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1. Introduction. In this paper, we discuss the convergency of the fuzzy space over

F1
p(1) (see [4]). In [4, Section 2], we stated the pseudo-fuzzy vector space SFR over F1

p(1)
as follows: for two points P = (x(1),x(2), . . . ,x(n)) and Q = (y(1),y(2), . . . ,y(n)) on Rn,

we have the crisp vector
���������������������������������������→
PQ= (y(1)−x(1),y(2)−x(2), . . . ,y(n)−x(n)) in a pseudo-fuzzy

vector space Fnp (1)= {(a(1),a(2), . . . ,a(n))1∀(a(1),a(2), . . . ,a(n))∈Rn}.
There is a one-to-one onto mapping P = (x(1),x(2), . . . ,x(n)) ↔ P̃ = (x(1),x(2), . . . ,

x(n))1. Therefore, for the crisp vector
���������������������������������������→
PQ, we can define the fuzzy vector

���������������������������������������→
P̃ Q̃= (y(1)−

x(1),y(2)−x(2), . . . ,y(n)−x(n))1 = Q̃� P̃ .

Let the family of the fuzzy sets on Rn satisfying the definitions of convex and normal

be Fc . Obviously, Fnp (1) ⊂ Fc . Next, we extend the fuzzy vector
���������������������������������������→
P̃ Q̃ = Q̃� P̃ to Fc , and

X̃, Ỹ ∈ Fc , and define the fuzzy vector
���������������������������������������→
X̃Ỹ = Ỹ � X̃. Let SFR = {

���������������������������������������→
X̃Ỹ∀X̃, Ỹ ∈ Fc}. Then

we have the pseudo-fuzzy vector space over Fnp (1) (= a1∀a∈R). In Section 3, we will

discuss the convergency of the fuzzy vectors in SFR.

2. Preparation. In [4], we discussed the pseudo-fuzzy vector space SFR over F1
p(1).

In order to discuss the convergence of the fuzzy vectors in SFR, we need to know some

definitions.

Definition 2.1. (1◦) The fuzzy set Ã on R= (−∞,∞) is convex if and only if every

ordinary set A(α)= {x | µÃ(x)≥α ∀α∈ [0,1]} is convex, and hence A(α) is a closed

interval of R.
(2◦) The fuzzy set Ã on R is normal if and only if

∨
x∈RµÃ(x)= 1.

Next, we extend this definition to Rn by saying that the membership function of the

fuzzy set D̃ on Rn is µD̃(x
(1),x(2), . . . ,x(n))∈ [0,1] for all (x(1),x(2), . . . ,x(n))∈Rn.

Definition 2.2. The α-cut (0 ≤ α ≤ 1) of the fuzzy set D̃ on Rn is defined by

D(α)= {(x(1),x(2), . . . ,x(n)) | µD̃(x(1),x(2), . . . ,x(n))≥α}.
Definition 2.3. (1◦) The fuzzy set D̃ on Rn is convex if and only if every ordinary

set D(α) = {(x(1),x(2), . . . ,x(n)) | µD̃(x(1),x(2), . . . ,x(n)) ≥ α ∀α ∈ [0,1]} is a convex

closed subset of Rn.
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(2◦) The fuzzy set D̃ is normal if and only if
∨
(x(1),x(2),...,x(n))∈Rn µD̃(x

(1),x(2), . . . ,
x(n))= 1.

Let the family of the fuzzy sets on Rn satisfying Definition 2.3 (1◦), (2◦) be Fc .

Definition 2.4 (Pu and Liu [3]). The fuzzy set aα (0≤α≤ 1) on R is called a level

α fuzzy point on R if its membership function µaα(x) is

µaα(x)=
α, x = a,

0, x ≠ a.
(2.1)

Let the family of all level α fuzzy points on R be F(1)p (α)= {aα∀α∈R}, 0≤α≤ 1.

Definition 2.5. The fuzzy set (a(1),a(2), . . . ,a(n))α (0 ≤ α ≤ 1) is called a level α
fuzzy point on Rn if its membership function is

µ(a(1),a(2),...,a(n))α
(
x(1),x(2), . . . ,x(n)

)
=
α, if

(
x(1),x(2), . . . ,x(n)

)= (a(1),a(2), . . . ,a(n)),
0, elsewhere.

(2.2)

Let the family of all level α fuzzy points on Rn be

F(n)p (α)= {(a(1),a(2), . . . ,a(n))α∀(a(1),a(2), . . . ,a(n))∈Rn}, 0≤α≤ 1,

F(n)p =
⋃

0≤α≤1

F(n)p (α). (2.3)

For each aα ∈ F1
p(α), regard aα = (a,a, . . . ,a)α as a special level α fuzzy point on Rn

degenerated from a level α fuzzy point (a(1),a(2), . . . ,a(n)) with a(1) = a(2) = ··· =
a(n) = a. Hence, we have the following expression:

µ(a,a,...,a)α
(
x(1),x(2), . . . ,x(n)

)=
α,

(
x(1),x(2), . . . ,x(n)

)= (a,a, . . . ,a),
0,

(
x(1),x(2), . . . ,x(n)

)
≠ (a,a, . . . ,a),

= µaα
(
x(1),x(2), . . . ,x(n)

)
.

(2.4)

Definition 2.6. For D ⊂Rn, call Dα, 0≤α≤ 1, a level α fuzzy domain on Rn if its

membership function is

µDα
(
x(1),x(2), . . . ,x(n)

)=
α, if

(
x(1),x(2), . . . ,x(n)

)∈D,
0, if

(
x(1),x(2), . . . ,x(n)

) �∈D. (2.5)

Let the family of all the level α fuzzy domains on Rn be FD∗ = {Eα∀E ⊂ Rn}, and let

the family of all subsets of Rn be �(Rn)= {E∀E ⊂Rn}.
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Then there is a one-to-one mapping η between �(Rn) and FD∗:

E ∈�
(
Rn
)←→ η(E)= Eα ∈ FD∗,

η(−1)(Eα)= E, α∈ [0,1]. (2.6)

Since D̃ ∈ Fc , the α-cut D(α) (0≤α≤ 1) of D̃ can be mapped to D(α)α.

