

ON BIRATIONAL MONOMIAL TRANSFORMATIONS OF PLANE

ANATOLY B. KORCHAGIN

Received 20 June 2003 and in revised form 7 October 2003

We study birational monomial transformations of the form $\varphi(x : y : z) = (\varepsilon_1 x^{\alpha_1} y^{\beta_1} z^{\gamma_1} : \varepsilon_2 x^{\alpha_2} y^{\beta_2} z^{\gamma_2} : x^{\alpha_3} y^{\beta_3} z^{\gamma_3})$, where $\varepsilon_1, \varepsilon_2 \in \{-1, 1\}$. These transformations form a group. We describe this group in terms of generators and relations and, for every such transformation φ , we prove a formula, which represents the transformation φ as a product of generators of the group. To prove this formula, we use birationally equivalent polynomials $Ax + By + C$ and $Ax^p + By^q + Cx^r y^s$. If φ is the transformation which carries one polynomial onto another, then the integral powers of generators in the product, which represents the transformation φ , can be calculated by the expansion of p/q in the continued fraction.

2000 Mathematics Subject Classification: 14E07, 14L30.

1. Introduction. Birational monomial transformations of the projective plane have already found a lot of applications. For example, such transformations are actively used for construction of real algebraic curves and surfaces (see, e.g., [1, 4, 5, 6, 8, 9]). We think that formula (3.6) will be helpful for description of construction of algebraic objects.

In Section 2 we give a little exposition on projective polynomials in three variables. In Section 3 we describe the birational monomial group in terms of its generators and relations and give the statement of a theorem of decomposition of birational monomial transformations. In Section 4 we give the proof of the theorem.

2. Preliminaries. A nonzero homogeneous polynomial of degree n in three variables, x, y, z , is the expression

$$f(x, y, z) = \sum_{\omega_1 + \omega_2 + \omega_3 = n} f_\omega x^{\omega_1} y^{\omega_2} z^{\omega_3}, \quad \omega = (\omega_1, \omega_2, \omega_3). \quad (2.1)$$

The convex hull of the set $\{(\omega_1, \omega_2) \in \mathbb{R}^2 \mid f_\omega \neq 0\}$ is called the *Newton polygon* of the polynomial $f(x, y, z)$ and is denoted as $N(f)$. The plane with coordinates (ω_1, ω_2) is called the *plane of Newton's polygons*.

Every polynomial $f(x, y, 1)$ can be represented in the form $f(x, y, 1) = x^i y^j \hat{f}(x, y, 1)$, where i and j are nonnegative integers, and the polynomial $\hat{f}(x, y, 1)$ has no factors x and y . If φ is a transformation, then clearly $(f^\circ \varphi)^\wedge = (f \circ \varphi)^\wedge$. It is also clear that the Newton polygon $N(f^\circ)$ can be obtained from the Newton polygon $N(f)$ by translation in the plane of Newton's polygons by the vector $(-i, -j)$.

3. The birational monomial group. Let $(x : y : z)$ be homogeneous point coordinates in the projective plane $\mathbb{K}P^2$ over a field \mathbb{K} and let (x, y) be affine coordinates in the affine chart $\mathbb{K}^2 = \mathbb{K}P^2 \setminus \{z = 0\}$. A projective transformation φ is defined by the

formula $\varphi(x : y : z) = (\varphi_1(x, y, z) : \varphi_2(x, y, z) : \varphi_3(x, y, z))$, where $\varphi_1, \varphi_2, \varphi_3$ are homogeneous polynomials of the same degree, assumed to have no common factors. For the transformation $\varphi(x : y : z)$, we define its natural restriction $\varphi(x, y)$ to the affine chart $\mathbb{K}^2 = \mathbb{K}P^2 \setminus \{z = 0\}$ by the formula $\varphi(x, y) = (\varphi_1(x, y, 1) / \varphi_3(x, y, 1), \varphi_2(x, y, 1) / \varphi_3(x, y, 1))$.

