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We present an introduction to the geometry of higher-order vector and covector bundles
(including higher-order generalizations of the Finsler geometry and Kaluza-Klein gravity)
and review the basic results on Clifford and spinor structures on spaces with generic local
anisotropy modeled by anholonomic frames with associated nonlinear connection struc-
tures. We emphasize strong arguments for application of Finsler-like geometries in modern
string and gravity theory, noncommutative geometry and noncommutative field theory, and
gravity.
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1. Introduction. Nowadays, interest has been established in non-Riemannian geome-
tries derived in the low-energy string theory [18, 64, 65], noncommutative geometry
[1,3,8,12,15,22,32,34,53,55,67,109, 111, 112], and quantum groups [33, 35, 36, 37].
Various types of Finsler-like structures can be parametrized by generic off-diagonal
metrics, which cannot be diagonalized by coordinate transforms but only by anholo-
nomic maps with associated nonlinear connection (in brief, N-connection). Such struc-
tures may be defined as exact solutions of gravitational field equations in the Einstein
gravity and its generalizations [75, 79, 80, 94, 95, 96, 97, 98, 99, 100, 102, 103, 104,
105,109,110, 111], for instance, in the metric-affine [19, 23, 56] Riemann-Cartan gravity
[24, 25]. Finsler-like configurations are considered in locally anisotropic thermodynam-
ics, kinetics, related stochastic processes [85, 96, 107, 108], and (super-) string theory
[84, 87, 90, 91, 92].

The following natural step in these lines is to elucidate the theory of spinors in
effectively derived Finsler geometries and to relate this formalism of Clifford structures
to noncommutative Finsler geometry. It should be noted that the rigorous definition
of spinors for Finsler spaces and generalizations was not a trivial task because (on
such spaces) there are no defined even local groups of automorphisms. The problem
was solved in [82, 83, 88, 89, 93] by adapting the geometric constructions with respect
to anholonomic frames with associated N-connection structure. The aim of this work
is to outline the geometry of generalized Finsler spinors in a form more oriented to
applications in modern mathematical physics.

We start with some historical remarks: the spinors studied by mathematicians and
physicists are connected with the general theory of Clifford spaces introduced in 1876
[14]. The theory of spinors and Clifford algebras play a major role in contemporary
physics and mathematics. The spinors were discovered by Elie Cartan in 1913 in
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mathematical form in his researches on representation group theory [10, 11]; he showed
that spinors furnish a linear representation of the groups of rotations of a space of
arbitrary dimensions. The physicists Pauli [60] and Dirac [20] (in 1927, resp., for the
three-dimensional and four-dimensional space-times) introduced spinors for the rep-
resentation of the wave functions. In general relativity theory spinors and the Dirac
equations on (pseudo-) Riemannian spaces were defined in 1929 by Weyl [113], Fock
[21], and Schrodinger [68]. The books [61, 62, 63] by Penrose and Rindler summa-
rize the spinor and twistor methods in space-time geometry (see additional references
[7,9, 26, 27, 31, 54] on Clifford structures and spinor theory).

Spinor variables were introduced in Finsler geometries by Takano in [73] where he
dismissed anisotropic dependencies not only on vectors on the tangent bundle but also
on some spinor variables in a spinor bundle on a space-time manifold. Then generalized
Finsler geometries, with spinor variables, were developed by Ono and Takano in a series
of publications during 1990-1993 [57, 58, 59, 74]. The next steps were investigations of
anisotropic and deformed geometries with spinor and vector variables and applications
in gauge and gravity theories elaborated by Stavrinos and his students, Koutroubis,
Manouselis, and Balan at the beginning of 1994 [69, 70, 71, 72]. In those works the
authors assumed that some spinor variables may be introduced in a Finsler-like way,
but they did not relate the Finlser metric to a Clifford structure and restricted the
spinor-gauge Finsler constructions only to antisymmetric spinor metrics on two-spinor
fibers with possible generalizations to four-dimensional Dirac spinors.

Isotopic spinors, related with SU(2) internal structural groups, were considered in
generalized Finsler gravity and gauge theories also by Asanov and Ponomarenko [4]. In
that book, and in other papers on Finsler geometry with spinor variables, the authors
did not investigate the possibility of introducing a rigorous mathematical definition of
spinors on spaces with generic local anisotropy.

An alternative approach to spinor differential geometry and generalized Finsler
spaces was elaborated, at the beginning of 1994, in a series of papers and commu-
nications by Vacaru and coauthors [83, 88, 101]. This direction originates from Clif-
ford algebras, Clifford bundles [28], Penrose’s spinor, and twistor space-time geometry
[61, 62, 63], which were reconsidered for the case of nearly autoparallel maps (general-
ized conformal transforms) in [86]. In the works [82, 83, 88, 89], a rigorous definition
of spinors for Finsler spaces, and their generalizations, was given. It was proven that
a Finsler, or Lagrange, metric (in a tangent or, more generally, in a vector bundle) in-
duces naturally a distinguished Clifford (spinor) structure which is locally adapted to
the nonlinear connection structure. Such spinor spaces could be defined for arbitrary
dimensions of base and fiber subspaces, their spinor metrics are symmetric, antisym-
metric, or nonsymmetric, depending on the corresponding base and fiber dimensions.
That work resulted in the formation of the spinor differential geometry of general-
ized Finsler spaces and developed a number of geometric applications to the theory of
gravitational and matter field interactions with generic local anisotropy.

