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1. Introduction. Consider the following nonlinear retarded differential equation in
a real Hilbert space H:

w (t) +Au(t) = f(t,u ), u(r (), u(r2(t)),...,u(rn(t))), te0,T],

1.1
h(ui-,0y) = ¢o, on|[-T,0], (1.1)

where 0 < 1, T < o0, ¢pg € 6o := C([-T1,0]; H), the nonlinear operator A is single valued
and maximal monotone defined from the domain D(A) C H into H, the nonlinear map f
is defined from [0, T]x H™*! into H, the map h is defined from 6, into 6, and @[+ o
is the restriction of ¢ € €7 := C([-7,T];H) on [—T,0]. Here %6; := C([-T,t];H) for
t € [0,T] is the Banach space of all continuous functions from [—T,t] into H endowed
with the supremum norm

$lle:= sup |lp(nl, ¢ €%, (1.2)

-T<n<t

where || - || represents the normin H and the functions v; : [0,T] - [-7,T],i=1,2,...,m.
The existence and uniqueness results for (1.1) may also be applied to the particular
case, namely, the retarded functional differential equation

u (t)+Au(t) = f(t,ut),u(t—11),u(t—12),...,u(t —74)), te(0,T],

u=q¢q, onl[-T,0], (1.3)

where 0 < 7; < T and T =max {1y, T2,..., Tm}.

For the earlier works on existence, uniqueness, and stability of various types of so-
lutions of differential and functional differential equations with nonlocal conditions,
we refer to Byszewski and Lakshmikantham [7], Byszewski [6], Balachandran and Chan-
drasekaran [4], Lin and Liu [11], and the references cited in these papers.
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Our aim is to extend the application of the method of semidiscretization in time, also
known as the method of lines, to (1.1). For the applications of the method of lines to
nonlinear evolution and nonlinear functional evolution equations, we refer to Kartsatos
and Parrott [9, 10], Kartsatos [8], Bahuguna and Raghavendra [3], Bahuguna [1], and the
references cited in these papers.

Suppose that there is x € €1 such that h(x[-1,0]) = ¢o on [—T,0] and x(0) € D(A).
We prove the existence of a strong solution u of (1.1) under the assumptions of Theorem
2.4, stated in the next section, in the sense that there exists a unique function u € ér
such that u(t) € D(A) for a.e. t € [0, T], u is differentiable a.e. on [0, T], and

u (t) +Au(t) = f(t,u ), u(ri(t)),...,u(rn(t))), ae tel0,T],

(1.4)
U[-7,0] = X[-7,0], on[-T,0].

Finally, we show that u is unique if and only if x € €r satisfying h(x[-1,01) = ¢o is
unique up to [—T,0]. We also consider some applications of the abstract results.

2. Preliminaries and main result. Let H be a real Hilbert space. Let (x,y) be the
inner product of x,y € H. We assume the following conditions.
(A1) The operator A: D(A) C H — H is maximal monotone, that is,

(Ax-Ay,x—-y)=0, Vx,yeD(A), R(I+A)=H, (2.1)

where R(-) is the range of an operator.

(A2) The map h : 6y — 6o and there exists x € 67 such that h(x[-r,0]) = ¢o and
Xx(0) e D(A).

(A3) The nonlinear map f:[0,T]xH™*! — H satisfies a local Lipschitz-like condition

m+1
[|f(t,u1, U2, Uims1) — F(S,V1,V2, 000, Umst) || st(r)[lts + z ||ul-vi||],
i-1

(2.2)

for all (uy,uo,...,ums+1) and (v, Va,...,UVms1) in By (H™*1 (x(0),...,x(0))) and
t €[0,T], where Ly : R, — R, is a nondecreasing function and, for » > 0,

m+1
B, (H™! (x(0),...,x(0))) = {(ul,...,umﬂ) e Hm™+1 Z [|lui — x(0)]] sr}. (2.3)
i-1

