

ON NON-MIDPOINT LOCALLY UNIFORMLY ROTUND NORMABILITY IN BANACH SPACES

A. K. MIRMOSTAFAEE

Received 21 May 2002

We will show that if X is a tree-complete subspace of ℓ_∞ , which contains c_0 , then it does not admit any weakly midpoint locally uniformly convex renorming. It follows that such a space has no equivalent Kadec renorming.

2000 Mathematics Subject Classification: 46B20.

1. Introduction. It is known that ℓ_∞ has an equivalent strictly convex renorming [2]; however, by a result due to Lindenstrauss, it cannot be equivalently renormed in locally uniformly convex manner [10]. In this note, we will show that every tree-complete subspace of ℓ_∞ , which contains c_0 , does not admit any equivalent weakly midpoint locally uniformly convex norm. This can be considered as an extension of [1, 8]. Since every strictly convexifiable Banach space with Kadec property admits an equivalent midpoint locally uniformly convex renorming [9], it follows that every subspace of ℓ_∞ with the tree-completeness property has no equivalent Kadec renorming. The existence of such a (nontrivial) subspace, which does not contain any copy of ℓ_∞ , has already been proved by Haydon and Zizler (see [5, 7]).

2. Results. We recall that a norm $\|\cdot\|$ on a Banach space X is said to be *midpoint locally uniformly rotund* (MLUR) if, whenever $\{x_n\}$, $\{y_n\}$, and x are in X with $\|x_n\| \rightarrow \|x\|$, $\|y_n\| \rightarrow \|x\|$, and $\|(x_n + y_n)/2 - x\| \rightarrow 0$, we necessarily have $\|x_n - y_n\| \rightarrow 0$. If at the end of the last sentence, we replace norm with weak, the definition of *weakly midpoint locally uniformly rotund* (wMLUR) will be obtained [3]. Let T be the set of all finite (possible empty) strings of 0's and 1's. The empty string () is the unique string of length 0; the *length* $|t|$ of a string t is n if $t \in \{0, 1\}^n$. The *tree order* is defined by $s \prec t$ if $|s| < |t|$ and $t(m) = s(m)$ for $m \leq |s|$. Each $t \in T$ has exactly two immediate successors, that is, $t0$ and $t1$.

A lattice L is said to be *tree-complete* if, whenever $\{f_t\}_{t \in T}$ is a bounded disjoint family in L , there exists $b \in \{0, 1\}^N$, such that $\sum_{n \in N} f_{b|n}$ is in L .

Haydon and Zizler [7] constructed a closed linear subspace of ℓ_∞ (which is a tree-complete sublattice of ℓ_∞) such that it contains c_0 but does not contain any subspace isomorphic to ℓ_∞ . Notice that in this space X every infinite subset M of N has an infinite subset $M_0 \subset M$ such that $\mathbf{1}_{M_0} \in X$ [7].

THEOREM 2.1. *Let X be a tree-complete sublattice of ℓ_∞ . If X contains c_0 , then X does not admit any equivalent wMLUR renorming.*

PROOF. Let $\|\cdot\|$ be an equivalent norm on X . We will show that this norm is not wMLUR. Let

$$\begin{aligned} A_{(\cdot)} &= \{f \in X : \|f\|_\infty = 1, N \setminus \text{supp}(f) \text{ is infinite}\}, \\ M_{(\cdot)} &= \sup \{\|f\| : f \in A_{(\cdot)}\}, \quad m_{(\cdot)} = \inf \{\|f\| : f \in A_{(\cdot)}\}. \end{aligned} \quad (2.1)$$

Choose an element $f_{(\cdot)}$ of X such that $\|f_{(\cdot)}\| > (3M_{(\cdot)} + m_{(\cdot)})/4$. Then select two disjoint infinite subsets N'_0 and N'_1 of $N \setminus \text{supp}(f_{(\cdot)})$ with $\mathbf{1}_{N'_i} \in X$ for some $k_i \in N'_i$, define $N_i = N'_i \setminus \{k_i\}$, and let

$$A_i = \{f \in A_{(\cdot)} : f(n) = f_{(\cdot)}(n) \text{ for each } n \notin N_i\} \quad (i = 0, 1). \quad (2.2)$$

Suppose that for some $t \in T$, with $|t| < n$, A_t is specified. Put

$$M_t = \sup \{\|f\| : f \in A_t\}, \quad m_t = \inf \{\|f\| : f \in A_t\}. \quad (2.3)$$

Let $f_t \in A_t$ satisfy $\|f_t\| > (3M_t + m_t)/4$ and take two disjoint infinite subsets N'_{t0} and N'_{t1} of $N_t \setminus \text{supp}(f_t)$ with $\mathbf{1}_{N'_{ti}} \in X$, put $N_{ti} = N'_{ti} \setminus \{k_{ti}\}$, and define

$$A_{ti} = \{f \in A_t : f(n) = f_t(n), n \notin N_{ti}\} \quad (i = 0, 1). \quad (2.4)$$

Thus, by induction on $|t|$, we can obtain a family $\{A_t\}_{t \in T}$ of subsets of X , a family $\{f_t\}$ of elements of X , a family $\{N_t\}$ of infinite subsets of N , and a family of integers $\{k_t\}$ with the following properties.