Thus, we have the following decomposition principle:

∀D̃ ∈ Fc, D̃ =
⋃

α∈[0,1]D(α)α. (2.7)

From Kaufmann and Gupta [2], we have for D,E ⊂Rn, k∈R,

D(+)E = {(x(1)+y(1),x(2)+y(2), . . . ,x(n)+y(n))
∀(x(1),x(2), . . . ,x(n))∈D, (y(1),y(2), . . . ,y(n))∈ E}, (2.8)

D(−)E = {(x(1)−y(1),x(2)−y(2), . . . ,x(n)−y(n))
∀(x(1),x(2), . . . ,x(n))∈D, (y(1),y(2), . . . ,y(n))∈ E}, (2.9)

k(·)D = {(kx(1),kx(2), . . . ,kx(n))∀(x(1),x(2), . . . ,x(n))∈D}. (2.10)

From (2.6), (2.7), (2.8), (2.9), (2.10), and the definition of the α-cut, we have that

(i) the α-cut of D̃(+)Ẽ is D(α)+E(α),

D̃⊕ Ẽ =
⋃

0≤α≤1

(
D(α)(+)E(α))α, (2.11)

(ii) the α-cut of D̃(−)Ẽ is D(α)−E(α),

D̃� Ẽ =
⋃

0≤α≤1

(
D(α)(−)E(α))α, (2.12)

(iii) the α-cut of k1�wtD is k(·)D(α),

k1�D̃ =
⋃

0≤α≤1

(
k(·)D(α))α. (2.13)

In the crisp case on Rn, we can consider the n-dimensional vector space En over R.
Let P = (p(1),p(2), . . . ,p(n)),Q= (q(1),q(2), . . . ,q(n)),A= (a(1),a(2), . . . ,a(n)), B = (b(1),

b(2), . . . ,b(n)) ∈Rn; k∈R.
Define the crisp vectors

���������������������������������������→
PQ,

������������������������������→
AB+ ���������������������������������������→PQ, and k· ���������������������������������������→PQ as follows:

���������������������������������������→
PQ= (q(1)−p(1),q(2)−p(2), . . . ,q(n)−p(n))=Q(−)P, (2.14)

������������������������������→
AB+ ���������������������������������������→PQ= (b(1)+q(1)−a(1)−p(1),b(2)+q(2)−a(2)−p(2),

. . . ,b(n)+q(n)−a(n)−p(n)), (2.15)

k· ���������������������������������������→PQ= (kq(1)−kp(1),kq(2)−kp(2), . . . ,kq(n)−kp(n)). (2.16)
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Let O = (0,0, . . . ,0) ∈ Rn,
�������������������������������������→
OP = (p(1),p(2), . . . ,p(n)), ����������������������������������������������→OO = (0,0, . . . ,0), and let En =

{ ���������������������������������������→PQ= (q(1)−p(1),q(2)−p(2), . . . ,q(n)−p(n))∀P,Q∈Rn}. This is an n-dimensional vec-

tor space over R. There is a one-to-one onto mapping between the point (a(1),a(2),
. . . ,an) on Rn and the level 1 fuzzy point (a(1),a(2), . . . ,an)1 on Fnp (1):

ρ :
(
a(1),a(2), . . . ,a(n)

)∈Rn←→ ρ(a(1),a(2), . . . ,a(n))
= (a(1),a(2), . . . ,a(n))1 ∈ Fnp (1).

(2.17)

Let P̃ = (p(1),p(2), . . . ,p(n))1, Q̃ = (q(1),q(2), . . . ,q(n))1 ∈ Fnp (1). From (2.14) and (2.17),

we have the following definition:

���������������������������������������→
P̃ Q̃= (q(1)−p(1),q(2)−p(2), . . . ,q(n)−p(n))1 = Q̃� P̃ . (2.18)

Let FEn = {
���������������������������������������→
P̃ Q̃∀P̃ ,Q̃ ∈ Fnp (1)}. From (2.14) and (2.18), we have the one-to-one onto

mappings

���������������������������������������→
PQ= (q(1)−p(1),q(2)−p(2), . . . ,q(n)−p(n))
←→ ρ( ���������������������������������������→PQ)= (q(1)−p(1),q(2)−p(2), . . . ,q(n)−p(n))1

=
���������������������������������������→
P̃ Q̃∈ FEn,

������������������������������→
AB+ ���������������������������������������→PQ= (b(1)+q(1)−a(1)−p(1),b(2)+q(2)−a(2)−p(2),

. . . ,b(n)+q(n)−a(n)−p(n))
←→ (

b(1)+q(1)−a(1)−p(1),b(2)+q(2)−a(2)−p(2),

. . . ,b(n)+q(n)−a(n)−p(n))1

=
������������������������������→̃
AB̃⊕

���������������������������������������→
P̃ Q̃,

k· ���������������������������������������→PQ= (kq(1)−kp(1),kq(2)−kp(2), . . . ,kq(n)−kp(n))
←→ (

kq(1)−kp(1),kq(2)−kp(2), . . . ,kq(n)−kp(n))1

= k1�
���������������������������������������→
P̃ Q̃.

(2.19)

Therefore, FEn = {
���������������������������������������→
P̃ Q̃∀P̃ ,Q̃∈ Fnp (1)} is a vector space over Fnp (1) in fuzzy sense.

In [4], we further extend FEn as follows. For X̃, Ỹ ∈ Fc , define
���������������������������������������→
X̃Ỹ = Ỹ � X̃ and call

���������������������������������������→
X̃Ỹ a fuzzy vector. Let SFR = {

���������������������������������������→
X̃Ỹ∀X̃, Ỹ ∈ Fc}. In [4], we proved that the following

properties hold.
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Property 2.7. For
���������������������������������������→
X̃Ỹ ,

�������������������������������������������������→̃
WZ̃ ∈ SFR,

���������������������������������������→
X̃Ỹ =

�������������������������������������������������→̃
WZ̃⇐⇒Ỹ �X̃ = Z̃�W̃ . (2.20)

Property 2.8. For
���������������������������������������→
X̃Ỹ ,

�������������������������������������������������→̃
WZ̃ ∈ SFR, k∈R,

(1◦)
���������������������������������������→
X̃Ỹ ⊕

�������������������������������������������������→̃
WZ̃ =

������������������������������→̃
AB̃, where Ã= X̃⊕W̃ , B̃ = Ỹ ⊕ Z̃ ;

(2◦) k1�
���������������������������������������→
X̃Ỹ =

����������������������������������������→
C̃D̃, where C̃ = k1�X̃, D̃ = k1� Ỹ .