The geometry of anisotropic spinors and (distinguished by nonlinear connections)
Clifford structures was elaborated for higher-order anisotropic spaces [82, 83, 92, 93]
and, more recently, for Hamilton and Lagrange spaces [109, 111].
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We emphasize that the theory of anisotropic spinors may be related not only to
generalized Finsler, Lagrange, Cartan, and Hamilton spaces or their higher-order gen-
eralizations, but also to anholonomic frames with associated nonlinear connections
which appear naturally even in (pseudo-) Riemannian and Riemann-Cartan geometries
if off-diagonal metrics are considered [94, 96, 97, 98, 102, 103, 104, 105, 110]. In order
to construct exact solutions of the Einstein equations in general relativity and extra-
dimensional gravity (for lower dimensions see [85, 96, 107, 108]), it is more convenient
to diagonalize space-time metrics by using some anholonomic transforms. As a result,
one induces locally anisotropic structures on space-time, which are related to anholo-
nomic (anisotropic) spinor structures.

The main purpose of the present review is to present a detailed summary and new
results on spinor differential geometry for generalized Finsler spaces and (pseudo-) Rie-
mannian space-times provided with an anholonomic frame and associated nonlinear
connection structure, to discuss and compare the existing approaches and to consider
applications to modern gravity and gauge theories. The work is based on communica-
tions [109, 111].

2. (Co-) vector bundles and N-connections. We outline the basic definitions and de-
notations for the vector and tangent (and their dual spaces) bundles and higher-order
vector/covector bundle geometry. In this work, we consider that the space-time geom-
etry can be modeled both on a (pseudo-) Riemannian manifold VI"+™! of dimension
n+m and on a vector bundle (or its dual, covector bundle) being, for simplicity, locally
trivial with a base space M of dimension n and a typical fiber F (cofiber F*) of dimen-
sion m, or as a higher-order extended vector/covector bundle (we follow the geometric
constructions and definitions of [45, 46, 47, 48, 49, 50, 51, 52], which were generalized
for vector superbundles in [90, 91, 92]). Such (pseudo-) Riemannian spaces and/or vec-
tor/covector bundles enabled with compatible fibered and/or anholonomic structures
are called anisotropic space-times. If the anholonomic structure with associated nonlin-
ear connection is modeled on higher-order vector/covector bundles, we use the term
higher-order anisotropic space-time. In this section, we usually omit proofs which can
be found in the mentioned monographs [45, 46, 47, 48, 49, 50, 51, 52, 92].

2.1. (Co-) vector and tangent bundles. A locally trivial vector bundle, in brief, v-
bundle, ¢ = (E,m,M,Gv,F) is introduced as a set of spaces and surjective map with the
properties that a real vector space F = R™ of dimension m (dimF = m, R denotes the
real numbers field) defines the typical fiber, the structural group is chosen to be the
group of automorphisms of R™, thatis, Gr = GL(m,R), and 7t : E — M is a differentiable
surjection of a differentiable manifold E (total space, dimE = n+m) to a differentiable
manifold M (base space, dimM = n). The local coordinates on ¢ are denoted u% =
(xt,¥%), or in brief u = (x,y) (the Latin indices i, j, k,... = 1,2,...,n define coordinates
of geometrical objects with respect to a local frame on base space M; the Latin indices
a,b,c,... = 1,2,...,m define fiber coordinates of geometrical objects and the Greek
indices «, B,y,... are considered as cumulative ones for coordinates of objects defined
on the total space of a v-bundle).
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Coordinate transforms u® = u® (u%) on a v-bundle € are defined as (xt, y%) — (x?',
y4"), where

Toxt(xt),  y¥ =K (x)y*, (2.1

and matrix Kg' (x?) € GL(m,R) are functions of a necessary smoothness class.
A local coordinate parametrization of v-bundle ¢ naturally defines a coordinate basis

0 0 0
alx = dux = (ai = dxi’ aa = ay“) (2.2)

and the reciprocal to (2.2) coordinate basis
A% =du® = (d' =dx', d*=dy?) (2.3)

which is uniquely defined from the equations d* o dg = 63, where 65 is the Kronecker
symbol and by “o” we denote the inner (scalar) product in the tangent bundle J€.

A tangent bundle (in brief, t-bundle) (TM,1t,M) to a manifold M can be defined as a
particular case of a v-bundle when the dimensions of the base and fiber spaces (the last
one considered as the tangent subspace) are identical, n = m. In this case both types
of indices i,k,... and a, b,... take the same values 1, 2,...,n. For t-bundles, the matrices
of fiber coordinates transforms from (2.1) can be written as K} = dx' /dx'.

We will also use the concept of covector bundle (in brief, cv-bundles) € = (E, %, M,
Gr,F*) which is introduced as a dual vector bundle for which the typical fiber F*
(cofiber) is considered to be the dual vector space (covector space) to the vector space F.
The fiber coordinates p, of E are dual to ¥ in E. The local coordinates on total space E
are denoted 1 = (x,p) = (x%,pa). The coordinate transforms on E, it = (x%,ps) — @' =
(x",pa), are written as

xt = xt(x1), pa =K% (x")pa. (2.4)

The coordinate bases on E* are denoted

Ou = afux = (ai = % 0% = azu) d*=du® = (d' =dx', da =dpa). (2.5)

We use breve symbols in order to distinguish the geometrical objects on a cv-bundle
¢* from those on a v-bundle €.