(A4) Fori=1,2,...,m, the maps 7; : [0,T] — [—-T,T] are continuous satisfying the
delay property v;(t) <t fort € [0,T].
Further, if A is monotone, 1 + A is invertible for «« > 0 and the inverse operator
(1+ xA)~! is Lipschitz continuous, that is,

[(1+aAd)u—(1+ad) || <llu-vl, u,veD((1+xA)™). (2.4)

Also, the inverse of an invertible monotonic operator in Hilbert space H is monotonic,
but it might not be true in the general case.
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For an m-monotonic operator A, we introduce the following sequences of operator
(n=1,2,...):

Jn=1+n1tAa)",

(2.5)
An = AJn = ’l’l(I—]n),

where AJ, denotes the composition of the two maps A and J,. The J, and A, are
defined everywhere on H. We recall simple lemmas that we will have occasions to use.
More details may be found in [5].

LEMMA 2.1. Let A be m-monotonic. J, and A, are uniformly Lipschitz continuous,
with

[|[Jnu—Juv]| < lu-vl,

(2.6)
|[Apu — Ayl <2nllu-vl.
LEMMA 2.2. Let A be m-monotonic. Then A,, are also monotonic. Furthermore,
[|Apul| < llAull, foru € D(A). (2.7)

LEMMA 2.3. Let A be m-monotonic in H.

(@ IfX"eD(A),n=1,2,..., X" —u € H,and if | AX"|| are bounded, thenu € D(A)
and AX,, — Au.

(b) If x, e H,n=1,2,..., x, —u € H, and if ||Ay,x|| are bounded, then u € D(A)
and Apx, — Au.

PROOF. (a) The monotonicity condition gives
(Av-AX"v-X") >0, (2.8)

for any v € D(A). Since H is reflexive and the ||AX"| are bounded, there is a subse-
quence {X"'} of {X"} such that AX" — w € H. Since v — X" — v —u, we obtain from
(2.8) the inequality (Av —w,v—u) > 0.For fixedze H, t > 0, put v; = Al‘1 (u+w+tz),
where A; = (I + A). It follows that Av; + v —u —w = tz, hence t(z,v; —u) = 0 so
(z,ur —u) = 0. Letting t — 0, v; — A7 (u +w), hence (z,A7 (u +w) —u) = 0, so
u= Al’l(u+w), ue€D(A), and Au = w. It shows that AX" — w = Au.

(b) Set X" = J,x, € D(A). Then AX"™ = (AJ,xn) = Apx, and ||AX"]| are bounded.
Also, x, — X" = (I = Jp)xn = n 1 Apx, — 0, so that X" — u. Thus, by the result of (a),
we get u € D(A) and Apx, = AX" — Au. O

Now, we state the following main result of this paper which will be proved in the
next section after proving some a priori estimates.

THEOREM 2.4. Suppose that the conditions (Al), (A2), (A3), (A4) are satisfied. Then
(1.1) has a strong solution u € 6y either on [—7,T] or on the maximal interval of exis-
tence [—T,tmax), 0 < tmax < T, and in the later case, either lim; ., [[u(t) || = o or u(t)
goes to the boundary of D(A) ast — tmax—- Moreover, u is Lipschitz continuous on every
compact subinterval of existence.
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3. Discretization scheme and a priori estimates. In this section, we establish the
existence and uniqueness of a strong solution to (1.4) for any given x € 6 with x(0) €
D(A). For the application of the method of lines to (1.4), we proceed as follows. Let
Ry :=sup;c;_r 111X (t) = x(0)]. For any 0 < R < Ry, we choose t, such that

0<to<T, tof||AX(0)||+3Ls(Ro)(T +(m+1)Ro)+|f(0,X(0),x(0),...,x(0))]|] <R.
3.1)

For n € N, let hy,, = to/n. We set uj = x(0) for all n € N and define each of {u . as
the unique solution of the equation

u_un*1 n ~ n ~n n
T+Au=f(tj, Lnut (7)), al (ra(t]))), (3.2)
where 7§ (1) = x(t) for t € [-T,0], @15 (t) = x(0) for t € [0,tp] and for 2 < j < n,

x(8), te[-T,0],
an O =dur v e YW —ur), te[th ] i=1,2,.7-1, (33)

J- n i
uly, te[thy,tol.