Let $\text{id} : \mathbb{K}P^2 \rightarrow \mathbb{K}P^2$ be the identity map. If φ is a birational transformation, then we denote as usual

$$\varphi^0 = \text{id}, \quad \underbrace{\varphi \circ \cdots \circ \varphi}_{n \text{ times}} = \varphi^n, \quad \underbrace{\varphi^{-1} \circ \cdots \circ \varphi^{-1}}_{n \text{ times}} = \varphi^{-n}. \quad (3.1)$$

Let $r_1, r_2, r_3 : \mathbb{K}P^2 \rightarrow \mathbb{K}P^2$ be maps defined by formulas $r_1(x : y : z) = ((-x) : y : z)$, $r_2(x : y : z) = (x : (-y) : z)$, and $r_3(x : y : z) = (x : y : (-z))$. The set of maps $R = \{\text{id}, r_1, r_2, r_1 \circ r_2\}$ with the operation of composition of the maps, with generators r_1 and r_2 , and with relations

$$r_1^2 = r_2^2 = \text{id}, \quad r_1 \circ r_2 = r_2 \circ r_1, \quad (3.2)$$

is a group isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$. Note that $r_3 = r_1 \circ r_2$.

Let $s_1, s_2, s_3 : \mathbb{K}P^2 \rightarrow \mathbb{K}P^2$ be maps defined by formulas $s_1(x : y : z) = (x : z : y)$, $s_2(x : y : z) = (z : y : x)$, and $s_3(x : y : z) = (y : x : z)$. The set of maps $S = \{\text{id}, s_1 \circ s_2, s_2 \circ s_1, s_1, s_2, s_1 \circ s_2 \circ s_1\}$ with the operation of composition of the maps, with generators s_1 and s_2 , and with relations

$$s_1^2 = s_2^2 = \text{id}, \quad s_1 \circ s_2 \circ s_1 = s_2 \circ s_1 \circ s_2, \quad (3.3)$$

is a group isomorphic to the symmetric group S_3 . Note that $s_3 = s_1 \circ s_2 \circ s_1$.

Let hy be the birational transformation defined by the formula $hy(x : y : z) = (x^2 : yz : xz)$, whose inverse transformation is $hy^{-1}(x : y : z) = (xz : xy : z^2)$. Due to Newton, the transformation hy is called a *hyperbolism*. The set $H = \{\dots, hy^{-2}, hy^{-1}, \text{id}, hy, hy^2, \dots\}$ of integral powers of hy is a free group isomorphic to \mathbb{Z} .

Let $G = R * S * H$ be the free product of groups R , S , and H . This means that the set of generators of G is the union of the generators of R , S , and H , and the set of relations of G is the union of the relations of R , S , and H .

DEFINITION 3.1. The factor group G/\mathcal{R} with generators r_1, r_2, s_1, s_2, hy , where \mathcal{R} is the system of relations

$$\mathcal{R} : \left\{ \begin{array}{l} r_1 \circ s_1 = s_1 \circ r_1, \\ r_2 \circ s_1 = s_1 \circ r_2 \circ r_1, \\ r_1 \circ s_2 = s_2 \circ r_1 \circ r_2, \\ r_2 \circ s_2 = s_2 \circ r_2, \\ r_1 \circ hy = hy \circ r_1 \circ r_2, \\ r_2 \circ hy = hy \circ r_2, \\ s_1 \circ hy = hy \circ s_1 \circ s_2 \circ hy \circ s_1, \\ hy \circ s_2 \circ hy = s_2, \end{array} \right. \quad (3.4)$$

is called the *group of birational monomial transformations* of $\mathbb{K}P^2$ and denoted by $T(\mathbb{K}P^2)$.

The group of birational monomial transformations $T(\mathbb{K}P^2)$ is a subgroup of the Cremona group $\text{Cr}(\mathbb{K}P^2)$ (see [2, 3]).

Below in this paper, the word “transformation” without an adjective always means a “birational monomial transformation.”