As a particular case with the same dimension of base space and cofiber, one obtains
the cotangent bundle (T*M,t*,M), in brief, ct-bundle, being dual to TM. The fibre
coordinates p; of T*M are dual to y! in TM. The coordinate transforms (2.4) on T*M
are stated by some matrices KX (x?) = ax*/ax¥.

In our further considerations, we will distinguish the base and cofiber indices.

2.2. Higher-order (co-) vector bundles. The geometry of higher-order tangent and
cotangent bundles provided with a nonlinear connection structure was elaborated in
[45, 49, 50, 51, 52] in order to geometrize the higher-order Lagrange and Hamilton
mechanics. In this case we have base spaces and fibers of the same dimension. To
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develop the approach to modern high-energy physics (in superstring and Kaluza-Klein
theories), we introduced (in [82, 83, 90, 91, 92, 93]) the concept of higher-order vector
bundle with the fibers consisting of finite “shells” of vector, or covector, spaces of
different dimensions not obligatorily coinciding with the base space dimension.

DEFINITION 2.1. A distinguished vector/covector space, in brief, dvc-space, of type
F=Fv(1),v(2),cv(3),...,cv(z—1),v(2)] (2.6)

is a vector space decomposed into an invariant oriented direct sum

F:F(l)GBF(Z)GBFZE)GB- . '@F(tfl)@F(Z) 2.7)
of vector spaces F(),F2),...,F(z) of respective dimensions
dimF(]) =mi, dimF(2> =My, ..., dimF<Z) =Mmg;, (28)
and of covector spaces F(),...,F# ;) of respective dimensions
dimF3, =mj, ..., dimF} _,, =m{,_,,. (2.9

As a particular case, we obtain a distinguished vector space, in brief dv-space (resp.,
a distinguished covector space, in brief dcv-space), if all components of the sum are
vector (resp., covector) spaces. We note that we have fixed, for simplicity, an orientation
of (co-) vector subspaces like in (2.6).

Coordinates on F are denoted

P = (VY@@ P Via) = 17} = (0,59, Pags e Pas 10V,
(2.10)

where indices run correspondingly to the values a; = 1,2,...,my; a» = 1,2,...,m»; ...;
a;=1,2,...,m,.

DEFINITION 2.2. A higher-order vector/covector bundle, in brief, hvc-bundle, of type
€ =%[v(1),v(2),cv(3),...,cv(z—1),v(z)] is a vector bundle € = (E,p‘®,F,M) with
corresponding total, E, and base, M, spaces, surjective projection p‘¥ : E — M, and
typical fiber F.

We define the higher-order vector (resp., covector) bundles, in brief, hv-bundles (resp.,
in brief, hcv-bundles), if the typical fibre is a dv-space (resp., a dcv-space) as particular
cases of the hvc-bundles.

An hvc-bundle is constructed as an oriented set of enveloping “shell-by-shell” v-
bundles and/or cv-bundles,

p'S) B L Fls-D), (2.11)

where we use the index (s) = 0,1,2,...,z in order to enumerate the shells, when E‘0’ =
M. Local coordinates on E‘ are denoted

ﬂ(ﬂ = (x!j'/(S)) = (X,y(l),y(z),P(3),---,y(s)) = (xivyalvyazlp(lga"'vyas)' (212)
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If (s) = (z), we obtain a complete coordinate system on € denoted in brief

= (x,y) =0%=(x'= %,y ¥ pa.,...,Pa,_,Y*). (2.13)

We will use the general commutative indices «, S8, ... for objects on hvc-bundles which
are marked by tilde, like 4, %1%, ..., E),....
The coordinate bases on € are denoted

N 0 0 oz, O 0

av‘_auo‘_(al_axi’a“‘_ayal’auz_ayaz’a3_6pu3""’aaz_6y’12>'

d* =du® = (d' =dx', d* =dy™, d* =dy®, da; = dpas, ..., A = dy?).
(2.14)

We give two examples of higher-order tangent/cotangent bundles (when the dimen-
sions of fibers/cofibers coincide with the dimension of bundle space, see [45, 49, 50,
51, 52]).

2.2.1. Osculator bundle. The k-osculator bundle is identified with the k-tangent
bundle (T*M,p® M) of an n-dimensional manifold M. We denote the local coordinates
= (x4, {}),...,¥{x), where we have identified y/;, =~ %1, ..., ¥/, = y%, k = z, in
order to have similarity with denotations from [45, 49, 50, 51, 52]. The coordinate trans-
forms * — % (%) preserving the structure of such higher-order vector bundles are
parametrized:

oxt

s ooxt
(ll) = axl y(ll)'
ool vk

2¥() = Gyt Y +257 Yy (2.15)
.yl -

k)’lk) 7(')3’11 cp k2l s
( oxi - i, oW

where the equalities

0 i’ D i’ 5 i’
J’(;) _ J’(si+1> L Ji’(k) 2.16)
ox oy 0V (k-s)

hold for s =0,...,k—1 and y/;, = x'.