The existence of a unique u} € D(A) satisfying (3.2) is a consequence of the m-
monotonicity of A. Using (A2), we first prove that the points {u§l }‘:0 lie in a ball with
its radius independent of the discretization parameters j, h,, and n. We then prove a
priori estimates on the difference quotients {ug‘ - ug‘_l /hy} using (A2). We define the
sequence {U"} C €7 of polygonal functions

x(t), tel[-T1,0],

1

un(t) =
”?—1+h_n(t_t?71)(u?_u?71), te (tjn 1atjn]

(3.4)

and prove the convergence of {U"} to a unique strong solution u of (1.4) in 6 as
n — oo,

Now, we first show that {u}}’_, lie in a ball in H of radius independent of j, hy,
and n.

LEMMA 3.1. ForneN, j=1,2,....n
[u = x(0)]| <R. (3.5)

PROOF. From (3.2) for j =1, we have

n

ulh;uo +Au = f(t1ug, ag (n(ty)),..., ug (rm (7)) (3.6)

Subtracting Aug on both sides, we get

n_ ,,n
L Auf - Aug = A (g G () T (). B)
n
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Taking the inner product with u}' —u{, we get

ut—ug
( L0 ul —ull | + (Aul — Aul, ull —ul)

hy (3.8)
—(Aug,ui —ug) + (f (@ ud, agy (rn (1)), ..., ag (rm (7)), ul —ug).

By the monotonicity of A, we have
[l —ugl < hn[l[JAug || +[Lf (67, ug, ag (r (60)), - g (rm EO D] 3.9)

Using (A3), we get

[[ult = x(0)]| < hu[||AX(0)|| +3L s (Ro) (T + (m +1)Ro) + || £(0,x(0),...,x(0))|]] < R.

(3.10)
Assume that |[ul' = x(0)|| <R fori=1,2,...,j - 1.
Now, for2 < j <mn,
n n
Uj—uj n no,mn  ~n n ~n n
T n, +Auj = f(tj :uj_puj_l(?’l(tj ))s---,uj—l(ym(tj ). (3.11)
Subtracting Ax(0) on both sides, we get
n n
BBl At - AX(0) = —AX(O) + (£ U @ (1 (1), T (7 (E1))
I uj x(0) =—-Ayx Lol al o (n(tf)), .. a4 (rm(t7))).
(3.12)
Taking the inner product with u}? —x(0), we get
1
h—n(u}l uj g, ujf —x(0) + (Auj - Ax (0),uff —x(0))
—(Ax((n,uj — X)) + (P Ty (7 (U)o Ly (i (E1))) U}~ X (0)).
(3.13)
By the monotonicity of A, we have
[u? = x (O] < [[u”, —x(0)]]
(3.14)

+ha[|[AX O+ (£ (] oy, @ (n (&), 2] (rm (€7))) ][]
Using (A3), we get

[} = x(0)] < [[u]_, = x(0)]|
+han[||Ax(0)||+ 3L (Ro) (T + (m+1)Ro) + || £ (0,x(0),x(0),...,x(0))]|].
(3.15)
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Repeating the above inequality, we obtain

[[uf =X (O = jhn[[[AX (0)]|+3L s (Ro) (T + (m +1)Ro)

3.16
+1L£(0,x(0),X(0),..., x (O] <R, (3.16)

as jhy < tp for 0 < j <n. This completes the proof of the lemma. O
Now, we establish a priori estimates for the difference quotients {(u —u )/ ha

LEMMA 3.2. There exists a positive constant K independent of the discretization pa-
rameters n, j, and h, such that