Every transformation $\varphi \in T(\mathbb{K}P^2)$ can be represented as a composition $\varphi_1 \circ \dots \circ \varphi_s$, where each of $\varphi_1, \dots, \varphi_s$ is a positive integral power of one of the generators of the group $T(\mathbb{K}P^2)$, because $r_1^{-1} = r_1$, $r_2^{-1} = r_2$, $s_1^{-1} = s_1$, $s_2^{-1} = s_2$, and $hy^{-n} = s_2 \circ hy^n \circ s_2$. Every transformation φ can be represented in the form

$$\varphi(x:y:z) = (\varepsilon_1 x^{\alpha_1} y^{\beta_1} z^{\gamma_1} : \varepsilon_2 x^{\alpha_2} y^{\beta_2} z^{\gamma_2} : x^{\alpha_3} y^{\beta_3} z^{\gamma_3}), \quad (3.5)$$

where $\varepsilon_1, \varepsilon_2 \in \{-1, 1\}$; α_i , β_i , and γ_i are nonnegative integers; and the monomials $x^{\alpha_1} y^{\beta_1} z^{\gamma_1}$, $x^{\alpha_2} y^{\beta_2} z^{\gamma_2}$, $x^{\alpha_3} y^{\beta_3} z^{\gamma_3}$ have no common factors. We stress this convention, for example, $(hy \circ hy)(x:y:z) = (x^4 : xyz^2 : x^3z) = (x^3 : yz^2 : x^2z)$, and accept only the last form. It means that one or two of $\alpha_1, \alpha_2, \alpha_3$, one or two of $\beta_1, \beta_2, \beta_3$, one or two of $\gamma_1, \gamma_2, \gamma_3$ are equal to 0, and $\alpha_1 + \beta_1 + \gamma_1 = \alpha_2 + \beta_2 + \gamma_2 = \alpha_3 + \beta_3 + \gamma_3$. The integer $\alpha_1 + \beta_1 + \gamma_1$ is a degree of the transformation φ . For example, the degree of the transformations r_1, r_2, s_1, s_2 equals 1, and the degree of hy^n equals $|n| + 1$, where $n \in \mathbb{Z}$.

Denote the element $s_3 \circ hy \circ s_3 \in T(\mathbb{K}P^2)$ as hx . Its inverse is $hx^{-1} = s_2 \circ s_1 \circ hy \circ s_1 \circ s_2$. In homogeneous coordinates it is defined by formulae $hx(x:y:z) = (xz:yz^2:yz)$ and $hx^{-1}(x:y:z) = (xy:yz:z^2)$.

In the following theorem and below, the phrase “a polynomial $f(x, y, 1)$ subjected to the transformation φ is carried onto the polynomial $l(x, y, 1)$ ” means that $l(x, y, 1) = [(f \circ \varphi^{-1})(x, y, z)|_{z=1}]^{\wedge}$.

THEOREM 3.2. *Let p and q be mutually prime natural integers, $0 < q < p$. Let r and s be integers which satisfy the following conditions: (1) $0 < r < p$, $0 \leq s < q$, (2) $r/p + s/q < 1$, and (3) $r \equiv -q^{\phi(p)-1} \pmod{p}$ and $s \equiv -p^{\phi(q)-1} \pmod{q}$, where $\phi(m)$ is the Euler function. Then every polynomial $f(x, y, 1) = Ax^p + By^q + Cx^r y^s$, where at least two of A, B, C are not zero, subjected to the transformation*

$$\varphi = \left(hx^{(1-(-1)^{k+1})/2} \circ hy^{(1-(-1)^k)/2} \right)^{a_k} \circ \dots \circ hx^{a_4} \circ hy^{a_3} \circ hx^{a_2} \circ hy^{a_1} \quad (3.6)$$

is carried onto the polynomial $l(x, y, 1) = Ax + By + C$, where the integers a_1, a_2, \dots, a_k are provided by expansion of p/q in the continued fraction with adjusted last denominator

$$\begin{aligned} \frac{p}{q} = a_1 + \frac{1}{a_2 + \frac{1}{\dots + \frac{1}{a_{k-1} + \frac{1}{(a_k + 1)}}}}; \\ (3.7) \end{aligned}$$

in other words, $l = (f \circ \varphi^{-1})^{\wedge}$.

COROLLARY 3.3. (1) If the polynomial $f(x, y, 1)$ subjected to a transformation ψ is carried onto the polynomial $\varepsilon_1 Ax + \varepsilon_2 By + \varepsilon_3 C$, where $\varepsilon_1, \varepsilon_2, \varepsilon_3 \in \{1, -1\}$, then $\psi = r_1^{(1/2)(1-\varepsilon_1)} \circ r_2^{(1/2)(1-\varepsilon_2)} \circ (r_1 \circ r_2)^{(1/2)(1-\varepsilon_3)} \circ \varphi$.

