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COEFFICIENT ESTIMATES FOR RUSCHEWEYH DERIVATIVES
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We consider functions f, analytic in the unit disc and of the normalized form f(z) =
Z+ Y p_nanz™. For functions f € Rs(B), the class of functions involving the Ruscheweyh
derivatives operator, we give sharp upper bounds for the Fekete-Szeg6 functional |a3 — ua% B
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1. Introduction. Let S denote the class of normalized analytic univalent functions f
defined by

f(2)=z+> anz" (1.1)

n=2

in the unit disc D = {z:|z| < 1}. Suppose that

S*—{fES:Re(ZJJ:;;)>>O, ZED}, .
s {res: [ F2) <22,

are classes of starlike and strongly starlike functions of order 8 (0 < B8 < 1), respec-
tively. Note that S*(B) c S* for 0 < B <1 and S*(1) = §* [5]. Kanas [2] introduced the
subclass Rs(B) of function f € S as the following.

DEFINITION 1.1. For § > 0, B € (0,1], a function f normalized by (1.1) belongs to
Rs(B) if, for z € D — {0} and D f(z) = 0, the following holds:

z2(D’f(2))"| _ B

Dif(z) | =2 3

arg

where D? f denotes the generalized Ruscheweyh derivative which was originally defined
as the following.

DEFINITION 1.2 [6]. Let D" f and f be defined by (1.1). Then for n € NuU {0},

_z
(1 _Z)n+1

D"f(z) = * f(2), (1.4)

where * denotes the Hadamard product of two analytic functions and N is a set of
natural numbers.
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Later in [1], Al-Amiri generalized the Ruscheweyh derivative D¢ for real numbers
§ > —1 as a Hadamard product of the functions f and z/(1 —z)%*1.

Note that Ro(B) = S*(B) for each B € (0,1] and Ro(1) = S*. In this note, we obtain
sharp estimates for |a,|, |az| and the Fekete-Szego functional for the class Rs(fB). For
the subclass $*, sharp upper bounds for the functional |a; — ua%l have been obtained
for all real u [3, 4].

2. Preliminary results. In proving our results, we will need the following lemmas.
However, we first denote P to be the class of analytic functions with positive real part
inD.

LEMMA 2.1. Letp € P and let it be of the formp(z) =1+ >.,_; cyz™ withRep(z) > 0.
Then
i) lenl =2 forn=1,
(i) ez —c3/2] <2—|c1l?/2.

LEMMA 2.2. Let 5§ =0 and B € (0,1]. If f € Rs(B) and is given by (1.1), then

x| < 21,
28 o
) <] GTIEHD irB=3, (2.1)
3] <
682 o1
Ginery TP=3

PROOF. Let F(z) =D%f(z) =z+Apz?+ A3z3 +---.Since f € Rs(B) and D°f(z) €
S*(B), then

zF'(z) )

F2) =p(z) (2.2)
and so
z(14+2A2z+3A32%+---) 2 B
T A Az =(l+ciz+cozo+---)", (2.3)
which implies that
Z+2A,2° 323 = 2 B(B-1) » )53
22°+3A3z3 +- - =z+ (Bey+Az)z* + [ Bea + > ci+BA 1+ A3 )Z7+ -
(2.4)
Equating the coefficients, we have
AZ = Bcll (2-5)
B ) 30
Az = 5|25 +4B cy. (2.6)
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Now, for § = —1, D% f has the Taylor expansion

D5f(z):z+z I'(n+9)

=T oo n
2 m-nra+s) ™ 2P

where I'(n + 6) denotes Euler’s functions with

I'm+6)=06(6+1)---(6+n—-1I(5).

Then

T'(2+9) >,  I'(3+06) 3

+AZ2+ A3 =24 +
R Tra+e ™ Taa+e®

Equating the coefficients in (2.9), we have

r2+09)

azr(1+6) =a2(6+1) = Ap.
Then, from (2.5), we obtain
Bci

=5

It follows that from Lemma 2.1(i)
2B

|az] < 0+1’

whereas the coefficient of z3 in (2.9) is
a I'(3+6) —a 6+1)(6+2) _A
ar(1+s) 7 2 C o

From (2.6), we obtain

o2 B i), 3.
“3‘(5+1)(5+2)[2<C2 2>+4E Cl}'

It follows from Lemma 2.1(ii) that

# é _|C1|2 § 2 2
|“3|5(5+1)(5+2)[2(2 o) TaF el

that is,

28
(6+2)(0+1)
62
(0+2)(0+1)

if B <

b
las| <

if B>

Wl W~

Zo 4

1939

(2.7)

(2.8)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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3. Results. We first consider the functional |az — ua%l for complex p.