Property 2.9. For
���������������������������������������→
X̃Ỹ ,

�������������������������������������������������→̃
WZ̃,

����������������������������������������→
ŨṼ ∈ SFR, k,t ∈R,

(1◦)
���������������������������������������→
X̃Ỹ ⊕

�������������������������������������������������→̃
WZ̃ =

�������������������������������������������������→̃
WZ̃⊕

���������������������������������������→
X̃Ỹ ;

(2◦) (
���������������������������������������→
X̃Ỹ ⊕

�������������������������������������������������→̃
WZ̃)⊕

����������������������������������������→
ŨṼ =

���������������������������������������→
X̃Ỹ ⊕(

�������������������������������������������������→̃
WZ̃⊕

����������������������������������������→
ŨṼ );

(3◦)
���������������������������������������→
X̃Ỹ ⊕

����������������������������������������������→
ÕÕ =

���������������������������������������→
X̃Ỹ , where

����������������������������������������������→
ÕÕ = (0,0, . . . ,0)1;

(4◦) k1�(t1�
���������������������������������������→
X̃Ỹ )= (kt)1�

���������������������������������������→
X̃Ỹ ;

(5◦) k1�(
���������������������������������������→
X̃Ỹ ⊕

�������������������������������������������������→̃
WZ̃)= (k1�

���������������������������������������→
X̃Ỹ )⊕(k1�

�������������������������������������������������→̃
WZ̃);

(6◦) 1�
���������������������������������������→
X̃Ỹ =

���������������������������������������→
X̃Ỹ .

In SFR, the following do not hold.

(7◦) For
���������������������������������������→
X̃Ỹ ∈ SFR and

���������������������������������������→
X̃Ỹ ≠

����������������������������������������������→
ÕÕ, there exists

�������������������������������������������������→̃
WZ̃ (≠

����������������������������������������������→
ÕÕ)∈ SFR such that

���������������������������������������→
X̃Ỹ⊕

�������������������������������������������������→̃
WZ̃ =

����������������������������������������������→
ÕÕ;

(8◦) (k+t)1�
���������������������������������������→
X̃Ỹ = (k1�

���������������������������������������→
X̃Ỹ )⊕(t1�

���������������������������������������→
X̃Ỹ ).

From Property 2.9, we know that SFR satisfies all the conditions that the vector space

required, except (7◦) and (8◦). Therefore, in [4], we called SFR a pseudo-fuzzy vector

space over F1
p(1).

Example 2.10 (a moving station carrying a missile on it). This car left from point

P = (2,5) passing through point Q = (4,6), arrived at R = (8,9), and aiming at the

target Z = (100,200). As we can see, the missile usually falls in the vicinity of Z , say Z̃ ,

instead of hitting at Z exactly.

Let the membership function of Z̃ be

µZ̃
(
x(1),x(2)

)=


1
25

(
25−(x(1)−100

)2−(x(2)−200
)2),

if
(
x(1)−100

)2+(x(2)−200
)2)≤ 25,

0, elsewhere.

(2.21)

Consider the level 1 fuzzy points P̃ = (2,5)1, Q̃ = (4,6)1, and R̃ = (8,9)1. We have the

fuzzy routes

P̃ �→ Q̃ �→ R̃ �→ Z̃ (2.22)
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and hence the fuzzy vectors
���������������������������������������→
P̃ Q̃= (2,1)1,

�����������������������������������������→
Q̃R̃ = (4,3)1,

���������������������������������→
R̃Z̃ = Z̃�R̃, and

�������������������������������→̃
PZ̃ = Z̃� P̃ . By

extension theory, the membership function of
���������������������������������→
R̃Z̃ = Z̃� R̃ is

µ ���������������������������������→
R̃Z̃

(
z(1),z(2)

)= sup
z(j)=v(j)−u(j),j=1,2

µR̃
(
u(1),u(2)

)∧µZ̃(v(1),v(2))
= µZ̃

(
z(1)+8,z(2)+9

)

=


1
25

(
25−(z(1)−92

)2−(z(2)−191
)2),

if
(
z(1)−92

)2+(z(2)−191
)2 ≤ 25,

0, elsewhere.

(2.23)

Similarly,

µ �������������������������������→̃
PZ̃

(
z(1),z(2)

)=


1
25

(
25−(z(1)−98

)2−(z(2)−195
)2),

if
(
z(1)−98

)2+(z(2)−195
)2 ≤ 25,

0, elsewhere.

(2.24)

Let S = (98,202). It is clear that (98,202) is within the circle of center (100,200) and ra-

dius 5. The crisp vector which starts with the point P = (2,5) and ends at S = (98,202) is
�������������������������→
PS = (96,197). Its grade of membership in

�������������������������������→̃
PZ̃ from (2.23) is µ �������������������������������→̃

PZ̃
(96,197)= (1/25)(25−

22−22) = 0.68, that is, the grade of membership of the fuzzy vector
�������������������������������→̃
PZ̃ for the crisp

vector
�������������������������→
PS is 0.68. Let the aim be T = (100,200). The crisp vector beginning at P = (2,5)

and aiming at T = (100,200) is
�������������������������������→
PT = (98,195). Its grade of membership in

�������������������������������→̃
PZ̃, again

from (2.23), is µ �������������������������������→̃
PZ̃
(98,195)= (1/25)(25−02−02)= 1, that is, the grade of membership

of the fuzzy vector
�������������������������������→̃
PZ̃ for the crisp vector

�������������������������������→
PT is 1.

Example 2.11. In a shooting practice, let C((10,30),1+1/m)= {(x,y) | (x−10)2+
(y −30)2 ≤ (1+1/m)2}, always shooting at (1,2) and aiming at Z = (10,30). At the

first time, the bullet was falling in C((10,30),2(= 1+1)). At the second time, it was

falling in C((10,30),1+1/2). At the mth time, it was falling in C((10,30),1+1/m). In

other words, the bullet was more and more closer to C((10,30),1), that is, more and

more accurate.