(2) If the polynomial $f(x, y, 1)$ subjected to a transformation ψ is carried onto the polynomial $A + Bx + Cy$, $Ay + B + Cx$, $Ax + B + Cy$, $A + By + Cx$, or $Ay + Bx + C$, then $\psi = s_1 \circ s_2 \circ \varphi$, $\psi = s_2 \circ s_1 \circ \varphi$, $\psi = s_1 \circ \varphi$, $\psi = s_2 \circ \varphi$, or $\psi = s_1 \circ s_2 \circ s_1 \circ \varphi$, respectively.

(3) If condition (2) of [Theorem 3.2](#) is changed to condition (2'), $r/p + s/q > 1$, and other conditions and notations are kept, and if the polynomial $f(x, y, 1)$ subjected to a transformation ψ is carried onto the polynomial $Ax + By + C$, then $\psi = \varphi \circ \text{tr} = \text{tr} \circ \varphi$, where $\text{tr} = s_1 \circ hy^{-1} \circ s_1 \circ s_2 \circ s_1 \circ hy$ is well-known standard (triangular) quadratic transformation $\text{tr}(x : y : z) = (yz : xz : xy)$.

REMARK 3.4. There is only one more possible case: when $p = q = 1$, which does not satisfy the theorem. In this case either $r = s = 0$, and the polynomial $Ax + By + C$ is carried onto itself by the identity transformation: $\varphi = \text{id}$, or $r = s = 1$, and the polynomial $Ax + By + Cxy$ is carried onto the polynomial $Ax + By + C$ by the transformation $\varphi = s_3 \circ \text{tr} = s_3 \circ s_1 \circ hy^{-1} \circ s_1 \circ s_2 \circ s_1 \circ hy$.

4. Proof of the theorem. A birational monomial transformation ψ maps a polynomial f onto a polynomial $(f \circ \psi^{-1})^\wedge$. We find the connection between $N(f \circ \psi^{-1})$ and $N(f)$.

Every transformation ψ^{-1} written in the form (3.5) induces a generic linear mapping $A(\psi) : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ of the plane of Newton's polygons, which can be defined on any monomial. Namely, if g is a monomial, say $g(x, y, z) = x^{\omega_1} y^{\omega_2} z^{\omega_3}$, then

$$(g \circ \psi^{-1})(x, y, z) = x^{\alpha_1 \omega_1 + \alpha_2 \omega_2 + \alpha_3 \omega_3} y^{\beta_1 \omega_1 + \beta_2 \omega_2 + \beta_3 \omega_3} z^{\gamma_1 \omega_1 + \gamma_2 \omega_2 + \gamma_3 \omega_3}, \quad (4.1)$$

thus, the linear mapping $A(\psi)$ is defined by the matrix

$$A_\psi = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \\ \gamma_1 & \gamma_2 & \gamma_3 \end{pmatrix}. \quad (4.2)$$

And thus, $N(f \circ \psi^{-1}) = A_\psi(N(f))$ for every polynomial f .

Remark that the generators of the birational monomial group have matrices

$$A_{\text{id}} = A_{r_1} = A_{r_2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad (4.3)$$

$$A_{s_1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad A_{s_2} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad A_{hy} = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

The set of matrices $A(T(\mathbb{K}P^2)) = \{A_\varphi \mid \varphi \in T(\mathbb{K}P^2)\}$ is a subset in the linear group $GL(3, \mathbb{R})$ of 3×3 -matrices. The operation \diamond defined by the formula $A_\varphi \diamond A_\psi = A_{\varphi \circ \psi}$ converts the set $A(T(\mathbb{K}P^2))$ into a group, which is natural ($\varphi \mapsto A_\varphi$) homomorphic image of $T(\mathbb{K}P^2)$.

It is clear that every birational monomial transformation φ induces one-to-one correspondence between monomials of the polynomials f and $(f \circ \varphi^{-1})$. Thus, to represent a transformation φ as a composition of generators of birational monomial group, it is enough to study the action of the transformation φ on a polynomial f whose Newton's polygon $N(f)$ is a triangle with the area $1/2$.

