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CONVERGENCE OF TWO-STEP ITERATIVE SCHEME WITH ERRORS
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A two-step iterative scheme with errors has been studied to approximate the common fixed
points of two asymptotically nonexpansive mappings through weak and strong convergence
in Banach spaces.
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1. Introduction. In 1995, Liu [4] introduced iterative schemes with errors as follows.
(a) For a nonempty subset C of a normed space E and T : C — C, the sequence {x;}
in C, iteratively defined by

x1=x€C,
Xn+1 = (l_an)xn +anTyn+uUn, (1.1)
Vn=(1=by)xp+byTx,+vy,, nx1,

where {a,}, {b,} are sequences in [0,1] and {u,}, {v,} are sequences in E
satisfying > 5 [lun |l < 00, > 51 llvnll < o0, is known as Ishikawa iterative scheme
with errors.

(b) With E, C, and T as in (a), the sequence {x,}, iteratively defined by

x1=x€C,

Xni1=(1—ap)xn+anTx,+u,, mn=1, (1.2)

where {a,} is a sequence in [0,1] and {u,} a sequence in E satisfying
So_1lunll < oo, is known as Mann iterative scheme with errors.

In 1999, Huang [2] studied the above schemes for asymptotically nonexpansive map-
pings. Recall that a mapping T : C — C is asymptotically nonexpansive if there is a se-
quence {ky,} C [1,00) withlim,,. ky, =1 and || T"x —T"y| < kyllx—y| forall x,y € C
and for all n € N, where N denotes the set of positive integers.

Moreover, in 2001, Khan and Takahashi [3] approximated the fixed points of two
asymptotically nonexpansive mappings S, T : C — C through the sequence {x,} given by

x1=x€C(,
Xn+1 = (l_an)xn“‘ansnyn, (1.3)
Yn=(1=bp)xn+bnT"xp,

where {a,}, {b,} are sequences in [0, 1] satisfying certain conditions.
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Inspired and motivated by the study of the above schemes, we suggest a new iterative
scheme {x,} in C constructed through a pair of asymtotically nonexpansive mappings
S,T:C — C given by

x1=x€C,
Xn+1 = (1 _an)xn+ansnyn+un1 (1.4)

Yn=(1=bp)xXn+byT"xn+vn, n=1,

where {a,}, {b,} are sequences in [0, 1] with appropriate conditions and {u,}, {v,}
are sequences in E with 3.7 [luyll < 00, >0, [vnll < co.

It is to be noted here that each of the above schemes follows as a special case of our
scheme.

2. Preliminaries. Let E be a Banach space with C as its nonempty convex subset.
Throughout this paper, N denotes the set of positive integers and F(T) the set of fixed
points of the mapping T. Now we list the following definitions and results used to prove
the results in the next section.

DEFINITION 2.1. A mapping T : C — C is uniformly k-Lipschitzian if for some k > 0,
IT"x —T"y| <kl|x—y| forall x,y € C and for all n € N.

DEFINITION 2.2. A mapping T : C — C is completely continuous if and only if {Tx;,}
has a convergent subsequence for every bounded sequence {x,} in C.

DEFINITION 2.3. E is said to satisfy Opial’s condition [5] if for any sequence {x,}
in E, x,, — x implies that limsup,,_, llx, — x|l <limsup,,_., [[x, — | for all y € E with
VY # X.

DEFINITION 2.4. A mapping T : C — E is called demiclosed with respect to y € E if
for each sequence {x,} in C and each x € E, x,, — x and Tx, — y imply that x € C
and Tx = y.

LEMMA 2.5 [6]. Suppose that E is a uniformly convex Banach space and 0 < p <t, <
q < 1 for all n € N. Also, suppose that {x,} and {y,} are two sequences of E such that
limsup,, . [[xnll < v, imsup,,_.. | Vull < v, andlimy, . [[tn X, + (1 —ty) yull = v hold for
some v = 0. Then limy,—« [| Xy — Ynll = 0.

LEMMA 2.6 [7]. Let {rn}, {sn}, {tn} be three nonnegative sequences satisfying

Yol < (1+8p)1rp+t, Vnx=1. (2.1)

If Y5 1 sn <o and Y, _ ity < oo, then limy,_.. ¥ exists.

LEMMA 2.7 [1]. Let E be a uniformly convex Banach space satisfying Opial’s condition
and let C be a nonempty closed convex subset of E. Let T be an asymptotically nonex-
pansive mapping of C into itself. Then I — T is demiclosed with respect to zero.
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3. Approximating common fixed points. We start with the following lemma.

