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Consider the system Aug; + Cuxx = f(x,t), (x,t) € T for u(x,t) in R2, where A and C
are real constant 2 x 2 matrices, and f is a continuous function in R2. We assume that
detC # 0 and that the system is strictly hyperbolic in the sense that there are four distinct
characteristic curves I, i = 1,...,4, in xt-plane whose gradients (&;;,&»;) satisfy det[AE%i +
CE%i] = 0. We allow the characteristics of the system to be given by dt/dx = +1 and dt /dx =
+v, ¥ € (0,1). Under special conditions on the boundaries of the region T = {(x,t):0 <t <
1,(=1+7+t)/r <x < (1+r—t)/r}, we will show that the system has a unique C? solution
inT.

2000 Mathematics Subject Classification: 35L50, 35L20, 35C15.

1. Introduction. In the single equation case, Kal’'menov [1] used separation of vari-
ables to explicitly find the eigenvalues and a complete set of eigenfunctions in L2(T;)
for

Ut —Uxx = AU, (x,t) € T,
u(x,0)=0, 0=sx=<2, (1.1)
u(t,t)=u(l+t,1-t), 0<t<l,

where
T ={(x,t):0<t=<l,t<x<2-t} (1.2)

is a triangular region bounded by two characteristics and the x-axis. In [3], Kreith gen-
eralized the result of Kal'menov [1] to the case where separation of variables was not
necessarily possible, that is, the problem

U —Uxx = Apu, (x,t) €Ty,
u(x,0)=0, 0<x=<2, (1.3)
u(t,t)=u(l+t,1-t), 0<t<l,

where u € R and p is a positive continuous function in T;. In [3], Kreith used a sym-
metric Green’s function to show the existence of the eigenvalues and a complete set
of eigenfunctions in L’Z’ (T7). His technique involved converting the eigenvalue problem
(1.3) to an integral equation with a symmetric kernel. Both of these works were signifi-
cant because problems (1.1) and (1.3) constituted selfadjoint boundary value problems
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for hyperbolic equations comparable to the ones for traditional elliptic equations. In
addition, the boundary conditions in these problems imply ©(1,1) = 0. On the physical
grounds, this means the string which was in equilibrium initially is again in equilib-
rium at a point at another time. In this context, one can think of the point (1,1) as a
generalized conjugate point for the initial condition u(x,0) = 0 [3].

In an attempt to extend Kreith’s case to systems, we now consider

Aug +Cuxx = f(x,1), (x,t) €T, (1.4)
where
T:{(x,t):OStsl,ysxsﬁ}, (1.5)

and apply similar but modified boundary conditions on the boundaries of T,

u(x,0) =0, 1—%sxsl+%, 0<r<l, (1.6)

u(%m,o=u<1+£,l—t)=g(r;t), O0<r<l1,0=<t=<l. (1.7)

The function g is taken tobe C2in t for t € [0,1] for any * € (0,1), and its components
g1 and g» vanish monotonically to zero as t goes to zero or one in [0,to] U [t;,1] for
some ty < ty, to,t; € (0,1). For the sake of specificity, we assume that the constant
matrices A and C with detC = 0 are such that

—d—d?—v?—dr?
1 _A_ 42
cla-|717aT c . (1.8)
c d

We note here that the boundary conditions (1.6) and (1.7) imply the compatibility con-
dition u(1,1) = 0, which in turn means that the system which was in equilibrium at
time t = 0 will come to rest at the point x = 1 at the time ¢t = 1 again. Assumption (1.8)
will guarantee the strict hyperbolicity [2] of system (1.4). In fact, let the polynomial g
be q(&,n) = det[AE2 + Cn?]. Then, q(1,m) = (detC)(det[C~'A+m?I]), where I is the
identity matrix and has four distinct roots m = +1 and m = +7. If we let the equations
of the characteristics be t = ¢(x), then they will satisfy dt/dx = +1 and dt/dx = +vr.
Accordingly, the characteristics of (1.4) areT; :t = x+ ki, :t = =x+ko,[3:t =¥vx+ks,
and I : £t = —vx + k4. We choose the characteristics t =rx+1—-rvandt = -rx+1+7r
in xt-plane, and form the triangular region T, described above, bounded by these lines
and the x-axis. To find the points in condition (1.7), start at a point ((r —1+t)/7,t)
ont=rx+1-v, and draw a line parallel to t = —¥x + 1 + 7. At the point of intersec-
tion of this line with the x-axis, draw a line parallel to t = ¥x + 1 — ¥ to meet the line
t=-rx+1+v atthe point (1+¢t/v,1-1t).