PROOF. In this proof and subsequently, K will represent a generic constant indepen-
dent of j, hy,, and n. Subtracting Aug = Ax(0) from both sides in (3.2), we get

n_yn
Uy —uj

<K, j=1,2,..m,n=12,.... (3.17)
hy,

uf —ug

hn

+Aul —Aug = —Aug + f (t1,ug, i (n (t1)),..., 15 (rm(t1))). (3.18)

Taking the inner product with (u} —ug), we get

ut—ul
(FE0 g ) + (Au - Awg,ul - uf)

hy, (3.19)
—(Aug,ui —ug) + (f @t ug, ag (n (1)), ..., 45 (rm (7)), ul —ug).
Using monotonicity of A, we get
u111_ n ,,n ~n n ~Nn
40 < HAx O+ @ () B (DD (320
n
Using (A3), we have
uy —ug
0\ < [|AX(O)[| + £ (0,X(0),X(0),...,x(0))||+3Ls (Ro) (T + (m+1)Rg) (3.21)
<K.
Now, for 2 < j < n, taking the inner product with (u}1 —u?,l) in (3.2), we get
u—uj,
(—hn ult —u;‘1> +(Auf,uf —uj ) (3.22)
= (7w, al (r(e])), .. ajy (rm(t]))),uf —ul ).
Also,
ut-ut, ul,-ul,
( Jth - e J ,u?—u?_l) (Aut —Au? | ul —ult )
(3.23)

= (F@}uf @y (r (e]), o (rm (2)))

—f(t}{l,u;ﬂz,ft?fz(ﬁ(t}tl)) uJ z(Tm(tJ 1))),%?—14]71).
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Using the monotonicity of A, we get

n_y" no—uh
ult—uj u u

< j-1 j-2
hy hy,
- _ 3.24
LR (1 (E)) L (1 (E1))) (3:29)
—f(t}tl,u;’ﬂz,ﬂ}lfz(ﬁ(t}tl)),...,ujfz(Tm(t}tl)))”-
Now,
L (] ufy il (r(t])),..., a7 1(Tm(t”)))
_f( j-1 J Zrﬁ?—Z(rl(t;l 17)1)1 ; Z(TM(t;l—l)))H (325)
sC[hn+(m+1)h J -l }
hn
From the above inequality, we get
n_ ., n n_ . n
Yem Wil - (14 Chy) max || 2Kl op,
{1<k<j} hy, {1<k<j—1} hy
Lo (3.26)
Up —Upy

< (1+Chy) [1 + max
{1<k<j-1}

|

where C is a positive constant independent of j, h,, and n. Repeating the above in-
equality, we get

hn

ut —u” " .
max ||———|| < (1+Ch,)’D <De" <K. (3.27)
{1<k=<j} hy
This completes the proof of the lemma. a

We introduce another sequence {X"} of step functions from [0, T] into H by

xnpy = 1XO £=0, (3.28)
ult,  te (i, th].

J-1j

REMARK 3.3. From Lemma 3.2, it follows that the functions U™ and #1?,0 <v <n-—1,
are Lipschitz continuous on [0, tg] with a uniform Lipschitz constant K. The sequence
Un(t)—X"(t) - 0in H as n — o uniformly on [0, ty]. Furthermore, X" (t) € D(A) for
t € [0,to] and the sequences {U"(t)} and {X"(t)} are bounded in H, uniformlyinn € N
and t € [0,ty]. The sequence {AX"(t)} is bounded uniformly in n € N and t € [0, ty].

For notational convenience, let

£ = FE U@ (), @0 (r (E1)), L€ (E7 7], 1< j <n.
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Then (3.2) may be rewritten as

%U”(t)+AX"(t) (), te(0,to], (3.30)

where d~/dt denotes the left derivative in (0,tq]. Also, for t € (0,ty], we have
t t
J AX"(s)ds = x(0) —=U"™(t) +J f™(s)ds. (3.31)
0 0
LEMMA 3.4. There exists u € 6y, such that U™ — u in 6;, as n — c. Moreover, u is
Lipschitz continuous on [0, ty].
PROOF. From (3.30) fort € (0, to], and taking the inner product with (X" (t) — XX (t)),

we have

7 — k noe wk
(dtU (t)— U (1), X" (1) - X (t))
(AX"(t)—AXk(t),X"(t)—Xk(t)) (3.32)

= (f™(t) = fR ), X" (1) - X5 (1)).