LEMMA 3.1. LetE be a normed space and C a nonempty bounded closed convex subset
of E. Let, for k > 0, S and T be uniformly k-Lipschitzian mappings of C into itself. Let
{xn} be a sequence as defined in (1.4), where {u,}, {v,} are sequences in E such that
limy, .o [[uyll = 0 = limy, .o [[v, || and

Tlliln||xn—5"xn||:O:rlli{onn—T"an. (3.1)
Then
7llifro10||xn—an||=0=%izroloﬂxn—Tan. (3.2)

PROOF. Take ¢, = ||x, — T"xy|| and d,, = || X — S"xy||. Consider
||Xn+l _xn” = Han(snyn_xn) +un||
< an||(S"yn—S"xn) + (8" xn —xn) ||+ |unl|

= ankH(l _bn)xn"‘bnTnxn"'vn_XnH +andn + ||’I/LnH

(3.3)
= ank||bn (T"xn — xn) + Vn|| + andn + ||Jun]|
< anbucnk + ank||vn|| + andn +||unl|
< cpk+dp +k||vn|]+ ||unl]-
That is,
[xn+1 = xnl| < cnk +dn +k|[vn| |+ [[un]|. (3.4)
Next, consider
Hxn+l —SXn+1 || = H(xn+1 _SVHlXTH—l) + (Sn+lxn+1 —an+1)||
<dpi k|| (xni1—xn) + (0= S"xn) + (8™ — S"xni1) ] 5)
<dpi+kdn+k(k+1)|[xn1 — x| '
<dpi1+kdn+k(k+1)[cnk+dp +k||[vn]| +][unl]]
by (3.4). Taking limsup on both sides in the above inequality, we obtain
thup”xn+1 *an+1|| <0. (36)
Nn—oo
That is,
lim [|x¢n — Sxnl| = 0. (3.7)
Similarly, we can prove that
}Lif{}OHXn—Tan =0. (3.8)

This completes the proof of the lemma. |
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LEMMA 3.2. Let E be a uniformly convex Banach space and C its nonempty bounded
closed convex subset. Let S and T be self-mappings of C satisfying

[|S"x —S"y|| < knllx— I,

(3.9
[|[T"x —T"y|| < knllx -l

for alln € N, where {k,} C [1,0) such that >;,_;(ky,—1) < c. Let {x,} be as in (1.4)
with {a,}, {bn} in[5,1-6] for some § € (0,1) and {uy}, {vy} inE with Y., luyll < oo,
S llvnll < oo, IFF(S)NF(T) # ¢, then yllllfl;loHXn—an” =0= ylgr{)lo Ixn —Txnll.

PROOF. Letp € F(S)NF(T). Then

[Ixne1 —pll
=llan(8"yn —p) + (1 —an) (xn—p) + |
< anknl|yn —pll+ (L= an)|lxn = pl| +[[un]]
= anknl|(1=bn)xn +bnT"xn + vy = p||+ (1= an)[|xn = p| +]|un]|
= Ankn|[bn (T"xn = p) + (1 =bn) (Xn = p) + val|+ (1 = an)||xn = pl| +[|unl|
< anbuky|lxn = pll+ ankn|[vnl|+ an (1 =bn)kullxn = pl|+ (1= an) |lxn = pl + [Junl|

= (1+anbnk? +an(1=by)kn —an)||xn—p||+ ankn|[vnl| + ||unl|.
(3.10)

Since {k,} is a bounded sequence, therefore there exists h > 0 such that k,, < h for all
n > 1 so that

l[xne1 =pll < [T+ anbnh(ky—1) +an(kn —1)]l|xn = pll + anhl|val| +[Jun|l.  (3.11)
Take s, = anbph(ky, —1) + an(kn -1), ty = anhllvnll + luxll, and 7, = Ixn — pll. As
D1 Sn<ooand Y, ;ty < 00,80limy .« |[lx, —pll exists by Lemma 2.6. Let limy, .o, | X, —
pll = ¢, where ¢ > 0 is a real number. Assume that ¢ > 0, as the result for the case c =0
is obviously true. Now || T"x,, —pll < kyllx, —pl for all n € N gives limsup,,_ ., [ T"x, —

pl <c. Also,

||yn_p|| = an(Tan—p) +(1=byn)(xn—p) +vnH

(3.12)
= [lxn = pll+ (kn = 1) bnlxn = p[[+[[va]]

gives
limsup||y, —p|| <c. (3.13)
n—oo
Next, consider

_ _ 1
[[S" v —p +an unl| < knllyn—pl|+an [unl] < knllyn—pl|+ g”unH (3.14)
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By the above inequality and by virtue of ||u,|| — 0 and k;,, — 1 as n — oo, we get
lir;lfgp||5"yn—p+a;1un|| <c. (3.15)
Moreover, ¢ = lim;, .« [|X,+1 — p|| means that
%gg [lan(S"yn—p+a, un)+(1—an)(x,—p)| =c. (3.16)