Let the fuzzy aim be Z̃m, its membership function is

µZ̃m =



1
(1+1/m)2

[(
1+ 1

m

)2

−(x−10)2−(y−30)2
]
,

if (x−10)2+(y−30)2 ≤
(

1+ 1
m

)2

,

0, elsewhere.

(2.25)

Thus, we have themth fuzzy vector
������������������������������������������������������������������������������������→
Q̃Z̃m,m= 1,2, . . . , where Q̃= (1,2)1. In the next

section, we will discuss the convergency of the fuzzy vectors in SFR and find out the

limit fuzzy vector limn→∞
������������������������������������������������������������������������������������→
Q̃Z̃m.
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3. The convergency of the vectors in SFR. Before we try to investigate the conver-

gency of the fuzzy vectors in SFR, we first define the following open set in Rn and

discuss some properties (Properties 3.4, 3.7, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, and

3.17). Let

O
((
a(1,1),a(1,2)

)
, . . . ,

(
a(n,1),a(n,2)

))
= {(x(1),x(2), . . . ,x(n)) | a(j,1) < x(j) < a(j,2), j = 1,2, . . . ,n

}
.

(3.1)

From (2.8), (2.9), and (2.10), we have

O
((
a(1,1),a(1,2)

)
, . . . ,

(
a(n,1),a(n,2)

))
(+)O((b(1,1),b(1,2)), . . . ,(b(n,1),b(n,2)))

= {(z(1),z(2), . . . ,z(n)) | z(j) = x(j)+y(j), a(j,1) < x(j) < a(j,2),
b(j,1) < y(j) < b(j,2), j = 1,2, . . . ,n

}
=O((a(1,1)+b(1,1),a(1,2)+b(1,2)), . . . ,(a(n,1)+b(n,1),a(n,2)+b(n,2))),

(3.2)

O
((
a(1,1),a(1,2)

)
, . . . ,(a(n,1),a(n,2)

))
(−)O((b(1,1),b(1,2)), . . . ,(b(n,1),b(n,2)))

= {(z(1),z(2), . . . ,z(n)) | z(j) = x(j)−y(j), a(j,1) < x(j) < a(j,2),
b(j,1) < y(j) < b(j,2), j = 1,2, . . . ,n

}
=O((a(1,1)−b(1,1),a(1,2)−b(1,2)), . . . ,(a(n,1)−b(n,1),a(n,2)−b(n,2))).

(3.3)

If k > 0,

k(·)O((a(1,1),a(1,2)), . . . ,(a(n,1),a(n,2)))
= {(z(1),z(2), . . . ,z(n)) | z(j) = kx(j),a(j,1) < x(j) < a(j,2), j = 1,2, . . . ,n

}
=O((ka(1,1),ka(1,2)), . . . ,(ka(n,1),ka(n,2))).

(3.4)

If k < 0,

k(·)O((a(1,1),a(1,2)), . . . ,(a(n,1),a(n,2)))
= {(z(1),z(2), . . . ,z(n)) | z(j) = kx(j), a(j,1) < x(j) < a(j,2), j = 1,2, . . . ,n

}
=O((ka(1,2),ka(1,1)), . . . ,(ka(n,2),ka(n,1))).

(3.5)

Let � = {O((a(1,1),a(1,2)), . . . ,(a(n,1),a(n,2)))α∀a(j,1) < a(j,2), a(j,1),a(j,2) ∈ R, j =
1,2, . . . ,n; 0≤α≤ 1}.

Let �∗ be the family of fuzzy sets in � or any arbitrary unions of these fuzzy sets.

Remark 3.1. Any intersection of two fuzzy sets in � belongs to �, and when two

fuzzy sets in � have no intersection, we call their intersection ∅.

From (2.3), let F = Fnp ∪Fc∪�∗. In order to consider the problem of convergency, we

first consider the topology for F .
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Definition 3.2. Q̃∈F is an open fuzzy set if and only if for each (x(1),x(2), . . . ,x(n))α
⊂ Q̃, there exists Õ ∈� such that (x(1),x(2), . . . ,x(n))α ⊂ Õ ⊂ Q̃.

Let TF be the family of all open fuzzy sets satisfying Definition 3.2. Obviously, �∗ ⊂
TF .

Definition 3.3 (Chang [1]). T is a family of fuzzy sets in the space X satisfying the

following:

(1◦) ∅,X ∈ T ,

(2◦) Ã, B̃ ∈ T , then Ã∩ B̃ ∈ T ,

(3◦) Ãj ∈ T , j ∈ I (any index set), then
⋃
j∈I Ãj ∈ T .

T is called a fuzzy topology for X and (X,T) is called a fuzzy topological space (abbre-

viated as FTS).

Property 3.4. TF is a fuzzy topology for Rn, (Rn,TF) are fuzzy topological sets in

Rn that are restricted in F .

Proof. (1◦) It is obvious that Rn ∈ TF . Definition 3.3(1◦) is fulfilled.

(2◦) For D̃, Ẽ ∈ TF and (x(1),x(2), . . . ,x(n))α ⊂ D̃∩ Ẽ, we have (x(1),x(2), . . . ,x(n))α ⊂
D̃ and (x(1),x(2), . . . ,x(n))α ⊂ Ẽ. From Definition 3.2, there exist Ĩ, J̃ ∈ � such that

(x(1),x(2), . . . ,x(n))α ⊂ Ĩ ⊂ D̃ and (x(1),x(2), . . . ,x(n))α ⊂ J̃ ⊂ Ẽ. Therefore, (x(1),x(2), . . . ,
x(n))α ⊂ Ĩ∩ J̃. Hence, Ĩ∩ J̃ ⊂ D̃∩ Ẽ. Thus, D̃∩ Ẽ ∈ TF . Definition 3.3(2◦) is fulfilled.

(3◦) For D̃j ∈ TF , j ∈ I, and each (x(1),x(2), . . . ,x(n))α ⊂
⋃
j∈I D̃j , there exists m ∈

I such that (x(1),x(2), . . . ,x(n))α ⊂ D̃m. By Definition 3.2, there is a J̃ ∈ � such that

(x(1),x(2), . . . ,x(n))α ⊂ J̃ ⊂ D̃m ⊂
⋃
j∈I D̃j ⊂ TF . Thus, Definition 3.3(3◦) is fulfilled.