(a) A_{ti} is of the form

$$A_{ti} = \{f \in A_t : f(n) = f_t(n), n \notin N_{ti}\} \quad (i = 0, 1), \quad (2.5)$$

for each $t \in T$.

- (b) $k_{ti} \in N_t \setminus N_{ti}$ and $f_t(k_t) = 0$ for $t \in T$ and $i = 0, 1$.
- (c) $\|f_t\| > (3M_t + m_t)/4$, where M_t and m_t denote the supremum and infimum of $\{\|f\| : f \in A_t\}$, respectively.
- (d) $N_s \subset N_t$ whenever $t \prec s$ and $N_t \cap N_s = \emptyset$, if s and t are not comparable.
- (e) $\text{supp}(f_t - f_s) \subset N_t \setminus N_s$ for $t \prec s$.

By (e), $\{g_t\}_{t \in T}$, defined by

$$g_{(\cdot)} = f_{(\cdot)}, \quad g_{ti} = f_{ti} - f_t \quad (i = 0, 1), \quad (2.6)$$

is a disjoint family of elements of X . By the tree-completeness of X , there exists some $b \in \{0, 1\}^N$ such that

$$f_b(x) = f_{(\cdot)} + \sum_{n \in N} g_{b|n} \quad (2.7)$$

is in X . Let $\{k_{\alpha(n)}\}$ be a subsequence of $\{k_{b|n}\}$ such that $\mathbf{1}_E \in X$, where $E = \{k_{\alpha(1)}, k_{\alpha(2)}, \dots\}$. Let $E_n = \{k_{\alpha(n)}, k_{\alpha(n+1)}, \dots\}$ and $h_n = \mathbf{1}_{E_n}$. By (a) and (b), $g_{n+1}^+ = f_b + h_{n+1}$ and $g_{n+1}^- = f_b - h_{n+1}$ are in $A_{b|n}$. Next, select some $\mu \in X^*$, such that $\mu(h_1) = 1$ and $\mu(g) = 0$ for each $g \in c_0$. Clearly, for such an element μ and each $n \in N$, we have $\mu(h_n) = 1$. By

(a), $2f_b - f \in A_{b|n}$, thus $\|2f_b - f\| \leq M_{b|n}$ for each $f \in A_{b|n}$ and $n \in N$. It follows that

$$\frac{(3M_{b|n-1} + m_{b|n-1})}{2} \leq \|2f_{b|n}\| \leq M_{b|n} + \|f\|, \quad \forall f \in A_{b|n}, \quad (2.8)$$

and so

$$\frac{(3M_{b|n-1} + m_{b|n-1})}{2} \leq M_{b|n} + m_{b|n} \leq M_{b|n-1} + m_{b|n-1}, \quad \forall n \in N. \quad (2.9)$$

Therefore,

$$\begin{aligned} M_{b|n} - m_{b|n} &\leq M_{b|n} - \frac{(M_{b|n-1} + m_{b|n-1})}{2} \\ &\leq M_{b|n-1} - \frac{(M_{b|n-1} + m_{b|n-1})}{2} \\ &= \frac{(M_{b|n-1} - m_{b|n-1})}{2}. \end{aligned} \quad (2.10)$$

The above relations show that

$$|\|g_{n+1}^\pm\| - \|f_b\|| \leq M_{b|n} - m_{b|n} \leq \frac{(M_{b|n-1} - m_{b|n-1})}{2} \leq \frac{(M_{b|1} - m_{b|1})}{2^n}. \quad (2.11)$$

That is $\lim |\|g_n^\pm\|| = \|f_b\| = \lim |\|g_n^-\||$. Moreover, $f_b = (g_n^+ + g_n^-)/2$. But $\lim(g_n^+ - g_n^-) \neq 0$, since $\mu(h_n) = 1$ for each $n \in N$. This shows that X does not admit any wMLUR norm. \square

It is known that weakly midpoint locally uniformly rotundity of a Banach space X is equivalent to saying that every point of $S(\hat{X})$ is an extreme point of $B(X^{**})$ [11]. It follows that the space considered in [Theorem 2.1](#) has no equivalent norm such that $S(\hat{X})$ is a subset of $B(X^{**})$.

A norm on a Banach space X is said to be *strictly convex (rotund) (R)* if the unit sphere of X contains no nontrivial line segment. We say that a norm is *Kadec* if the weak and norm topologies coincide on the unit sphere. Every MLUR Banach space admits Kadec renorming (see [1]). Haydon in [6, Corollary 6.6] gives an example of a Kadec renormable space which has no equivalent R norm. The following result gives an example of a strictly convexifiable space with no equivalent Kadec norm.