Applying Lemma 2.5,

}L@Q|\S”yn—xn+a;1un\| =0. (3.17)
Thus
15" 9n = Xall < 115" ¥n — X+l + 5l (3.18)
yields that
71115130||S”yn—xn|| =0. (3.19)
Also, then
llxxn =Pl < [xn =S"yull +[|S" yn =Pl < [lxn = S" yul| + knllyn —pl| (3.20)
implies that
c sliyrlrlio?fﬂyn—pﬂ. (3.21)

By (3.13) and (3.21), we obtain

lim [|yn = p|| = c. (3.22)
That is,
lim || (T"xp = p + by vn) + (1= bn) (xn —p) || = c. (3.23)
Again by Lemma 2.5, we get
Vl£i££10||T"xn—xn+b;1vn{| =0, (3.24)
which finally gives that
Tim || T"x = x| = 0, (3.25)

Now

1S™ 50 — x| < [IS" X0 = S" n| +[|S™ 7 — x|
. ; (3.26)
< knbn||T"xn = x|+ [[Un]| + ||S™ ¥ — x|
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implies, together with (3.19) and (3.25), that
71L15130||S"xn—xn||=0=111151010||T"xn—xn||. (3.27)
Lemma 3.1 now reveals that
711151010||an—xn||:0=111131010||Txn—an, (3.28)

which is as desired. O

THEOREM 3.3. Let E be a uniformly convex Banach space satisfying Opial’s condition
and let C, S, T, and {x,} be as taken in Lemma 3.2. If F(S) N F(T) # ¢, then {x,}
converges weakly to a common fixed point of S and T.

PROOF. letp € F(S)NF(T). Then, as proved in Lemma 3.2, lim, . || X, — p| exists.
Now we prove that {x,} has a unique weak subsequential limit in F(S) n F(T). To
prove this, let w; and w» be weak limits of the subsequences {x;} and {xnj} of {x,},
respectively. By Lemma 3.2, lim;, . | X, —Sxy || = 0 and I — S is demiclosed with respect
to zero by Lemma 2.7; therefore, we obtain Sw; = w;. Similarly, Tw; = w;. Again, in
the same way, we can prove that w, € F(S) N F(T). Next, we prove the uniqueness. For
this, suppose that w; # wo; then by Opial’s condition,

lim ||, — w1 ||
Nn—oo

lim [|xp, —wi|| < lim ||x,, —wo||
n;—o n;—o

dim x| = Jim [, (3.29)

< lim |[[xp; —wi] = lim |[x, — w1 ],

a contradiction. Hence the proof is over. |

REMARK 3.4. If we take u,, = v, = 0 for all n € N, the above theorem reduces to
[3, Theorem 1] of Khan and Takahashi. Moreover, [6, Theorem 2.1] of Schu becomes
a special case of the above theorem when u, = v, = 0 as well as T = I, the identity
mapping.

Finally, we approximate common fixed points by the following strong convergence
theorem.

THEOREM 3.5. Let E be a uniformly convex Banach space and C its bounded closed
convex subset. Let S, T, and {x,} be as taken in Lemma 3.2. If F(S) NF(T) + ¢ and
either S or T is completely continuous, then {x,} converges strongly to a common fixed
pointof S and T.

PROOF. Assume that T : C — C is completely continuous. Since {x,} is a bounded
sequence and T is completely continuous, therefore {Tx,} must have a convergent
subsequence {Txy,}. Hence by (3.28), {x,} must have a subsequence {xy,} such that
Xp; — q (say) in C as n; — c. Now continuity of § and T gives that Sx,, — Sq and
Txpn, — Tq as n; — «. Then, again by (3.28), [ISq —qll = 0 = [[Tq —q||. This yields that
q € F(S)nF(T) so that {x,,} converges strongly to g in F(S) n F(T). As proved in
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Lemma 3.2, lim,_« [|x, — pll exists for all p € F(S) nF(T); therefore, {x,} must itself
converge to g € F(S)NF(T). Hence the proof. a

REMARK 3.6. If we put T =1, v, = 0 in the above theorem, then [2, Theorem 1] of
Huang is obtained. When we take S = T in the above theorem, then [2, Theorem 2]
of Huang follows except when b,, = 0. Since a self-mapping with compact domain is
completely continuous, therefore [3, Theorem 2] of Khan and Takahashi can also be
obtained by putting u,, = v, = 0. It is also worth mentioning that the results presented
in this paper are for two mappings while the results in Huang [2] are for one mapping
only. Meanwhile, calculations in this paper are made much simpler as compared to
Huang [2].
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