Using monotonicity of A, we have

(fi; (U™(t) -U*k()), X"(t)—X’%t)) < (f(t) - fR ), X" (1) - X*(1)). (3.33)

From the above inequality and the fact that

a- n d_ k n _ 77k B n 77k 2
(dtU (t)—=-U (), U™(t)-U (t)) t||U (t)-Uk|l5, (3.34)
we get
1d . .
S lvr-vkolr’
(flt (U™ () —UR()) + f7 (1) — fX(t) = f7 (1) + FX(1),
Un(t)*Uk(t)*Xn(t)Jka(t))+(f"(t)*fk(t),X"(t)7Xk(t)) (3.35)
(Z;(U"(t)—Uk(t)) f”(t)+fk(t),U"(t)—Uk(t)—X”(t)+Xk(t)>
+ () = fR ), U (t) - Uk)).
Now,

LFm @) = O = LFEulfaly (n (E), i (i (E7)))

)
3.36
ffm,ul_l,uf_l(n(tm,...,u{‘_]<rm<tf>>>\|. (359

Using (A3), we get

£ (t) = fXD)]] < enx (t) +K||U" = U¥|,, (3.37)
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where

€nk(t) =K[hn+hk+ [t =t | + ][ X" (t = hy) = U™ ()|
+|X* (= hy) = UR )] (3.38)

+§: ([ri(t) =ri(tF) | + [ri(t) —7i(tf) | )},

i=1

fort et} ,t}]and t € (tf ,tf],1<j<n,1=<1<k. Therefore e, (t) — 0 asn,k — oo

uniformly on [0, to]. This implies that for a.e. t € [0, to],
d-
gl -vrol

<2 | % wr o -vkw - o - )|
x[|[U™(t) - Uk (t) = X" (t) + X* (1) ] (3.39)
o - ol o - vkl |
< K[em +||U" - U|IF],
where €, is a sequence of numbers such that €, — 0 as n,k — . Integrating the above

inequality over (0,s), 0 < s <t < ty, and using the fact that U" = ¢ on [—T1,0] for all n,
we get

t
U (s) = U*(s)|° sK[Tenk+J ||U"—U’<||§ds]. (3.40)
0
Taking the supremum over [0,t], we get

t .
sup [|U(s) - UX(s)|)? sK[Tenk+J ||U"—U’<||§ds]. (3.41)
se[0,t] 0

Thus,
) t
U - Uk sK[Tenk+J ||Un-Uk||§ds]. (3.42)
0

Applying Gronwall’s inequality, we conclude that there exists u € 6;, such that U" — u
in 6y,. Clearly, u = ¢ on [-T,0] and, from Remark 3.3, it follows that u is Lipschitz
continuous on [0, tp]. This completes the proof of the lemma. O

PROOF OF THEOREM 2.4. We first prove the existence on [—T,t;] and then prove
the unique continuation of the solution on [—T,T]. From Lemma 2.3(a), we know that
u(t) e D(A) for t € [0,tg], AX"(t) — Au(t) on [0,to]. Here, — denotes the weak con-
vergence in H. Also, we may show that Au(t) is weakly continuous on [0, ty] as follows.