The natural coordinate frame on (T*M, p® M) is defined by 3, = (8/0x?, 6/63/{]), .
9/0y/y,) and the coframe is do = (dx',dy{},...,dy},). These formulas are, respec-
tively, some particular cases of (2.14).
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2.2.2. The dual bundle of k-osculator bundle. This higher-order vector/covector
bundle, denoted as (T*¥M, p** M), is defined as the dual bundle to the k-tangent bun-
dle (T*M,p*,M). The local coordinates (parametrized as in the previous paragraph)
are

u= (va(l)!"'!y(kfl)!p) = (Xi,y(il),---,y(ikfl),vi) € T*kM (2.17)

The coordinate transforms on (T**M,p*k M) are

. Lo i
xt =x"(x1), det(ax )th,

oxt
po_oxt
Y = i Yy
vl ayé)
2Y() = S5 Y2 Sy Vs, (2.18)
i ay(ilrc—m i 33’{1;71) ; oxt
(k*l)y(lk_l) = Ixi y(l]) NI +ka (ik z)y(lk—l)! pi = Wpi’
where the equalities
ay(is) _ ay(isﬂ) o ay(ikfl) (2.19)
oxt CREY 0V (k-1-s)

hold for s =0,...,k—2 and ¥/, = x".

The natural coordinate frame on (T*KM, p*® M) is written in the form d, = (3/9x",
0/0¥{1),-..,0/0¥{x_1),0/0p;) and the coframe is written as dy = (dxt,dyfy),.. .,dy(ik_l),
dpi). These formulas are, respectively, certain particular cases of (2.14).

2.3. Nonlinear connections. The concept of nonlinear connection, in brief, N-connec-
tion, is fundamental in the geometry of vector bundles and anisotropic spaces (see a
detailed study and basic references in [46, 47, 48] and, for supersymmetric and/or
spinor bundles, see [90, 91, 92, 106]). A rigorous mathematical definition is possible by
using the formalism of exact sequences of vector bundles.

2.3.1. N-connections in vector bundles. Let ¢=(E,p,M) be a v-bundle with typi-
cal fiber R™ and 7! : TE — TM being the differential of the map P which is a fibre-
preserving morphism of the tangent bundle (TE,Tg,E) — E and of tangent bundle
(TM,7t,M) — M. The kernel of the vector bundle morphism, denoted as (VE,Ty,E),
is called the vertical subbundle over E, which is a vector subbundle of the vector bundle
(TE,Tg,E).

A vector X, tangent to a point u € E is locally written as (x, v, X,Y) = (x!,y4, X!, Y4),
where the coordinates (X!, Y4) are defined by the equality X, = X'0; + Y?0,. We have
wl(x,y,X,Y) = (x,X). Thus the submanifold VE contains the elements which are
locally represented as (x,y,0,Y).
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DEFINITION 2.3. A nonlinear connection N in a vector bundle ¢ = (E,mr,M) is the
splitting on the left of the exact sequence

0—VE—TE—TE/VE — O, (2.20)

where TE/VE is the factor bundle.

By Definition 2.3 a morphism of vector bundles C : TE — VE is defined such that the
superposition of maps C o1 is the identity on VE, where i: VE — VE. The kernel of the
morphism C is a vector subbundle of (TE, T, E), which is the horizontal subbundle, de-
noted by (HE, Ty, E). Consequently, we can prove that in a v-bundle ¢, an N-connection
can be introduced as a distribution

(N:E, — H,E, T,E = H,E®V,E} (2.21)

for every point u € E defining a global decomposition, as a Whitney sum, into horizon-
tal, Hé¢, and vertical, V¢, subbundles of the tangent bundle T¢:

T¢=Hé¢oVeE. (2.22)

Locally, an N-connection in a v-bundle € is given by its coefficients N% (u) = Ni* (x,y)
with respect to bases (2.2) and (2.3), N = Ni“(u)di ® 04. We note that a linear connec-
tion in a v-bundle ¢ can be considered as a particular case of an N-connection when
Nt (x,y) = Kf,‘i(x)yh, where functions Kﬁi(x) on the base M are called the Christoffel
coefficients.

2.3.2. N-connections in covector bundles. A nonlinear connection in a cv-bundle
€ (in brief an N-connection) can be introduced in a similar fashion as for v-bundles
by reconsidering the corresponding definitions for cv-bundles. For instance, it may be
defined by a Whitney decomposition, into horizontal, H €, and vertical, V€, subbundles
of the tangent bundle T%:

Té¢=Hé¢oVE. (2.23)

Hereafter, for the sake of brevity, we will omit details on the definition of geometrical
objects on cv-bundles if they are very similar to those for v-bundles: we will present only
the basic formulas by emphasizing the most important common points and differences.

DEFINITION 2.4. An N-connection on € is a differentiable distribution
N:€ — N, eT; ¢ (2.24)

which is supplementary to the vertical distribution V, that is, T,% =N, aV,, for all €.

The same definition is true for N-connections in ct-bundles, we have to change in
Definition 2.4 the symbol € to T*M.

An N-connection in a cv-bundle € is given locally by its coefficients N, (1) = Niq (x, p)
with respect to bases (2.2) and (2.3), N = Nz (u)d! ®0%.



NONLINEAR CONNECTIONS AND SPINOR GEOMETRY 1197

We emphasize that if an N-connection is introduced in a v-bundle (resp., cv-bundle),
we have to adapt the geometric constructions to the N-connection structure (resp., the
N-connection structure).