We consider a polynomial $f(x, y, 1) = Ax^p + By^q + Cx^r y^s$, with $ABC \neq 0$, where p and q are mutually prime integers, $0 < q < p$, and r and s are integers, which satisfy the following conditions: (1) $0 < r < p$, $0 \leq s < q$, (2) $r/p + s/q < 1$, and (3) $r \equiv -q^{\phi(p)-1} \pmod{p}$ and $s \equiv -p^{\phi(q)-1} \pmod{q}$, where $\phi(m)$ is the Euler function. The Newton polygon $N(f)$ is the triangle with integer vertices $(p, 0)$, $(0, q)$, (r, s) which has no other integer points belonging to its interior and boundary but its three vertices. According to the Pick theorem [7], the area of such a triangle equals $1/2$. The genus of any curve $f(x, y, 1) = Ax^p + By^q + Cx^r y^s = 0$ with such properties is zero and thus, all such curves are birationally equivalent.

Note that $hy^{-a}(x : y : 1) = (x : x^a y : 1)$ and $hx^{-a}(x : y : 1) = (xy^a : y : 1)$. We evaluate $(f \circ \varphi^{-1})(x, y, 1)$ as follows.

The first step.

$$\begin{aligned} (f \circ hy^{-a_1})(x, y, 1) &= f(x, x^{a_1} y, 1) = x^{a_1 q} (Ax^{b_1} + By^q + Cx^{c+a_1 d - a_1 q} y^d) \\ &= x^{u_1} y^{v_1} (Ax^{b_1} + By^q + Cx^{c_1} y^{d_1}), \end{aligned} \quad (4.4)$$

where $u_1 = a_1 q$, $v_1 = 0$, $c_1 = c + a_1 d - a_1 q$, and $d_1 = d$.

The second step.

$$\begin{aligned} (f \circ hy^{-a_1} \circ hx^{-a_2})(x, y, 1) &= (f \circ hy^{-a_1})(xy^{a_2}, y, 1) \\ &= x^{u_1} y^{a_2 u_1 + v_1 + a_2 b_1} (Ax^{b_1} + By^{b_2} + Cx^{c_1} y^{a_2 c_1 + d_1 - a_2 b_1}) \\ &= x^{u_2} y^{v_2} (Ax^{b_1} + By^{b_2} + Cx^{c_2} y^{d_2}), \end{aligned} \quad (4.5)$$

where $u_2 = u_1$, $v_2 = a_2 u_1 + v_1 + a_2 b_1$, $c_2 = c_1$, and $d_2 = a_2 c_1 + d_1 - a_2 b_1$.

The third step.

$$\begin{aligned} (f \circ hy^{-a_1} \circ hx^{-a_2} \circ hy^{-a_3})(x, y, 1) &= (f \circ hy^{-a_1} \circ hx^{-a_2})(x, x^{a_3} y, 1) \\ &= x^{u_3} y^{v_3} (Ax^{b_3} + By^{b_2} + Cx^{c_3} y^{d_3}), \end{aligned} \quad (4.6)$$

where $u_3 = u_2 + a_2 v_2 + a_3 b_2$, $v_3 = v_2$, $c_3 = c_2 + a_3 d_2 - a_3 b_2$, and $d_3 = d_2$.

The fourth step.

$$\begin{aligned} (f \circ hy^{-a_1} \circ hx^{-a_2} \circ hy^{-a_3} \circ hx^{-a_4})(x, y, 1) &= (f \circ hy^{-a_1} \circ hx^{-a_2} \circ hy^{-a_3})(xy^{a_4}, y, 1) \\ &= x^{u_1} y^{a_2 u_1 + v_1 + a_2 b_1} (Ax^{b_1} + By^{b_2} + Cx^{c_1} y^{a_2 c_1 + d_1 - a_2 b_1}) \\ &= x^{u_2} y^{v_2} (Ax^{b_1} + By^{b_2} + Cx^{c_2} y^{d_2}), \end{aligned} \quad (4.7)$$

where $u_2 = u_1$, $v_2 = a_2 u_1 + v_1 + a_2 b_1$, $c_2 = c_1$, and $d_2 = a_2 c_1 + d_1 - a_2 b_1$. We then proceed until the $(k-1)$ th step.