Let t; — t; t;,t € [0,to], then u(t;) — u(t) and, by boundedness of A(u(t;)) and
reflexivity of H, there exists a sequence {u(t;)} of {u(f;)} such that Au(t;) — w(t).
Then it follows from Lemma 2.3(a) that Au(t;) — Au(t).
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For every x* € X* and t € (0,ty], we have
t t
J (AX™(s),x*)ds = (x(0),x*) — (U™ (£),x*) +J (f™(s),x*)ds. (3.43)
0 0
Using Lemma 3.4 and the bounded convergence theorem, we obtain as n — oo,

t
L (Au(s),x*)ds = (x(0),x*) — (u(t),x*)

. (3.44)
+J0 (f(s,u(s),u(ri(s),...,u(rm(s))),x*)ds.
If Au(t) is Bochner integrable (cf. [2]) on [0, tp], from (3.44), we get
%u(t) +Au(t) = f(t,ut),u(ri(t)),...,u(rm(t))), ae.te[0,ty]. (3.45)

To show that Au(t) is Bochner integrable, we will use Lemmas 2.1 and 2.2 which state
that operators J, and A, are Lipschitz continuous. Also,

[|[Anu|| < lAull, foru € D(A). (3.46)

Now,

A U™ (D)]] < ||AnU™ (1) — Ap X™ () ]| + || AnX™ (1)]]
<2n||U™(t) - X" ()| + ||[AX"(t)]] (3.47)
<K,

where K is a constant.

Then Lemma 2.3(b) implies that A,,U"(t) — Au(t).

Let Hy be the smallest closed linear subspace of H containing all the values of the
A,U"(t) fort € [0,tg] and n =1,2,.... Since A, U™ (t) are continuous, Hy is separable.
Since A,,U"(t) — Au(t) and Hy is weakly closed, Au(t) € Hy too. Thus Au(t) is separa-
bly valued. Since it is weakly continuous, it is strongly measurable and, being bounded,
it is Bochner integrable (see [12]).

Clearly, u is Lipschitz continuous on [0,ty] and u(t) € D(A) for t € [0,to]. Now we
prove the uniqueness of a function u € €;, which is differentiable a.e. on [0, {y] with
u(t) € D(A) a.e. on [0,fp] and u = ¢ on [—T,0] satisfying (3.45). Let uy,u, € 6, be
two such functions. Let

R =max {|[u1];, [[ually, }- (3.48)
Then for u = u; —u», we have

(%(t),u(t)) + (Au () — A (), u (1))

= (f(t, (), ur (r (1), ..., u1 (rm(1))) (3.49)
—f(t,ua (), uz (ri (), ..., us2 (1 (), u(t)).
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By the monotonicity of A,

(@) = 20 £ (1 0,00 (1 D), 01 (i (1))
= f(t,u2 (), us (11 (), ..y u2 (1 () || [ ()]

(3.50)

It implies that
d 2 2
EHu(t)H <CR)uls, ae.tel0,to], (3.51)

where C: R, — R is a nondecreasing function. Integrating over (0,s) for0 < s <t < t,
and using the fact that u =0 on [—T,0], we get

t
lu(s)|]* < C(R)JO llull2ds. (3.52)
Taking the supremum over [0,t], we get

t
sup [[u(s)|] < C(R)J | Pds. (3.53)
se[0,t] 0

Thus,
t -
2 < C<R>J0 luli2ds. (3.54)

Application of Gronwall’s inequality implies that u =0 on [T, to].
Now, we prove the continuation of the solution u on [—T,T]. Suppose o < T and
consider the problem

w' () +Aw(t) = f(t,w @), w (71 (t)),w(F2(1)),...,w (T (t))), 0<t=<T-ty,

w=yx, on[-T-t0], (3-55)
where
f(t,ul,uz,...,um+1):f(t+to,u1,u2,...,um+1), OStST—t(),
+ty), el-1-ty,—to],
mt)z<|f¢t+2§, ie{—to,ot]o, 8 (3-56)

7i(t) :Ti(t+to)7t0, te [O,Tfto], i=1,2,...,m.