Hence, from Definition 3.3, TF is a fuzzy topology for Rn and (Rn,TF) is a fuzzy

topological space, that is, if we set X =Rn, T = TF in Definition 3.3, then the definition

holds. Therefore, Definitions 3.5, 3.6 and Property 3.7 can all be applied.

Definition 3.5 (Chang [1, Definition 2.3]). A fuzzy set Ũ in an FTS (X,T) is a

neighborhood of a fuzzy set Ã if and only if there exists a fuzzy set Õ ∈ T such that

Ã⊂ Õ ⊂ Ũ .

Definition 3.6 (Chang [1, Definition 3]). If a sequence of fuzzy sets {Ãn, n = 1,2,
. . .} is in an FTS (X,T), then this sequence converges to a fuzzy set Ã if and only if it

is eventually contained in each neighborhood of Ã (i.e., if B̃ is any neighborhood of Ã,

there is a positive integer m such that whenever n≥m, Ãn ⊂ B̃).

Property 3.7. {Ãn} are increasing fuzzy sets, Ã1 ⊂ Ã2 ⊂ ··· ⊂ Ã, and

lim
n→∞µÃn

(
x(1),x(2), . . . ,x(n)

)= µÃ(x(1),x(2), . . . ,x(n)) (3.6)

for all (x(1),x(2), . . . ,x(n)) ∈ Rn. Then the sequence {Ãn, n = 1,2, . . .} converges to Ã,

denoted by limn→∞ Ãn = Ã.

Proof. The proof follows from Definition 3.6 easily.
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Definition 3.8.
⋃
α∈[0,1]O((a(1,1)(α),a(1,2)(α)), . . . ,(a(n,1)(α),a(n,2)(α)))α(∈ TF) is

a neighborhood of D̃ =⋃α∈[0,1]D(α)α ∈ Fc if and only if for each α∈ [0,1], there exists

O((a(1,1)(α),a(1,2)(α)), . . . ,(a(n,1)(α),a(n,2)(α)))α∈� such that D(α)α ⊂ O((a(1,1)(α),
a(1,2)(α)), . . . ,(a(n,1)(α),a(n,2)(α)))α.

Definition 3.9. In Fc , the sequence of fuzzy sets D̃k =
⋃
α∈[0,1]Dk(α)α, k= 1,2, . . . ,

converges to D̃ =⋃α∈[0,1]D(α)α, k= 1,2, . . . (∈ Fα) if and only if for each neighborhood⋃
α∈[0,1]O((a(1,1)(α),a(1,2)(α)), . . . ,(a(n,1)(α),a(n,2)(α)))α of D̃, there exists a natural

number m such that whenever k ≥m, Dk(α)α ⊂O((a(1,1)(α),a(1,2)(α)), . . . ,(a(n,1)(α),
a(n,2)(α)))α, denoted by limk→∞ D̃k = D̃.

Since D ⊂Rn and Dα (∈ FD∗) is a one-to-one onto mapping, from Definition 3.9, we

can get the following property.

Property 3.10. In Fc , the sequence of fuzzy sets D̃k =
⋃
α∈[0,1]Dk(α)α,k = 1,2, . . . ,

converges to D̃ =⋃α∈[0,1]D(α)α if and only if for each α ∈ [0,1] and every neighbor-

hood O((a(1,1),a(1,2)), . . . ,(a(n,1),a(n,2)))α of D(α)α, there exists a natural number m
such that whenever k ≥ m, Dk(α)α ⊂ O((a(1,1),a(1,2)), . . . ,(a(n,1),a(n,2))) if and only

if for each α ∈ [0,1] and every neighborhood O((a(1,1),a(1,2)), . . . ,(a(n,1),a(n,2)))α of

D(α), there exists m such that whenever k ≥m, Dk(α)α ⊂O((a(1,1),a(1,2)), . . . ,(a(n,1),
a(n,2))).

The convergency of fuzzy vectors needs the following property.

Property 3.11. For each α∈ [0,1], the α-cuts Dk(α), Ek(α), k = 1,2, . . . ,m, of D̃k,
Ẽk in Fc satisfy the following:

(1◦) (Dk(α)(+)Ek(α))α =Dk(α)α⊕Ek(α)α,

(2◦) (Dk(α)(−)Ek(α))α =Dk(α)α�Ek(α)α,

(3◦) each α-cut of
⋃m
k=1[D̃k⊕ Ẽk] is

⋃m
k=1[D̃k(α)(+)Ẽk(α)],

(3◦-1) (
⋃m
k=1(Dk(α)(+)Ek(α)))α =

⋃m
k=1(Dk(α)(+)Ek(α))α =

⋃m
k=1(Dk(α)α⊕Ek(α)α)=

(
⋃m
k=1Dk(α)α)⊕(

⋃m
k=1Dk(α)α),

(3◦-2)
⋃m
k=1(D̃k⊕ Ẽk)= (

⋃m
k=1 D̃k)⊕(

⋃m
k=1 Ẽk),

(4◦) the α-cut of
⋃m
k=1(D̃k� Ẽk) is

⋃m
k=1[Dk(α)(−)Ek(α)],

(4◦-1) (
⋃m
k=1(Dk(α)(−)Ek(α)))α =

⋃m
k=1(Dk(α)(−)Ek(α))α =

⋃m
k=1(Dk(α)α�Ek(α)α)=

(
⋃m
k=1Dk(α)α)�(

⋃m
k=1Dk(α)α),

(4◦-2)
⋃m
k=1(D̃k� Ẽk)= (

⋃m
k=1Dk)�(

⋃m
k=1Ek).