The $(k-1)$ th step. We have two cases.

The first case: k is even.

$$\begin{aligned} & (f \circ hy^{-a_1} \circ hx^{-a_2} \circ \cdots \circ hx^{-a_{k-2}} \circ hy^{-a_{k-1}})(x, y, 1) \\ &= (f \circ hy^{-a_1} \circ hx^{-a_2} \circ \cdots \circ hx^{-a_{k-2}})(x, x^{a_{k-1}}y, 1) \\ &= x^{u_{k-1}}y^{v_{k-1}}(Ax + By^{b_{k-2}} + Cx^{c_{k-1}}y^{d_{k-1}}), \end{aligned} \quad (4.8)$$

where $u_{k-1} = u_{k-2} + a_{k-1}v_{k-2} + a_{k-1}b_{k-2}$, $v_{k-1} = v_{k-2}$, $c_{k-1} = c_{k-2} + a_{k-1}d_{k-2} - a_{k-1}b_{k-2}$, and $d_{k-1} = d_{k-2}$.

The second case: k is odd.

$$\begin{aligned} & (f \circ hy^{-a_1} \circ hx^{-a_2} \circ \cdots \circ hy^{-a_{k-2}} \circ hx^{-a_{k-1}})(x, y, 1) \\ &= (f \circ hy^{-a_1} \circ hx^{-a_2} \circ \cdots \circ hy^{-a_{k-2}})(xy^{a_{k-1}}, y, 1) \\ &= x^{u_{k-1}}y^{v_{k-1}}(Ax^{b_{k-2}} + By + Cx^{c_{k-1}}y^{d_{k-1}}), \end{aligned} \quad (4.9)$$

where $u_{k-1} = u_{k-2}$, $v_{k-1} = a_{k-1}u_{k-2} + v_{k-2} + a_{k-1}b_{k-2}$, $c_{k-1} = c_{k-2}$, and $d_{k-1} = a_{k-1}c_{k-2} + d_{k-2} - a_{k-1}b_{k-2}$.

The k th step. We have two cases.

The first case: k is even.

$$\begin{aligned} & (f \circ hy^{-a_1} \circ hx^{-a_2} \circ \cdots \circ hy^{-a_{k-1}} \circ hx^{-a_k})(x, y, 1) \\ &= (f \circ hy^{-a_1} \circ hx^{-a_2} \circ \cdots \circ hy^{-a_{k-1}})(xy^{a_k}, y, 1) \\ &= x^{u_k}y^{v_k}(Ax + By + Cx^{c_k}y^{d_k}), \end{aligned} \quad (4.10)$$

where $u_k = u_{k-1}$, $v_k = a_ku_{k-1} + v_{k-1} + a_k$, $c_k = c_{k-1}$, and $d_k = a_kc_{k-1} + d_{k-1} - a_k$.

The second case: k is odd.

$$\begin{aligned} & (f \circ hy^{-a_1} \circ hx^{-a_2} \circ \cdots \circ hx^{-a_{k-1}} \circ hy^{-a_k})(x, y, 1) \\ &= (f \circ hy^{-a_1} \circ hx^{-a_2} \circ \cdots \circ hx^{-a_{k-1}})(x, x^{a_k}y, 1) \\ &= x^{u_k}y^{v_k}(Ax + By + Cx^{c_k}y^{d_k}), \end{aligned} \quad (4.11)$$

where $u_k = u_{k-1} + a_kv_{k-1} + a_k$, $v_k = v_{k-1}$, $c_k = c_{k-1} + a_kd_{k-1} - a_k$, and $d_k = d_{k-1}$.

This calculation shows that the integers $a_1, a_2, a_3, \dots, a_k$ satisfy the Euclidean algorithm with adjusted last row

$$\begin{aligned} p &= a_1q + b_1, \\ q &= a_2b_1 + b_2, \\ b_1 &= a_3b_2 + b_3, \\ &\vdots \\ b_{k-4} &= a_{k-2}b_{k-3} + b_{k-2}, \\ b_{k-3} &= a_{k-1}b_{k-2} + 1, \\ b_{k-2} &= a_k + 1, \end{aligned} \quad (4.12)$$

which provides the desired continued fraction.