Since %(0) = u(ty) € D(A), f satisfies (A3), and 7, i = 1,2,...,m, satisfy (A4) on
[0, T —ty], we may proceed as before and prove the existence of a unique w € C([-T —
to,t1];X), 0 <ty < T —ty, such that w is Lipschitz continuous on [0,t;], w(t) € D(A)
for t € [0,t;], and w satisfies

w' () +Aw(t) = f(t,w (), w7 (1)), w(F2(t)),...,w(Tm(t))), ae.te0,t], (3.57)
w=g, on[-T1-t0]. '
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Then the function

a0 1u(t), te[-1,t], 358

’w(t—to), te [to,to-l—tl],

is Lipschitz continuous on [0,to+t,], i (t) € D(A) for t € [0,to +t1], and satisfies (1.4)
a.e. on [0,t;]. Continuing this way, we may prove the existence either on the whole
interval [—T, T] or on the maximal interval of existence [—T, tmax), 0 < tmax < T. In case
limy .- 1 (E) 1] < 0o, thenasu(t) € D(A) fort € [0, tmax), we have that lim; ., u(£)
is in the closure of D(A) in H, and if it is in D(A), then proceeding as before, we
may extend u(t) beyond tn.x contradicting the definition of the maximal interval of
existence.

Now, let uy be the strong solution of (1.4) corresponding to x € 67 satisfying
h(X[_r.01) = ¢o (T is either equal to T or T < tmay). If there are x',x? € €7 such that
W(X[_101) = h(X{_ o)) = Po and X! = x? on [—T,0], then clearly u,1 and u,e, satisfying
(1.4), are different. This completes the proof of Theorem 2.4. O

4. Applications. Theorem 2.4 may be applied to get the existence and uniqueness
results for (1.1) in the case when the operator A, with the domain D(A) = H*(Q) N
H{*(Q) into H := L*(Q), is associated with the nonlinear partial differential operator

Au= > (-1D'¥D*Ay(x,u(x),Du,...,D%u), 4.1)

lx|<=m

in a bounded Q in R" with sufficiently smooth boundary 0Q, where Ay(x,&) are real
functions defined on QxRN for some N € N and satisfying the following conditions.
(I) Ay are measurable in x and continuous in &. There exist p = 2, g € L?(Q), and
a positive constant C such that

|[Ax(x,E) | <C(IEl+g(x)), ae.x€Q, (4.2)

where & = (&4 || < m).
(Il) For any (&,n) € RN x RN and for almost every x € Q, the following inequality
holds:

> (Aa(x,8) = Ax(x,1)) (Ex —Na) = 0. (4.3)

|x|<m

In (1.1), we may take f as the function f: [0, T]x (L2(Q))™*! - L2(Q), given by

m+1

Ftunuz, .. umer) = fo®) +at) > |Jwill 20 ui (4.4)
i-1

where fy:[0,T] — L2(Q) and a : [0,T] — R are Lipschitz continuous functions on
[0,T] and || - |I;2(q) denotes the norm in L?(Q). Let ¢ € C([—T,0];L2(Q)) be such
that ¢p9(0) € D(A). For the functions #;, i = 1,2,...,n, and h, we may have any of the
following.



(b1)
(b2)
(b3)
(h1)

(h2)

(h3)
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Fori=1,2,....m,letri(t)=t—7;,t € [0,T].

Fori=1,2,...,m,letr;(t) =kit,t €[0,T], 0 < k; <1.

LetT =1and No e N.Fori=1,2,...,m,fort € [0,T],letr;(t) = k;tNo,0 < k; < 1.
For u € C([-T,01;L2(Q)), let

0

g = | ksusds, do(t) =uo, tel-T,0L ugeD(A),  (45)
where Kk = ﬁ)T k(s)ds #0.Let h(u)(t) = g(u) fort € [—7,0]. In this case, we may
take x(t) = (1/K)upg on [—7,T].

Forue C([-T,01;L%(Q)), -T<a1<a><---<a,<0,and ¢; >0,i=1,2,...,7,
with C:=37_,¢; #0, let

gu) = > ciu(as), (4.6)
i=1

with h and ¢ as in (h1). In this case, we may take x(t) = (1/C)uo fort € [-T,T].
With u, a;, and ¢; asin (h2) and ¢; >0 fori=1,2,...,7, let

gu) = Z%L_ieu(s)ds, 4.7)

with h, ¢, and 1 as in (h1). In this case, we may take x(t) as in (h2).
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