Proof. By extension principle (1◦)

µDk(α)α⊕Ek(α)α
(
z(1),z(2), . . . ,z(n)

)
= sup
z(j)=x(j)+y(j))

j=1,2,...,n

µDk(α)α
(
x(1),x(2), . . . ,x(n)

)
∧µEk(α)α

(
y(1),y(2), . . . ,y(n)

)
= sup
(x(1),x(2),...,x(n))

µDk(α)α
(
x(1),x(2), . . . ,x(n)

)
∧µEk(α)α

(
z(1)−x(1),z(2)−x(2), . . . ,z(n)−x(n))
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=α, if
(
x(1),x(2), . . . ,x(n)

)∈Dk(α),(
z(1)−x(1),z(2)−x(2), . . . ,z(n)−x(n))∈ Ek(α),

=α, if
(
z(1),z(2), . . . ,z(n)

)∈Dk(α)(+)Ek(α),
= µ(Dk(α)+Ek(α))α

(
z(1),z(2), . . . ,z(n)

) ∀(x(1),x(2), . . . ,x(n))∈Rn.
(3.7)

(2◦) The proof is similar to that of (1◦).
(3◦) Let S̃k = D̃k⊕ Ẽk; from (2.11), we have

m⋃
k=1

S̃k =
m⋃
k=1

⋃
α∈[0,1]

(
Dk(α)(+)Ek(α)

)
α =

⋃
α∈[0,1]

m⋃
k=1

(
Dk(α)(+)Ek(α)

)
α. (3.8)

Therefore, the α-cut of
⋃m
k=1(D̃k⊕ Ẽk)=

⋃m
k=1 S̃k is

⋃m
k=1Sk(α)=

⋃m
k=1 (Dk(α)(+)Ek(α)).

(3◦-1) For each α ∈ [0,1], the subset
⋃m
k=1Sk(α) of Rn corresponds to the fuzzy set⋃m

k=1Sk(α)α =
⋃m
k=1(Dk(α)(+)Ek(α))α. We first prove

( m⋃
k=1

Sk(α)
)
α
=

m⋃
k=1

Sk(α)α. (3.9)

We have

µ⋃m
k=1 Sk(α)α

(
z(1),z(2), . . . ,z(n)

)
=

m∨
k=1

µSk(α)α
(
z(1),z(2), . . . ,z(n)

)
=α, if

(
z(1),z(2), . . . ,z(n)

)∈ Sk(α) for some k∈ {1,2, . . . ,m},

=α, if
(
z(1),z(2), . . . ,z(n)

)∈ m⋃
k=1

Sk(α),

= µ(⋃mk=1 Sk(α))α
(
z(1),z(2), . . . ,z(n)

) ∀(z(1),z(2), . . . ,z(n))∈Rn.

(3.10)

Therefore, (
⋃m
k=1Sk(α))α =

⋃m
k=1Sk(α)α. Hence

( m⋃
k=1

(
Dk(α)(+)Ek(α)

))
α
=

m⋃
k=1

(
Dk(α)(+)Ek(α)

)
α. (3.11)

For each α∈ [0,1] and each k, (1◦) holds. Therefore,

m⋃
k=1

(
Dk(α)(+)Ek(α)

)
α =

m⋃
k=1

(
Dk(α)α⊕Ek(α)α

)
. (3.12)

Finally, we will prove

m⋃
k=1

(
Dk(α)α⊕Ek(α)α

)= m⋃
k=1

(
Dk(α)α

)⊕ m⋃
k=1

(
Ek(α)α

)
. (3.13)
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We have

µ⋃m
k=1(Dk(α)α⊕Ek(α)α)

(
z(1),z(2), . . . ,z(n)

)
=

m∨
k=1

µDk(α)α⊕Ek(α)α
(
z(1),z(2), . . . ,z(n)

)

=
m∨
k=1

sup
z(j)=x(j)+y(j)
j=1,2,...,n

µDk(α)α
(
x(1),x(2), . . . ,x(n)

)

∧µEk(α)α
(
y(1),y(2), . . . ,y(n)

)
=

m∨
k=1

∨
(y(1),y(2),...,y(n))

[
µDk(α)α

(
z(1)−y(1),z(2)−y(2), . . . ,z(n)−y(n))

∧µEk(α)α
(
y(1),y(2), . . . ,y(n)

)]
=

∨
(y(1),y(2),...,y(n))

[
µ⋃m

k=1Dk(α)α
(
z(1)−y(1),z(2)−y(2), . . . ,z(n)−y(n))

∧µ⋃m
k=1 Ek(α)α

(
y(1),y(2), . . . ,y(n)

)]
=µ(⋃mk=1Dk(α)α)⊕(

⋃m
k=1 Ek(α)α)

(
z(1),z(2), . . . ,z(n)

) ∀(z(1),z(2), . . . ,z(n))∈Rn.
(3.14)

(3◦-2) By decomposition theorem and (3◦-1), we have

m⋃
k=1

(
D̃k⊕ Ẽk

)= m⋃
k=1

⋃
α∈[0,1]

(
Dk(α)(+)Ek(α)

)
α

=
⋃

α∈[0,1]

m⋃
k=1

(
Dk(α)(+)Ek(α)

)
α

=
⋃

α∈[0,1]

[( m⋃
k=1

Dk(α)α

)
⊕
( m⋃
k=1

Ek(α)α

)]
.

(3.15)

Let Ã=⋃mk=1 D̃k, B̃ =
⋃m
k=1 Ẽk. From (3.9),

A(α)α =
m⋃
k=1

D̃k(α)α, B(α)α =
m⋃
k=1

Ẽk(α)α, ∀α∈ [0,1], (3.16)

Ã⊕ B̃ =
⋃

α∈[0,1]

[
A(α)(+)B(α)]α = ⋃

α∈[0,1]

[
A(α)α⊕B(α)α

]

=
⋃

α∈[0,1]

[( m⋃
k=1

Dk(α)α

)
⊕
( m⋃
k=1

Ek(α)α

)]
.

(3.17)
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From (3.15), (3.17), we have

m⋃
k=1

(
D̃k⊕ Ẽk

)= ⋃
α∈[0,1]

[( m⋃
k=1

Dk(α)α

)
⊕
( m⋃
k=1

Ek(α)α

)]

=
( m⋃
k=1

D̃k

)
⊕
( m⋃
k=1

Ẽk

)
.

(3.18)

Properties (4◦), (4◦-1), and (4◦-2) can be proved similarly as (3◦), (3◦-1), and (3◦-2).

Property 3.12. D̃k ∈ Fc , k= 1,2, . . . ,m, and q ≠ 0; then

(1◦) the α-cut of
⋃m
k=1(q1�D̃k) is

⋃m
k=1(q(·)Dk(α)),

(2◦)
⋃m
k=1 (q(�)Dk(α))α = q1�(

⋃m
k=1Dk(α)α),

(3◦)
⋃m
k=1(q1�D̃k)= q1�(

⋃m
k=1 D̃k).