2.3.3. N-connections in higher-order bundles. The concept of N-connection can be
defined for a higher-order vector/covector bundle in a standard manner like in the
usual vector bundles.

DEFINITION 2.5. A nonlinear connection N in hvc-bundle
€ =2¢[v(1),v(2),cv(3),...,cv(z-1),v(2)] (2.25)
is a splitting of the left of the exact sequence
0—Vé—TE— TE/VE— 0. (2.26)

We can associate sequences of type (2.26) to every mapping of intermediary subbun-
dles. For simplicity, we present here the Whitney decomposition

T¢=H¢oV,yéoV,0¢a Vi ée--oVy . 8oV, (2.27)

v v(z-1

Locally, an N-connection N in € is given by its coefficients

N, N, Niay, -y Nia, |, N2,
0, Na?, Naays --» Naja, s N&z,
0, 0, Nasaz, --» Nara, s Ngz,
. ) ) . . ) (2.28)
0, 0, 0, coes Na,va, ,» Naz,,
0, 0, 0, 0, Naz-1az,

which are given with respect to the components of bases (2.14).

2.3.4. Anholonomic frames and N-connections. Having defined an N-connection
structure in a (vector, covector, or higher-order vector/covector) bundle, we can adapt
with respect to this structure (by “N-elongation”) the operators of partial derivatives
and differentials, and consider decompositions of geometrical objects with respect to
adapted bases and cobases.

ANHOLONOMIC FRAMES IN V-BUNDLES. In av-bundle ¢ provided with an N-connec-
tion, we can adapt to this structure the geometric constructions by introducing locally
adapted basis (N-frame or N-basis)

9 ) 3
O = Su«x = <6i = Sxi = ai—Nia(u)aa, Oa = a_y“) (2.29)

and its dual N-basis (N-coframe or N-cobasis)

5% =o6u*=(d'=6x'=dx’, §* =5y*+N*(u)dx'). (2.30)
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The anholonomic coefficients, w = {w‘B"y(u)}, of N-frames are defined to satisfy the
relations

[50(,53] :6a637636a=w§‘y(u)60(. (2.31)

A frame basis is holonomic if all anholonomy coefficients vanish (like for usual co-
ordinate basis (2.3)), or anholonomic if there are nonzero values of wg‘y.

The operators (2.29) and (2.30) on a v-bundle ¢ enabled with an N-connection can
be considered as respective equivalents of the operators of partial derivations and dif-
ferentials: the existence of an N-connection structure results in “elongation” of partial
derivations on x-variables and in “elongation” of differentials on y-variables.

The algebra of tensorial distinguished fields DT (€) (d-fields, d-tensors, d-objects) on
¢ is introduced as the tensor algebra J = {55’:} of the v-bundle €4 = (HéaVE,p4,€),
where p; : Hé® VE — €.

ANHOLONOMIC FRAMES IN CV-BUNDLES. The anholonomic frames adapted to the
N-connection structure are introduced similarly to (2.29) and (2.30):
() the locally adapted basis (N-basis or N-frame):

< 5 5 o s x 0
60( = S = (61 = W = ai+Nm(u)8“, 04 = apﬂ), (2.32)
(i) its dual (N-cobasis or N-coframe):
5% =du = (d' = 6x' = dx', 8, = 6pa = dpa — N (1) dx?). (2.33)

We note that the sings of N-elongations are inverse to those for N-elongations.
The anholonomic coefficients, w = {ﬁ)‘ﬁ"y (11)}, of N-frames are defined by the relations

[80,08] = 6abp— 500 = W5, (i) S (2.34)

The algebra of tensorial distinguished fields DT (€) (d-fields, d-tensors, d-objects) on
€ isintroduced as the tensor algebra 9 = {J7; } of the cv-bundle €4y = (Hé®VE, P4, €),
where pg: HE@VE — €.

An element t € JJ‘ZSY, d-tensor field of type (Z %), can be written in local form as

ciy-ipay---ar

t=t ()0 ® - ©5:,80,, 8 ®0,, ®d1 - ed1e5" - @5,

(2.35)

We will, respectively, use the denotations %(E) (or Z(M)), AP (&) (or AP (M)), and
F(E) (or F(M)) for the module of d-vector fields on % (or M), the exterior algebra of
p-forms on € (or M), and the set of real functions on € (or M).

ANHOLONOMIC FRAMES IN HVC-BUNDLES. The anholonomic frames adapted to an
N-connection in hvc-bundle € are defined by the set of coefficients (2.28); having re-
stricted the constructions to a vector (or covector) shell, we obtain some generaliza-
tions of the formulas for the corresponding N-(or N)-connection elongation of partial
derivatives defined by (2.29) (or (2.32)) and (2.30) (or (2.33)).
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We introduce the adapted partial derivatives (anholonomic N-frames or N-bases) in
€ by applying the coefficients (2.28):