COROLLARY 2.2. *If a tree-complete subspace X of ℓ_∞ contains c_0 , then it does not admit any equivalent Kadec renorming.*

PROOF. It is known that ℓ_∞ admits an equivalent strictly convex norm (see [4, page 120] or [2]). In [9] it is shown that every R Banach space with the Kadec property admits an equivalent MLUR renorming (see also [3, chapter IV]). Thus the result follows from [Theorem 2.1](#). \square

REFERENCES

- [1] G. A. Aleksandrov and I. P. Dimitrov, *On the equivalent weakly midpoint locally uniformly rotund renorming of the space l_∞* , Mathematics and Mathematical Education (Sunny Beach (Sl"nchev Bryag), 1985), B"lgar. Akad. Nauk, Sofia, 1985, pp. 189–191.
- [2] M. M. Day, *Normed Linear Spaces*, 3rd ed., Springer-Verlag, New York, 1973.
- [3] R. Deville, G. Godefroy, and V. Zizler, *Smoothness and Renormings in Banach Spaces*, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow, 1993.
- [4] J. Diestel, *Geometry of Banach Spaces—Selected Topics*, Lecture Notes in Mathematics, vol. 485, Springer-Verlag, Berlin, 1975.
- [5] R. Haydon, *A nonreflexive Grothendieck space that does not contain l_∞* , Israel J. Math. **40** (1981), no. 1, 65–73.
- [6] ———, *Trees in renorming theory*, Proc. London Math. Soc. (3) **78** (1999), no. 3, 541–584.
- [7] R. Haydon and V. Zizler, *A new space with no locally uniformly rotund renorming*, Canad. Math. Bull. **32** (1989), no. 1, 122–128.
- [8] Z. Hu, W. B. Moors, and M. A. Smith, *On a Banach space without a weak mid-point locally uniformly rotund norm*, Bull. Austral. Math. Soc. **56** (1997), no. 2, 193–196.
- [9] B.-L. Lin, P.-K. Lin, and S. L. Troyanski, *Characterizations of denting points*, Proc. Amer. Math. Soc. **102** (1988), no. 3, 526–528.
- [10] J. Lindenstrauss, *Weakly compact sets—their topological properties and the Banach spaces they generate*, Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La, 1967), Ann. of Math. Studies, No. 69, Princeton University Press, Princeton, NJ, 1972, pp. 235–273.
- [11] W. B. Moors and J. R. Giles, *Generic continuity of minimal set-valued mappings*, J. Austral. Math. Soc. Ser. A **63** (1997), no. 2, 238–262.

A. K. Mirmostafaee: Department of Mathematics, Damghan University of Sciences, P.O. Box 36715-364, Damghan, Iran

Special Issue on Intelligent Computational Methods for Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becoming increasingly important in today's economic and financial world, especially in areas such as portfolio management, asset valuation and prediction, fraud detection, and credit risk management. For example, in a credit risk context, the recently approved Basel II guidelines advise financial institutions to build comprehensible credit risk models in order to optimize their capital allocation policy. Computational methods are being intensively studied and applied to improve the quality of the financial decisions that need to be made. Until now, computational methods and models are central to the analysis of economic and financial decisions.

However, more and more researchers have found that the financial environment is not ruled by mathematical distributions or statistical models. In such situations, some attempts have also been made to develop financial engineering models using intelligent computing approaches. For example, an artificial neural network (ANN) is a nonparametric estimation technique which does not make any distributional assumptions regarding the underlying asset. Instead, ANN approach develops a model using sets of unknown parameters and lets the optimization routine seek the best fitting parameters to obtain the desired results. The main aim of this special issue is not to merely illustrate the superior performance of a new intelligent computational method, but also to demonstrate how it can be used effectively in a financial engineering environment to improve and facilitate financial decision making. In this sense, the submissions should especially address how the results of estimated computational models (e.g., ANN, support vector machines, evolutionary algorithm, and fuzzy models) can be used to develop intelligent, easy-to-use, and/or comprehensible computational systems (e.g., decision support systems, agent-based system, and web-based systems)

This special issue will include (but not be limited to) the following topics:

- **Computational methods:** artificial intelligence, neural networks, evolutionary algorithms, fuzzy inference, hybrid learning, ensemble learning, cooperative learning, multiagent learning

- **Application fields:** asset valuation and prediction, asset allocation and portfolio selection, bankruptcy prediction, fraud detection, credit risk management
- **Implementation aspects:** decision support systems, expert systems, information systems, intelligent agents, web service, monitoring, deployment, implementation

Authors should follow the Journal of Applied Mathematics and Decision Sciences manuscript format described at the journal site <http://www.hindawi.com/journals/jamds/>. Prospective authors should submit an electronic copy of their complete manuscript through the journal Manuscript Tracking System at <http://mts.hindawi.com/>, according to the following timetable:

Manuscript Due	December 1, 2008
First Round of Reviews	March 1, 2009
Publication Date	June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong; mskklai@cityu.edu.hk