THEOREM 3.1. Let f € Rs(B) and B € (0,1]. Then for u complex,

ual 2B |B(3(5+1)—2u(5+2))|
a3 —paz| < (5+1)(5+2)m‘”‘[ ! 6+1) : (3-1)

For each u there is a function in Rs(B) such that equality holds.

PROOF. From (2.11) and (2.14), we write

a2 2 |B _ﬁ 30 0| Bei )2
“ ““2‘(5+1>(5+2>[2<C2 z)*45c1] i(5ct)
2 3.2)

1

2 _
(cz_c2>]+3 (3(6+1) 2;1(5+2))C2

1-

=

1
N (5+1)(5+2>[ 2(6+1)2(5+2)

It follows from (3.2) and Lemma 2.1(ii) that

s B Cal®Y | [ BB+ —2u(5+2)) 2

a3 ““2|S(5+1)(6+2)< 2 )+‘ 26 e+ |l 53)
_ 2B N [B>(3(5+1)—2u(5+2))| -B(5+1)
(5+1)(6+2) 200+1)2(5+2)

len]?,

which on using Lemma 2.1(i), that is, |c;| < 2, gives

2B _
a2 G+1)(5+2) if K(8) <B(5+1),
(6+1)2(6l-1+2) if kK(6) = B(5+1),

where k(5) = |B2(3(5+1) —2u(5+2))].
Equality is attained for functions in Rs(B) given by

2Df(2) _(1+22\F  z(D°f(2)) _ (1+z)F
D3 f(z) (1—22) ’ D3 f(z) = (1—2) ; (3.5)

respectively.
We next consider the cases where p is real and prove the following.



COEFFICIENT ESTIMATES FOR RUSCHEWEYH DERIVATIVES 1941

THEOREM 3.2. Let f € Rs(B) and B € (0,1]. Then for u real,

B2(6(5+1) —4u(5+2)) _(6B-2)(5+1)

ifu<

(6+1)2(6+2) 4B(6+2) °
o 2B (68-2)(0+1) _ (2+6B)(6+1)
las—maz| <3 G 54 2) F=4g6+2) “H= 186+2)
B2(4u(5+2)—6(5+1)) s (2+6B)(5+1)
(5+1)2(8+2) H=""486+2)
(3.6)
For each p, there is a function in Rs(B) such that equality holds.
PROOF. Here we consider two cases.
Case (i) pu<3(0+1)/2(6+2).
In this case, (3.2) and Lemma 2.1(ii) give
o B e’ BA6(5+1) -4p(5+2)) | 2
a5 —paz| < (5+1)(5+2)(2 2 )+ a0t 2e+2 el 5
3 2B +32(6(6+1)—4u(6+2))—2B(6+1) Ic |2
T (6+1)(5+2) 4(6+1)2(5+2) Lo
and so, using the fact that |c; | < 2, we obtain
B2(6(5+1)—4u(5+2)) i< (68-2)(6+1)
(0+1)2(5+2) H=""4806+2
|as—pa3| < (3.8)
2P it (63—2)(5+1)<u<3(5+1)
(6+1)(6+2) 4B(6+2) TP T2(6+2)°

Equality is attained on choosing ¢; = ¢, =2 and ¢; =0, ¢ = 2, respectively, in (3.2).
Case (ii): p=3(0+1)/2(6+2).
It follows from (3.2) and Lemma 2.1(ii) that

o, B Cal®), BAEuE+2)-6(5+1) | 2
a3 ““Z\S(5+1)(5+2)<2 2 )+ a0+ 26+ el 39
L2 PUEGD-60+1)-26+D) o '
T (6+1)(8+2) 4(5+1)2(6+2) te
and so, using the fact that |c;| < 2, we obtain
2P if 3(5+1)< <(6B+2)(6+1)
G+1)(5+2) 26+2) M= 462
|as—pa3| < (3.10)
20T B2(4p(8+2)-6(5+1)) gy < 6B+ (5+1)
(6+1)2(5+2) H="486+2)
Equality is attained on choosing ¢; = 0, ¢c» = 2 and ¢; = 2i, ¢» = —2, respectively, in

(3.2). Thus the proof is complete. |



1942 M. DARUS AND A. AKBARALLY

THEOREM 3.3. Let f € Rs(B) and let it be given by (1.1). Then

28 . 3(5+1)
lasl-la:l < Gy TP<T55i1 (31D
PROOEFE. Write
2 2
Iasl—lazIS‘as—gai +§|az|2—|az1. (3.12)

Then since (68 —-2)(6+1)/4B(6+2) <2/3 for B <3(6+1)/(56+ 1), it follows from
Theorem 3.2 that

2B

las| - |a:]| S7(6+1)(6+2)

+§|az|2—|az\=7\(x>, (3.13)

where x = |ay| € [0,28/(6 +1)]. Since A(x) attains its maximum value at x = 0, the
theorem follows. This is sharp. O
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