € =
e(n,A,D) > 0 such that if (M™,g) is a compact Riemannian manifold satisfying (2.2),
then M is an infranilmanifold or a finite cover of M is an S?-bundle over T" 2.

PROOF. Choose € > 0 sufficiently small so that Proposition 2.2 holds. Suppose (M, g)
is a Riemannian n-manifold satisfying (2.2). M is a fiber bundle over T"~2 with a fiber
being a quotient of §2 or T2. It is enough to show that if the fiber is a quotient of T2,
then M is an infranilmanifold. By Theorem 2.1 again, 1r; (M) is almost nilpotent. So,
by Lemma 2.3, 11; (M) has a torsion-free nilpotent subgroup of finite index I'. From the
above fibration, we have an exact sequence of homotopy groups

0—K—m (M) —7"?%—0, (2.6)

where K is isomorphic to Z2 @ H and H is a finite group.

Note that the universal covering M of M is diffeomorphic to R™ and I' has Hirsch
length n. The nilpotent Malcev completion N of I' can now be identified with M.So, M
is a simply connected nilpotent Lie group with a lattice subgroup I'. This means that M
is an infranilmanifold. O

REMARK 2.5. A converse of Theorem 2.4 holds, that is, any nilmanifold or any S2-
bundle over T2 has Riemannian metrics which satisfy (2.2) for any €.

REMARK 2.6. In [4], 4-dimensional compact nilmanifolds with b; = 2 can be de-
scribed explicitly.

Now we consider Riemannian manifolds of dimension 4 and the first Betti number
b1 (M) = 1. In case dimension n = 4, it is notable that there are no 4-dimensional com-
pact infranilmanifolds with b; (M) =1 [11].

THEOREM 2.7. For given A > 0 and D > 0, there exists € = €(A,D) > 0 such that if
(M*,g) is a compact Riemannian 4-manifold satisfying

|Ky| <A,  diam(M) <D, Ric(M)=—-¢, bi(M)=1, (2.7)

then M is a fibration over S whose fiber is homotopic to a spherical space form S3 /T for
some finite subgroup T acting on S3.
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PROOF. By [12], there exists an € > 0 such that if (M",g) is a closed Riemannian
manifold satisfying (2.7), then M is a fibration over S',

F—M—ShL (2.8)

On the other hand, by Theorem 2.1, 7r; (M) is almost nilpotent, and so it has a polyno-
mial growth. It follows from Lemma 2.3 that 71, (M) contains a torsion-free nilpotent
subgroup I of finite index. Since b, (M) = 1, T is abelian, and so I' = Z. In fact, if T is not
abelian, then it contains a subgroup which is isomorphic to the Heisenberg group (see
Remark 2.8), and so the growth of T is at least 4 and b; (M) > 2 (cf. [2, Section 7]).
Thus, (M) = Z® H, where H is a finite group and 1 (F) is also finite group. Hence
the universal cover F of F is a compact simply connected 3-manifold, and so Fisa
homotopy 3-sphere, that is, F is homotopic to S3/H for some finite group H acting
on §3. O

REMARK 2.8. In dimension n > 5, replacing the condition on the first Betti num-
ber by b, (M) = n— 3, Theorem 2.7 does not hold anymore. For example, let N be the
Heisenberg group

1
N=41]0
0

o = R

z
y|lx,y,zeR (2.9)
1

and I its integer lattice. Then M := N/T is a compact orientable 3-dimensional nilman-
ifold. It is well known that b; (M) = 2 and M is an S'-bundle over T?2. For a given € > 0,
since M is a nilmanifold, there is a metric g. such that

|Kg | <24€?,  diam(M) < 2. (2.10)

Now consider the product (M x §2) so that it satisfies the condition (2.7). It is easy to
see that M x §2 is a fibration over T2 with fiber §! x S2.

3. Ricci curvature pinching. If one replaces the lower bound on Ricci curvature by
pinching and adds the lower volume bound, then one can prove that the second case
in Theorem 2.4 does not happen. In [3], Cheeger and Colding extended the splitting
theorem of sectional curvature version to that of Ricci curvature version. Namely, the
splitting theorem does hold for the limit space of Gromov-Hausdorff convergent se-
quence each term of which satisfies a diameter upper bound and Ricci condition that
Ric(M;,gi) = —€; — 0. Thus, using the abelian covering manifold which gives an ex-
tended version of splitting theorem and modifying the argument in [13] a little bit, one
can easily prove the following lemma.

LEMMA 3.1. Let M; be a sequence of compact Riemannian n-manifolds withRic(M;) >
—€; — 0, diam(M;) = 1, by (M;) = by, and ]Vfl the universal cover of M;. Then, for any
pi € My, (M;,di,p1) subconverges to (R x Xo,xo,d) in the pointed Gromov-Hausdor(f
distance, where k > by, and X, is a compact length space.
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We would like to remark that the dimension of the Euclidean factor is greater than
or equal to the first Betti number.

THEOREM 3.2. Given A > 0, v > 0, D > 0, and a natural number n, there exists
€ = €(A,v,D,n) > 0 such that if (M",g) is a Riemannian n-manifold satisfying

|Kg| <A, diam(M) < D, vol(M,g) = v,

|Ric(M)| <€, by (M) = (3.1)

then M is an infranilmanifold.

PROOF. Suppose the theorem does not hold. Then there are a sequence of positive
real numbers €; — 0 and a sequence of Riemannian n-manifolds (M;, g;) satisfying (3.1),
but M; is not an infranilmanifold for all i.

With the volume condition, the standard Cheeger-Gromov compactness theorem [7,
10] tells that there exists a subsequence of (M;, g;) converging to a smooth n-manifold
with a C1** Riemannian metric (M, g) in the C1%’ topology with 0 < &’ < . In particular,
M; is diffeomorphic to M for all i sufficiently large. Furthermore, since |Ric(M;,g;)| <
€; — 0, the Ricci equation argument in harmonic coordinates [1] shows that the metric
g is, in fact, C®. Consequently, (M;, g;) subconverges to a smooth Ricci flat Riemannian
manifold (M, g) in the C* topology This, together with the curvature condition, implies
that the universal cover Ml converges to the umversal cover M (cf. [5, Theorem 2.7]).
Now, applying Lemma 3.1, M is isometric to RX ¢ K with k = by (M) = n—2, where Xo
is a compact Riemannian manifold. Since g is Ricci-flat, X} ¥ is also a Ricci flat manifold.
Since n—k < 2, Xg’k is a flat manifold, and so g is a flat metric on M. Therefore, M;
admits a flat metric for i sufficiently large and so does M.

On the other hand, since M; is not an infranilmanifold, Theorem 2.4 shows that ]\N/[l-
is diffeomorphic to $2 x R" 2. So, S x R"~2 admits a flat metric, but this is impossible
because of the Cartan-Hadamard theorem. The proof is complete. |

REMARK 3.3. In the collapsing case, the same result as Theorem 3.2 might also hold.
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