Proof. The proof goes on the lines of the proof of Property 3.11.

Property 3.13. D̃m,Ẽm,D̃, Ẽ ∈ Fc ,m= 1,2, . . ., and limm→∞ D̃m = D̃, limm→∞ Ẽm = Ẽ,

then

(1◦) limm→∞(D̃m⊕ Ẽm)= D̃⊕ Ẽ = limm→∞(D̃m)⊕ limm→∞(Ẽm),
(2◦) limm→∞(D̃m� Ẽm)= D̃� Ẽ = limm→∞(D̃m)� limm→∞(Ẽm),
(3◦) limm→∞(k1�D̃m)= k1�D̃ = k1�(limm→∞(D̃m)), k≠ 0.

Proof. (1◦) Since limm→∞ D̃m = D̃, limm→∞ Ẽm = Ẽ, by Property 3.10, for each α ∈
[0,1] and every neighborhood O((a(1,1),a(1,2)), . . . ,(a(n,1),a(n,2))) of D(α), there exists

a natural number m(1) such that when k ≥m(1), Dk(α) ⊂ O((a(1,1),a(1,2)), . . . ,(a(n,1),
a(n,2))). Also, for every neighborhood O((b(1,1),b(1,2)), . . . ,(b(n,1),b(n,2))) of E(α), there

exists a natural number m(2) such that when k ≥ m(2), Ek(α) ⊂ O((b(1,1),b(1,2)), . . . ,
(b(n,1),b(n,2))).

Let m = max(m(1),m(2)). Then, for each α ∈ [0,1], when k ≥m, by (3.2), we have

Dk(α)(+)Ek(α) ⊂ O((a(1,1)+b(1,1),a(1,2)+b(1,2)), . . . ,(a(n,1)+b(n,1),a(n,2)+b(n,2))) (∈
TF), and O((a(1,1)+b(1,1),a(1,2)+b(1,2)), . . . ,(a(n,1)+b(n,1),a(n,2)+b(n,2))) is the neigh-

borhood of D(α)(+)E(α). By decomposition theorem,

D̃k⊕ Ẽk =
⋃

α∈[0,1]

[
Dk(α)+Ek(α)

]
α,

D̃⊕ Ẽ =
⋃

α∈[0,1]

[
D(α)+E(α)]α. (3.19)

Hence, by Property 3.10, we have limm→∞ D̃m⊕ Ẽm = D̃⊕ Ẽ.

Properties (2◦) and (3◦) can be proved the same way as (1◦).

Property 3.14. D̃k, Ẽk,D̃, Ẽ ∈ Fc , k= 1,2, . . . , and

lim
m→∞µ

⋃m
k=1 D̃k

(
x(1),x(2), . . . ,x(n)

)= µD̃(x(1),x(2), . . . ,x(n)),
lim
m→∞µ

⋃m
k=1 Ẽk

(
x(1),x(2), . . . ,x(n)

)
= µẼ

(
x(1),x(2), . . . ,x(n)

) ∀(x(1),x(2), . . . ,x(n))∈Rn,
µ⋃m

k=1 D̃k
⊂ D̃, µ⋃m

k=1 Ẽk
⊂ Ẽ, ∀m= 1,2, . . . ,

(3.20)
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then

(1◦) limm→∞
⋃m
k=1(D̃k⊕ Ẽk)= D̃⊕ Ẽ = (limm→∞

⋃m
k=1D̃k)⊕(limm→∞

⋃m
k=1 Ẽk),

(2◦) limm→∞
⋃m
k=1(D̃k� Ẽk)= D̃� Ẽ = (limm→∞

⋃m
k=1 D̃k)�(limm→∞

⋃m
k=1Ẽk),

(3◦) when q ≠ 0, limm→∞
⋃m
k=1(q1�D̃k)= q1�D̃.

Proof. (1◦) Since D̃1 ⊂ D̃1∪D̃2 ⊂ ··· ⊂
⋃m
k=1 D̃k ⊂ ··· ⊆ D̃ and

lim
m→∞µ

⋃m
k=1 D̃k

(
x(1),x(2), . . .x(n)

)= µD̃(x(1),x(2), . . . ,x(n)) (3.21)

for all (x(1),x(2), . . . ,x(n)) ∈ Rn, hence, by Property 3.7, we have limm→∞
⋃m
k=1D̃k = D̃.

Similarly, limm→∞
⋃m
k=1Ẽk = Ẽ. By Property 3.11(3◦-2),

m⋃
k=1

(
D̃k⊕ Ẽk

)= ( m⋃
k=1

D̃k

)
⊕
( m⋃
k=1

Ẽk

)
. (3.22)

From Property 3.13(1◦),

lim
m→∞

m⋃
k=1

(
D̃k⊕ Ẽk

)= ( lim
m→∞

m⋃
k=1

(
D̃k
))⊕( lim

m→∞

m⋃
k=1

(
Ẽk
))= D̃⊕ Ẽ, (3.23)

and (2◦), (3◦) can be proved as (1◦).

Next, we will discuss the convergency of the fuzzy vectors in SFR.

Property 3.15. For D̃m,Ẽm,D̃, Ẽ ∈ Fc ,m= 1,2, . . . , limm→∞ D̃m = D̃, limm→∞ Ẽm = Ẽ,

then the fuzzy vectors
���������������������������������������������������������������������������������������������������������������������������→
ẼmD̃m, m= 1,2, . . . , converge to the fuzzy vectors

�����������������������������������→
ẼD̃.

Proof. Since
���������������������������������������������������������������������������������������������������������������������������→
ẼmD̃m = D̃m� Ẽm,

�����������������������������������→
ẼD̃ = D̃� Ẽ, then, by Property 3.13(2◦),

lim
m→∞

���������������������������������������������������������������������������������������������������������������������������→
ẼmD̃m = D̃� Ẽ =

�����������������������������������→
ẼD̃. (3.24)

Property 3.16. D̃k, Ẽk, D̃, Ẽ ∈ Fc , k= 1,2 . . . ; let Q̃m =
⋃m
k=1 D̃k, S̃m =

⋃m
k=1 Ẽk, and let

limm→∞µQ̃m(x
(1),x(2), . . . ,x(n)) = µD̃(x(1),x(2), . . . ,x(n)) and limm→∞µS̃m(x

(1),x(2), . . . ,
x(n)) = µẼ(x(1),x(2), . . . ,x(n)) for all (x(1),x(2), . . . ,x(n)) ∈ Rn, and Q̃m ⊂ D̃, S̃m ⊂ Ẽ.