. 5

Ou=5ma = (8i,0ay,04a5,0%,...,6%1,0,,), (2.36)
where
8:=0; — N0z, —N?0a, + Nig;0% — - - - + Nig, , 0% 1 = N29,,,
Sa, = a, ~Ni?0a, + Najay; 04 — - - + Naya,_, 091 =N329g,,
S8ay = 0ay + Nayay 0% —+ - + Naya, 0921 =N920,,_,
5% = 93 —N%3449, — ...+ Ng  0%-1 - N9z, 237
5%z-1 = JAz-1 _ N4z-14z Ouss
0
aaz = ayal .
These formulas can be written in the matrix form
5. =N(u) x4, (2.38)
where
(51‘ ai
6“1 alll
64/12 aaz
=] 07 ] a=| 0|,
5“2—1 éaz—l
a, Oa,
(2.39)
LOoNSNE D Ny NS N, N
0 1 - g% Nﬂlaa _N:ll? T Naltlz—l - 212
0 0 1 Nazas _Ng; “=+ Naya, - gzz
§=|0 o0 0 1 —N®% ... Ngd = N
0 0 0 0 e 1 —N@az-14z
0 0 0 0 S 0 1

The adapted differentials (anholonomic N-coframes or N-cobases) in € are introduced
in the simplest form by using the matrix formalism: the respective dual matrices

5 =18% = (d' 6% 5% Say v Ba,, 0%),

s _ (2.40)
dr={3") = (d' d" d% dgy -+ da., d°)
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are related via a matrix relation

§ =d'Mm (2.41)

which defines the formulas for anholonomic N-coframes. The matrix M from (2.41) is
the inverse to ﬁ, that is, it satisfies the condition

MxN = 1. (2.42)

The anholonomic coefficients, W = {L’D“g‘y(ﬁ)}, on hev-bundle € are expressed via co-
efficients of the matrix N and their partial derivatives following the relations

~

(60, 8p] = Sadp— 8p0x = W, (1) . (2.43)

We omit the explicit formulas on shells.
A d-tensor formalism can also be developed on the space €. In this case the indices
have to be stipulated for every shell separately, like for v-bundles or cv-bundles.

3. Distinguished connections and metrics. In general, distinguished objects (d-
objects) on a v-bundle € (or cv-bundle &) are introduced as geometric objects with vari-
ous group and coordinate transforms coordinated with the N-connection structure on é
(or ). For example, a distinguished connection (in brief, d-connection) D on € (or %) is
defined as a linear connection D on E (or E) conserving under a parallelism the global
decomposition (2.22) (or (2.23)) into horizontal and vertical subbundles of T¢ (or T).
A covariant derivation associated to a d-connection becomes d-covariant. We will give
necessary formulas for cv-bundles in round brackets.

3.1. d-connections

3.1.1. d-connections in v-bundles (cv-bundles). An N-connection in a v-bundle ¢
(cv-bundle €) induces a corresponding decomposition of d-tensors into sums of hor-
izontal and vertical parts, for example, for every d-vector X € P () (X € X(€)) and
1-form A € A1(€)(A € A1 (€)), we have respectively

X=hX+vX, A=hA+VA,

. - - - - 3.1)
(X =hX+vX, A=hA+vA),
where
hX =X'6;, vX=X%,,
(hX = X'6;, vX = X,0%),
3.2)

hA = A;6, VA = A,d%,
(hA = A;8', vA = A%d,).
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In consequence, we can associate to every d-covariant derivation along the d-vector
(3.1, Dx =XoD (Dy = X o D), two new operators of h- and v-covariant derivations

DYY =DupxY, DY'Y =D,xY, VYeZ(¥),

(V¥ = Dyg?, DY = D1 ¥, W¥ () (3.3)
for which the following conditions hold:
DxY =D{"Y + DY,
(Dx¥ =DPY + DY), (3.4)
where
DY f=X)f, DY f=wX)f, X,Ye%(®), feFM), s

(DY f=(nX)f, DY f = (wX)f, X,¥ €%(8), f e FM)).

The components Fg‘y(fg‘y) of a d-connection Dy = (50( o D), locally adapted to the N-
connection structure with respect to the frames (2.29) and (2.30) ((2.32) and (2.33)), are
defined by the equations

Dabp =TSy,  (Dudp=T2g0y), (3.6)
from which one immediately has
L5 () = (Dadp) 08, (IXg(i1) = (Dadp) o 8Y). 3.7)
The coefficients of operators of h- and v-covariant derivations

DY = {L5k’Lgk}’ D ={ Jk’Cl/)C}

. . (3.8)
(D = (L5 Ll DY = [, Co°Y)
(see (3.4)) are introduced as corresponding h- and v-parametrizations of (3.7)
Ly = (Dk8j)od', Ly = (Didp) 0 6,
Vi S i yb 3 3b) & (3.9)
(Liy = (Ded;) od’, Lby = (Drd?) 0 84),
C_;:C = (DC6])odl’ Cbc ( )O(Sa! ( )
. L L <cxb\ | g 3.10
(€1 = (Be8,)eat, b = () o).
A set of components (3.9) and (3.10)
g = [Lh L Clo Gl ], (B = [LE, Lhy, Cle, Che]) (3.11)

completely defines the local action of a d-connection D in ¢ (D in é).
For instance, having taken on ¢ (€) a d-tensor field of type (% }),

=ti5i®d,0d 0", tT=it500"0d 5, (3.12)
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and a d-vector X (X), we obtain