The original purpose of this study was to generalize the work in [3] to the case of a
boundary value problem for a hyperbolic system which would be selfadjoint. But, after
successfully defining the right domain T and converting problem (1.4), (1.5), (1.6), and
(1.7) to an integral equation over T, the kernel of the integral operator did not turn
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out to be symmetric. This precluded a statement similar to the one in [3] regarding the
eigenfunctions and eigenvalues of (1.4), (1.5), (1.6), and (1.7) with f(x,t) = Ap(x,t)u.
However, we were able to show, as we will explain in the sequel, that the problem does
have a solution. The method is constructive and produces a solution which is C? and
unique in T.

We mention further that characteristic boundary value problems for different hyper-
bolic systems have been studied in [2] extensively. What is different about our work
here is that in addition to prescribing data on the characteristics, we also assume the
extra condition (1.6) about u on the x-axis.

2. The first-order system. We change the second-order system (1.4) to a first-order
system by introducing

u= [ul} , Uit = Vi, UWUix =Vis2, 1=1,2. (2.1)
U
System (1.4) becomes
5 el e[
where 0, and I, are 2 X2 zero and identity matrices. Multiply (2.2) by [(Iﬁ OCZ 1-1 to obtain
0, I L 0 L 0] 'To
N o I P
We rewrite system (2.3) in the form
Avi+vy =F, (2.4)

where

-1
- [0 -D L 0] [0 0
A= [ClA 0, } F= [02 c] [f] - [le}_ (2.5)

Based on our assumption on the form of the matrix C~'A in (1.8), we note that the
eigenvalues of the matrix A are +1 and +7. Let K be the matrix whose columns are the
eigenvectors k;, i = 1,...,4, corresponding to the eigenvalues —1, 1, —v, ¥, respectively.
Making the change of variables v = Kw, we obtain

AKw; +Kwy =F, (2.6)
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where K is the matrix

[ 1+d 1+d d+r?  d+r? ]
c c eor cr
| 1 1 1
K= v r . (2.7)
1+d 1+d d+7r? d+7r?
o T oc oc c
1 1 1 1

Multiplying (2.6) by K1, we obtain

Aw; +wy =K~ 'F, (2.8)
where K1 is
c  d+r? ¢ d+7r?
1 c d+v? ¢ d+7r?
-1 _
K= 24212 |cr (1+d)r ¢ 1+d (2.9)
cr (1+d)r ¢ 1+d

and A is a 4 x4 diagonal matrix with numbers —1, 1, —7, ¥ on its main diagonal. Letting
wi, Fi, i =1,...,4, be the components of the vectors w, F and noting that F; = F, =0
and K~'F is of the form

c1F3+coFy
_ c1F3+coFy
K'F= , 2.10
—C1F3 +C3F4 ( )
—C1F3 +C3F4
where
c d+7r? 1+d
= =5 = 2.11
AT oo T ouoe ST oo 2.11)
system (2.8) will be
— Wit +Wix = C1F3 +C2F4, (2.12)
Wyt +Wox = C1F3+ o Fy, (2.13)
—TW3t +W3x = —C1F3+C3Fy, (2.14)
YWat + Wax = —C1F3 + C3Fy. (2.15)

We solve system (2.12), (2.13), (2.14), and (2.15), in the triangle T, next.