ACKNOWLEDGMENT. I thank Inna Korchagina (Rutgers University), David Weinberg (Texas Tech University), and Victor Zvonilov (Syktyvkar State University, Russia) for several helpful discussions.

REFERENCES

- [1] B. Chevallier, *Singularités et topologies optimales des hypersurfaces algébriques réelles de petites dimensions*, These d'État, Université Paris VII, Paris, 1996.
- [2] L. Godeaux, *Les Transformations Birationnelles du Plan*, Gauthier-Villars, Paris, 1927.
- [3] H. P. Hudson, *Cremona Transformation in Plane and Space*, Cambridge University Press, Massachusetts, 1927.
- [4] V. M. Kharlamov, *Topological types of nonsingular surfaces of degree 4 in \mathbf{RP}^3* , Funkcional. Anal. i Prilozhen. **10** (1976), no. 4, 55–68 (Russian).
- [5] ———, *Isotopic types of nonsingular surfaces of degree 4 in \mathbf{RP}^3* , Funkcional. Anal. i Prilozhen. **12** (1978), no. 1, 86–87 (Russian).
- [6] A. B. Korchagin, *Smoothing of 6-fold singular points and constructions of 9th degree M-curves*, Topology of Real Algebraic Varieties and Related Topics, Amer. Math. Soc. Transl. Ser. 2, vol. 173, American Mathematical Society, Rhode Island, 1996, pp. 141–155.
- [7] Yu. A. Shashkin, *The Euler Characteristic*, Popular Lectures on Mathematics, vol. 58, Nauka, Moscow, 1984.
- [8] O. Ya. Viro, *Gluing algebraic hypersurfaces, removing singularities, and construction of curves*, Proc. International Topological Conference (Leningrad, 1982), Nauka, Moscow, 1983, pp. 149–197.
- [9] ———, *Gluing of plane real algebraic curves and constructions of curves of degrees 6 and 7*, Topology (Leningrad, 1982), Lecture Notes in Math., vol. 1060, Springer, Berlin, 1984, pp. 187–200.

Anatoly B. Korchagin: Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-1042, USA

E-mail address: korchag@math.ttu.edu

Special Issue on Modeling Experimental Nonlinear Dynamics and Chaotic Scenarios

Call for Papers

Thinking about nonlinearity in engineering areas, up to the 70s, was focused on intentionally built nonlinear parts in order to improve the operational characteristics of a device or system. Keying, saturation, hysteretic phenomena, and dead zones were added to existing devices increasing their behavior diversity and precision. In this context, an intrinsic nonlinearity was treated just as a linear approximation, around equilibrium points.

Inspired on the rediscovering of the richness of nonlinear and chaotic phenomena, engineers started using analytical tools from "Qualitative Theory of Differential Equations," allowing more precise analysis and synthesis, in order to produce new vital products and services. Bifurcation theory, dynamical systems and chaos started to be part of the mandatory set of tools for design engineers.

This proposed special edition of the *Mathematical Problems in Engineering* aims to provide a picture of the importance of the bifurcation theory, relating it with nonlinear and chaotic dynamics for natural and engineered systems. Ideas of how this dynamics can be captured through precisely tailored real and numerical experiments and understanding by the combination of specific tools that associate dynamical system theory and geometric tools in a very clever, sophisticated, and at the same time simple and unique analytical environment are the subject of this issue, allowing new methods to design high-precision devices and equipment.

Authors should follow the Mathematical Problems in Engineering manuscript format described at <http://www.hindawi.com/journals/mpe/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/> according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

José Roberto Castilho Piqueira, Telecommunication and Control Engineering Department, Polytechnic School, The University of São Paulo, 05508-970 São Paulo, Brazil; piqueira@lac.usp.br

Elbert E. Neher Macau, Laboratório Associado de Matemática Aplicada e Computação (LAC), Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 12227-010 São Paulo, Brazil ; elbert@lac.inpe.br

Celso Grebogi, Center for Applied Dynamics Research, King's College, University of Aberdeen, Aberdeen AB24 3UE, UK; grebogi@abdn.ac.uk