Dyt =DM t+DY t=(X 11 +X°tie S0, 0d @7,

o o (3.13)
(Dv =D h)t+D(” (th‘ulk+Xct‘Z“)6i®a“®d1®5b),
where the h-covariant derivative is written as
il = Oktig + Ly the + L&t — LM £ — L5, t12,
ib “hb Fh yib _7b 1i (3.14)
( jalk = 5ktl +Lj, 0 +Lcktﬁ ijtha—Lcktﬁ>
and the v-covariant derivative is written as
=0t + Ch i+ Ch i - Ch i — CL i, (3.15)
(fibe = gefib 4 Ciefht 4 Gdefit _ Giefib _ chefid), (3.16)
For a scalar function f € %(€) (f € F(€)), we have
w _ of _of of ( of
Dl = 53k = axk N’(‘laya' D" f = oye’
(3.17)

s _ Of _of af wep_ of
(Dk = oxk ok T Nkag,  DYf = ope

3.1.2. d-connections in hvc-bundles. The theory of connections in higher-order ani-
sotropic vector superbundles and vector bundles was elaborated in [90, 91, 92, 93].
Here, we reformulate that formalism for the case when some shells of higher-order
anisotropy could be covector spaces by stating the general rules of covariant deriva-
tion compatible with the N-connection structure in hvc-bundle €, and omit details and
cumbersome formulas.

For an hve-bundle of type € = €[v(1),v(2),cv(3),...,cv(z—1),v(z)], a d-connec-
tion f(;y( 8 has the next shell decomposition of components (with induction being on the
pth shell, considered as the base space, which is in this case an hvc-bundle, we introduce
in a usual manner, like a vector or covector fiber, the (p + 1)th shell):

Y1 _
rlxﬁ {r «1f1 [L j1k1’ Lblkl lCl b]CI

J
ro(zﬁz = [szkz’Lbzkz’ J2c2? hzcz]
.

i3 b3 13C3 b3C3
rotaﬁa [LJ3k3’La3k3’ 73 (3.18)
7Yz-1 _ 1z-1 bz iz-1¢z-1 Sbzo1cz- l]
1—‘O‘z 1Bz-1 — I:sz—lkz—l’Laz—lkz—l’CJz 1 Caz 1 ’

réﬁ : T [LJzkz Lbzkz’CJzCz CszZ]}

These coefficients determine the rules of a covariant derivation D on €.
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. = 117 1 13 -+ 1 . .
For example, we consider a d-tensor t of type (1 11 li Ti 12) with a corresponding
e z

tensor product of components of anholonomic N-frames (2.38) and (2.41):

= siajazb3---b,_1a i 5
=t a5 0i®0a, ®d'® 6" ©0,, ® 52 0"

< . . (3.19)
®0py+ - ®0U 1 ®p;-1 ®0a, ® 5=,

The d-covariant derivation D of { is to be performed separately for every shell according
to the rule (3.15) if a shell is defined by a vector subspace, or according to the rule (3.16)
if the shell is defined by a covector subspace.

3.2. Metric structure

3.2.1. d-metrics in v-bundles. We define a metric structure G in the total space E
of a v-bundle ¢ = (E,p,M) over a connected and paracompact base M as a symmetric
covariant tensor field of type (0,2),

G = Gapdu®*®@dub, (3.20)
being nondegenerate and of constant signature on E.
Nonlinear connection N and metric G structures on € are mutually compatible if they
satisfy the following conditions:
G(64,04) =0, (3.21)
or equivalently,
Gia(u) —=N? (W) hap(u) =0, (3.22)
where hgp = G(0,4,0p) and Giz = G(0i,0,), which gives
NP (u) = h* (w)Gia () (3.23)
(the matrix h%? is inverse to hap). One obtains the following decomposition of metric:
G(X,Y) =hG(X,Y)+VG(X,Y), (3.24)
where the d-tensor hG(X,Y) = G(hX,hY) is of type (9) and the d-tensor vG(X,Y) =
G(vX,vY) is of type (8 8). With respect to the anholonomic basis (2.29), the d-metric
(3.24) is written as
G=gap(u)6*®8P = gij(uw)d' ®d! + hap ()54 ® 8P, (3.25)
where gij = G(&i,éj).
A metric structure of type (3.24) (equivalently, of type (3.25)) or a metric on E with

components satisfying the constraints (3.21) and (3.22) (equivalently (3.23)) defines an
adapted to the given N-connection inner (d-scalar) product on the tangent bundle J€.
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A d-connection Dy is metric (or compatible with metric G) on € if DxG = 0, for all
X € X(¢). With respect to anholonomic frames, these conditions are written as

Dxgpy =0, (3.26)

where by gg, we denote the coefficients in the block form (3.25).

3.2.2. d-metrics in cv- and hvc-bundles. The presented considerations on the self-
consistent definition of N-connection, d-connection, and metric structures in v-bundles
can be reformulated in a similar fashion for other types of anisotropic space-times, on
cv-bundles and on shells of hvc-bundles. For simplicity, we give here only the analogous
formulas for the metric d-tensor (3.25).

(i) On cv-bundle € we write

G=dup(11)6%® 68 = gi;(i)d @ d’ + h (i1) 5, ® 5, (3.27)
where gij = G(5;,6,), h’ = G(37,8"), and the N-coframes are given by formulas
(2.33).

For simplicity, we consider that the metricity conditions are satisfied, Dyg(xg
=0.

(ii) On hvc-bundle € we write
G =gup(it) 6% e 5P
=gij()d' ®d! + hayp, (1) 5U ® 6P + hayp, (1) 592 © 522 (3.28)
+ B3 (1), ® Opy + - - + R 1021 (1) 5, ® )., + Rap, (11) 5% ® 572,
where gij = G(61,6;), hayp, = G(3ay,0p,), Rasp, = G(3ay,0p,), R = G(3%,
ob3),..., and the N-coframes are given by formula (2.41).