Then the sequence of fuzzy vectors
����������������������������������������������������������������������������������������������������������������������������→
S̃mQ̃m, m= 1,2, . . . , converges to the fuzzy vector

�����������������������������������→
ẼD̃.

Proof. Similar to Property 3.14, limm→∞
⋃m
k=1 D̃k = D̃ and limm→∞

⋃m
k=1 Ẽk = Ẽ. By

Property 3.13(2◦), limm→∞
����������������������������������������������������������������������������������������������������������������������������→
S̃mQ̃m=(limm→∞

⋃m
k=1 D̃k)�(limm→∞

⋃m
k=1 Ẽk)= D̃� Ẽ =

�����������������������������������→
ẼD̃.

For convenience, we denote (q(1)1 �
�������������������������������������������������������������������������������������→
Ẽ1D̃1)⊕(q(2)1 �

�������������������������������������������������������������������������������������→
Ẽ2D̃2)⊕···⊕(q(r)1 �

�����������������������������������������������������������������������������������������→
Ẽr D̃r ) by

∑r
k=1⊕

(q(k)1 �
��������������������������������������������������������������������������������������→
ẼkD̃k).

Property 3.17. D̃m,k, Ẽm,k,D̃k, Ẽk ∈ Fc , m = 1,2, . . . , k = 1,2, . . . ,r , and for each k∈
{1,2, . . . ,r}, limm→∞ D̃k,m = D̃k, limm→∞ D̃k,m = D̃k, qk ≠ 0. The sequence of the fuzzy

vectors
∑r
k=1⊕(q(k)1 �

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→
Ẽm,kD̃m,k),m= 1,2, . . . , converges to the fuzzy vector

∑r
k=1⊕(q(k)1 �

��������������������������������������������������������������������������������������→
ẼkD̃k).
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Proof. Since
∑r
k=1⊕(q(k)1 �

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→
Ẽm,kD̃m,k) =

∑r
k=1⊕(q(k)1 � (D̃m,k� Ẽm,k)), m = 1,2, . . . ,

for each k, by Property 3.13(2◦), limm→∞ D̃m,k � Ẽm,k = D̃k � Ẽk. By Property 3.13(1◦),
(3◦), we have

lim
m→∞

r∑
k=1

⊕(q(k)1 �(D̃m,k� Ẽm,k))
=

r∑
k=1

⊕(q(k)1 �(D̃k� Ẽk))= r∑
k=1

⊕(q(k)1 �
��������������������������������������������������������������������������������������→
ẼkD̃k

)
.

(3.25)

Example 3.18. Consider the fuzzy vectors limm→∞
������������������������������������������������������������������������������������→
Q̃Z̃m in Example 2.11. Let

µZ̃(x,y)=
1−(x−10)2−(y−30)2, if (x−10)2+(y−30)2 ≤ 1,

0, elsewhere.
(3.26)

We will prove limm→∞ Z̃m = Z̃ . Since C((10,30),1+1/m)⊂ C((10,30),1+1/(m−1))
and for any (x,y)∈R2, the following holds:

1
(1+1/m)2

[(
1+ 1

m

)2

−(x−10)2−(y−30)2
]

≤ 1(
1+1/(m−1)

)2

[(
1+ 1

m−1

)2

−(x−10)2−(y−30)2
]
,

(3.27)

therefore, µZ̃m(x,y) ≤ µZ̃m−1
(x,y) for all (x,y) ∈ R2, and hence Z̃1 ⊃ Z̃2 ⊃ ···⊃Z̃m ⊃

··· ⊃ Z̃ , and obviously, limm→∞µZ̃m(x,y) = µZ̃(x,y) for all (x,y) ∈ R2. Let Z̃′m, Z̃′

be the complement fuzzy sets of Z̃m, Z̃ , respectively. We have limm→∞µZ̃′m(x,y) =
µZ̃′(x,y) for all (x,y) ∈ R2 and Z̃′1 ⊂ Z̃′2 ⊂ ··· ⊂ Z̃′m ⊂ ··· ⊂ Z̃′. By Property 3.7,

limm→∞ Z̃+m′ = Z̃′. Thus, limm→∞ Z̃m = Z̃. Therefore, from Property 3.15, limm→∞
������������������������������������������������������������������������������������→
Q̃Z̃m

=
������������������������������������������→
Q̃Z̃ . Thus, the membership function of

������������������������������������������→
Q̃Z̃ is

µ ������������������������������������������→
Q̃Z̃
(x,y)= µZ̃�Q̃(x,y)

= sup
x=x(1)−y(1)
y=x(2)−y(2)

µZ̃
(
x(1),x(2)

)∧µQ̃(y(1),y(2))

= µZ̃(x+1,y+2)

=
1−(x−9)2−(y−28)2, if (x−9)2−(y−28)2 ≤ 1,

0, elsewhere.

(3.28)

In the crisp case, starting from Q = (1,2), aiming at Z = (10,30), we could have the

vector
������������������������������������������→
QZ = (9,28). The grade of membership of

������������������������������������������→
QZ which belongs to the fuzzy vector

������������������������������������������→
Q̃Z̃ is µ ������������������������������������������→

Q̃Z̃
(9,28)= 1, that is, the grade of membership function of the fuzzy vector

�������������������������������→̃
PZ̃

for the crisp vector
�������������������������→
PS is 1, and the point R = (9.5,29.5) is in the circle of center (9,28)

and radius 1. The crisp vector of Q to R is
�����������������������������������������→
QR = (8.5,27.5). The grade of membership
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function of
������������������������������������������→
Q̃Z̃ is µ ������������������������������������������→

Q̃Z̃
(8.5,27.5)= 0.5, that is, the grade of membership function of the

fuzzy vector
�������������������������������→̃
PZ̃ for the crisp vector

�����������������������������������������→
QR is 0.5.
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