3. The solution of the system. Consider (2.12). Take two points P and Q in the
triangle T, along the characteristic dx/dt = —1, and integrate along the segment PQ
in the direction of the vector (—1,1). Let the arc length be s, then

w1 (P)—w1(Q) = C1F3+62F4)d5. 3.1)

%jPQ(
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Integrate (2.13) in T from point P to point P; along the characteristic dx/dt = 1, in the
direction of the vector (1,1). We have

wy(P) —wsy(Py) = (c1F3+caFy)ds. (3.2)

_1
V2 Jppy

Integrate (2.14) from point P to point R in T along the characteristic dt/dx = —v, in
the direction of the vector (—1,7),

W3(P)—‘W3(R) = —c1F3 +C3F4)d$. (3.3)

o]
1+72 Jpr (
Similarly, if we integrate (2.15) from point P to point R, in T along the characteristic
dt/dx = r, in the direction of (1,7), we have

1

wa(P)—ws(Ry) = — T2

J (—C1F3 +C3F4)d5. (3.4)
PRy

Recall that v = Kw and v = [u1s, Uzt, Uix, U2t 117 . Then, (3.1), (3.2), (3.3), and (3.4) will
become

1
(c1 (Ui +urx) + 2 (Uar +Uax)) 1§ = /i LQ (c1F3+coFy)ds, (3.5)
1
(—c1 (Ui —urx) —c2(uzr —uax))p, = 7 LP (c1F3+coFy)ds, (3.6)
1
1
(—c1(rune+uix) +c3(ruae +uzx)) g = WLR (—c1F3 +c3Fs)ds, (3.7)

1
ci(rure—uix) —c3(rux —u P —c1F3+c3F)ds. 3.8
(c1(rure —uix) —c3(ruae —uax)) Iy, WJP&( 1F3 +c3Fy) (3.8)

Now, take (3.5) and integrate it along the characteristic dt/dx = 1 in the direction of the
vector (—1,—1), so that the parallelogram PQQ>Q; inside T is completed. We choose
the vertex Q on characteristic boundary t =rx +1—7, and Q, on the x-axis, then

c1u1(P) +c2uz (P) = ciu1(Q) + c2u2(Q) —c1ur (Q2) — cou2 (Q2)

3.9)
+J (c1F3 +coFy)dxdt.
PQQ20Q;

Note here that since we assumed u = 0 along the x-axis, there are no terms involving
c1u1(Qy) +cou2(Qq). Also, (3.9) gives a relationship between the values of the expres-
sion ciu; + couy at two points P and Q» inside T and point Q on the characteristic
boundary, where points P, Q, Q», and Q; are vertices of a parallelogram inside T with
sides along the characteristics dt/dx = +1. As it turns out, (3.6) will provide the same
result if we put the point P; on the characteristic boundary t = —vx + 1 ++ and inte-
grate along the characteristic dt/dx = —1 in the direction of the vector (1,—1). In this
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case, we complete the parallelogram PP, P, P; with vertices P and P; in the interior of
T and P3 on the x-axis, that is,

ciur (P) +couz(P) = cruy (Pr) + coua (Pr) —crug (P2) — couz (P2)

(3.10)
+J (C1F3 +CzF4)dxdt.
PP PyP3

In (3.7), if we put the point R on a characteristic boundary t = ¥x + 1 — 7 and integrate
along the characteristic dt/dx = v in the direction of the vector (—1,—7) so that the
parallelogram PRMP; in T is completed with P on the x-axis, Rand M ont =rx+1-7,
and P in T, we have

—c1ui(P) +c3uz(P) = —ciur (R) +c3u2(R) +crug (M) —czuz (M)

(3.11)
+J (—C1F3+C3F4)dth.
PRMP,

The integration of (3.8) in the direction (1,—v) will result in the same equation as in
(3.10), that is,

—c1uq (P) +c3u(P) = —ciug (Ry) +c3uz (Ry) +c1uy (R2) — c3uz (R2)

(3.12)
+J (=c1F3 +c3Fy)dxdt,
PR1R>R3

where P isin T, Ry and R, are on t = —vx + 1 + 7, and R3 is on the x-axis. Now,
we are in a position to apply condition (1.7). Write (3.11) for the parallelogram whose
side PR meets the characteristic boundary t = —¥x + 1 +* and the side RM is on the
characteristic boundary t = rx + 1 — . Denoting the vertex (0,0) of T by O, (3.11) for
the parallelogram P'OMP; becomes

—c1u1 (P") +c3up(P') = —c1u1 (0) + c3u2(0) + ciur (M) — c3uz (M)

(3.13)
+J (—c1F3+c3Fy)dxdt.
P'OMP;
Since u(P’) = u(M) and u(0O) =0, (3.13) yields
ciur (M) —czur(M) = L (—c1F3+c3Fy)dxdt. (3.14)
2 Jpromp,

This time, write (3.12) for the parallelogram P ROM’, where the side OR is along the
characteristic boundary t = ¥x + 1 —r, the side OM’ is on the characteristic boundary
t =—rx+1+7, and the point P” is on the x-axis:

—c1u1 (R) +c3uz(R) = —c1u1 (0) + c3u2(0) +crur (M') —czua (M)

(3.15)
+J (—c1F3+c3Fy)dxadt,
PROM’
which, upon using u(M’) = u(R) and u(0) = 0, yields
—erun (R) + stz (R) = 5 (—c1F3 +c3Fy)dxdt. (3.16)

2 JprroM
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P, P

FIGURE 3.1. The regions in the definition of G(P;x,t).

From (3.11), (3.14), and (3.15), we obtain

1
—ciu(P)+c3usx(P) == (—C1F3 +C3F4)dxdt
2 JprRroM’

1

~5 (—c1F3+c3Fy)dxdt (3.17)
P'OMP;

+J (—c1F3+c3Fy)dxadt.
PRMP;
Equation (3.17) can be put in the compact form
—ciu (P) +c3us(P) = ﬂ G(P;x,t)(—c1F3+c3Fy)dxdt, (3.18)
T

where G is Green’s function with values described as follows. Fix a point P in the trian-
gular region T bounded by ¢t = 0 and characteristicst =¥x+1—rand t = —rx+1+7.
From P, draw lines parallel to these characteristics so that one line meets the side
t=-rx+1+r atP’ and t =0 at P;. The other line meetst =rx+1—-ratRand t =0
at P”. From P, draw a line parallel to t = —¥x + 1 +% to meet the linet =rx+1—7 at
M. From P”, draw a line parallel tot =rx+1—-% tomeett = —rx+1+7v at M'. Then G
is defined by

1, (x,t) € PRMP, UPP'M'P",
G(P;x,t) =12 (3.19)
O!

(x,t) € T\ (PRMP,UPP'M'P");

see Figure 3.1.

Now we consider (3.9) and (3.10). From either one of these equations, we can calculate
the value of c;u; (P) +cou2 (P) by using the data g given in condition (1.7). For instance,
using (3.10) with P and Qo in T, Rpont = —rx +1+7v, and Sy on the x-axis, we have

cruy (P) +c2uz(P) = ciuy (Ro) + c2uz2(Ro) — cru1 (Qo) — c2u2(Qo)

(3.20)
+J (C1F3 +C2F4)dth.
PRoQoSo

For convenience, we denote

X =ClU]+CoU>. (3.21)
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In terms of notation (3.21), we have

x(P) = O((Ro)—O((QQ)-I- (C1F3+C2F4)dxdt. (3.22)

J/PR()Q()SO
But then, using (3.22) again, this time starting at the point Qo and completing the
parallelogram QoR;Q 151, we have

‘X(QO) = 0((R1)—0((Q1)+ (C1F3+62F4)dxdt. (3.23)

JQORIQISI

We substitute «x(Q) from (3.23) into (3.22) to obtain

&(P) = a(Ro) — x(Ry) + x(Q1) - (c1F3+coFy)dxdt

Janans
QoR1Q151 (3.24)

+J (C]F3 +C2F4)dxdt.
PRoQoSo

Continuing this process and writing (3.22) for the points Q1,Q2,...,Q,, n=0,1,2,...,
we obtain the equation

x(P) = Z( D" (Rp) + Z( 1)nﬂQn e, (i3 eaFdxdt 495

+( D™ e(Qum),

where Q_; = P. The parallelograms Q,-1R,Q,Sx,n =0,...,m, have vertices Ro,Ry,...,
Ry, on the characteristic boundary moving toward the point (1 + 1/7,0). The points
Q1,Q2,...,Qm+1 are the vertices opposite P in T and Sy, S1,...,S,, are on the x-axis.
Now, we take the limit of (3.25) as m — oo:

lim «(P) = Z( 1" o(Rp) + lim (=1)™ " ot(Qum)
(3.26)
+z( 1) HQn aons, (c1F3 +coFy)dxdt

and note that in this process, the points R,,, Q, and S,,; all approach the point (1 +
1/7,0) in T. Since data is zero at this point by condition (1.7), we must have

lim (-1 & (Q) = 0. (3.27)

The series involving the integrals over the parallelograms converges because the union
of all these parallelograms is still a subset of the region T and the function ¢, F3 + c2Fy4 is
integrable over T, being continuous there. It now remains to ascertain the convergence
of 3,7 o(—=1)"x(R;,). For this purpose, we use the assumption, in condition (1.7), that
the components g; and g» of the data function g along the characteristics are monoton-
ically decreasing to zero in the set [0,to] U[t1,1], to < t; for some ty, t; in (0,1). Then,
the infinite sum >;,_,(—1)"«(R;) converges because it is a monotonically decreasing
alternating series with lim, . x(R,) = 0. Since the positions of the points R, on the
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FIGURE 3.2. The regions in the definition of H (P;x,t).

characteristics depend on the point P, we show this dependence by R,, = R, (7, P) and
write

Z ~D)"&(Rn(r,P)) = c1h1 (1;P) + 2k (13 P), (3.28)

where h; and h; are the limiting functions of the series >, _,(—1)"u;(R,) and >,,_,
(—=1)™u2(Ry,), respectively. If we rewrite (3.25) in terms of 1, u> and use (3.27) and
(3.28), we have

ciui(P)+couz(P) = cihy (v;P) +c2h (v;P)

3.29
+ Z( 1)"ﬂ (c1F3+coFy)dxdt. (3-29)
Qn-1RnQnSn
We can rewrite (3.29) as follows:
c1u1 (P) +couz(P) = c1hy (r;P) +coho (75 P)
(3.30)
+ J H(P;x,t)(c1F3 +ca2Fy)dxdt,
T
where
(=", (x,t) € Qu-1RnQnSn, n=0,1,...,
H(P;x,t) = (3.31)
0, (x,t) € T\UG Qun-1RnQnSn;
see Figure 3.2.
Putting (3.18) and (3.31) together, we can write
a c||lm®P)| |a c||h@;P)
—c1 cllu@®)|l 10 0||h(r;P)
(3.32)

H[ ][ c CZ] [Fjd ar

Recall that [F*] = C~1f. Then, (3.32) can be rewritten in the form

w(P) = Lh(P) + J N(Pix,Df(xtdxdt, PET, (3.33)
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where h = [Z;] for hi, h, are as defined in (3.28), L = [}, @17 [ €1, and N =
C’l[f{ 8]. Equation (3.33) provides a unique solution to problem (1.4), (1.5), (1.6), and
(1.7) in C3(T). It is unique by the way it has been obtained. Therefore, we have the
following theorem.

THEOREM 3.1. Let f(x,t) with values in R? be a continuous function in T, and let
g(r,t), also with values inR%, be C% int fort € [0,1], for anyr € (0,1), and components
g1 and g, that vanish monotonically to zero as t goes to zero or one in [0,to] U [t1,1]
for some tg < ty1, to,t1 € (0,1). Let (1.4) be a strictly hyperbolic 2x2 system with constant
matrices A and C satisfying detC + 0 and condition (1.8). Then, the boundary value
problem (1.4), (1.5), (1.6), and (1.7) has a unique solution of the form (3.33) in C2(T).
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