The metricity conditions are Dy gug = 0.
(iii) On osculator bundle T?2M = Osc?® M, we have a particular case of (3.28) when

G =Jdup(1)5%0 6P = gij()d @ d’ + hij (1) 5y{), ® 5y + hij ()51 ® 5yl

(3.29)

with respect to N-coframes.
(iv) On dual osculator bundle (T*2M, p*2, M) we have another particular case of (3.28)
when

G=gup(1)5%®6P = gij(i)died’ +hij () 5yl @5yl +h (1)dpi” e5pt®  (3.30)

i i
with respect to N-coframes.

3.3. Some examples of d-connections. We emphasize that the geometry of con-
nections in a v-bundle € is very rich. If a triple of fundamental geometric objects
(N{"(w),Tg, (u),gap(u)) is fixed on €, a multiconnection structure (with correspond-
ing different rules of covariant derivation, which are, or not, mutually compatible and
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with the same, or without, induced d-scalar products in 7€) is defined on this v-bundle.
We can give a priority to a connection structure following some physical arguments, like
the reduction to the Christoffel symbols in the holonomic case, mutual compatibility
between metric and N-connection, and d-connection structures, and so on.

In this subsection, we enumerate some of the connections and covariant derivations
in v-bundle €, cv-bundle €, and in some hvc-bundles which can represent interest in
the investigation of locally anisotropic gravitational and matter field interactions.

(1) Every N-connection in € with coefficients N{*(x,y) being differentiable on y-
variables induces a structure of linear connection Ng‘y, where

a

ON?
Np; = ﬁ Nf.(x,y) = 0. (3.31)

For some Y(u) = Yi(u)d; + Y*(u)d, and B(u) = B%(u)d,, one introduces a covariant
derivation as

. 0B% 0B% 0
Ny _ i b b
Dy 'B= |:Y (a 7 +NblB ) Y 9P ]aya. (3.32)

(2) The d-connection of Berwald type on v-bundle ¢ (cv-bundle )

. ON}
)
rf‘*:( i ’;,o,czz),

SN (3.33)
B _ | §i k b
(r . ( b=k, occ))
where
i _ l ir 6ng 5gk1’ _ 6gﬂ<
Lix.y)=59" 50 * Sxr )’
a 1 6hbd Ohca  Ohpe
be (X, Y) = 2h dyc ayb dyd
1 5 S5 04 (539
ji - g 9k ng _ 9djk
(L.jk(x,l”) =59 <5x’< SxT ),
. 1. (ohvd ahcd dhbe
bc — —
G (x,p) = 2hud( 31 + s dpa ))

Wthh is hv-metric, that is, the conditions Dk gij =0and DéB)hab =0 (Dk gij =0 and
D®chab — () are satisfied.
(3) The canonical d-connection T‘© (or f(c)) on a v-bundle (or cv-bundle) is associated
to a metric G (or G) of type (3.25) (or (3.27)),

I = L ,Lbk @l e ]

je

(r(c)(x [L )i Cloie C ]) (3.35)

]k'ak’J
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with coefficients
LW =L, %=, (L) =Ll O =Cle), (see (3.34))
d d
L% = ON;' + lh“C (6hbc ON; h ONi hdb),

bi ™ 3yb Sxi oyb 4T Gy
I:(C),'b _ 51\71“ 4 l ~ Si’lbc 8N1d ,’Ldé aNid "/‘th (336)
at opp 2 Oxt apb ope ’
()i _ l ik agjk ~(c)ic _ < ik ag]k
Ce =3 oye’ (C 2g ope )

This is a metric d-connection which satisfies the conditions

I(<C)g11 =0, Déc)gij = 0, D](f)hab = 01 Déc)hab = 01

< BN SO (3.37)
(Di7djx =0, DGy =0, DR =0, DRt = 0).
In physical applications, we will use the canonical connection and, for simplicity, we
will omit the index (c). The coefficients (3.36) are to be extended to a higher order if
we are dealing with derivations of geometrical objects with “shell” indices. In this case
the fiber indices are to be stipulated for every type of shell in consideration.
(4) We can consider the N-adapted Christoffel symbols

e 1
Iy = 597 (8ygep + 0wy = 0gpy) (3.38)

which have the components of d-connection fﬁy (L
(3.34) if gup is taken in the form (3.25).

4:0,0,Cfl), with LY, and Cjl, asin

3.4. Almost Hermitian anisotropic spaces. There are possible very interesting par-
ticular constructions [45, 46, 47, 48, 49, 50, 51, 52] on t-bundle TM provided with
N-connection which defines an N-adapted frame structure 84 = (8;,0;) (for the same
formulas (2.29) and (2.30) but with identified fiber and base indices). We use the dot-
ted symbol in order to distinguish the horizontal and vertical operators because on
t-bundles the indices could take the same values both for the base and fiber objects.
This allows us to define an almost complex structure J = {Jg} on TM as follows:

J(6:) =3,  J(3:) = 6. (3.39)
It is obvious that J is well defined and J? = —
For d-metrics of type (3.25), on TM, we can consider the case when g;;(x,y) =
hap(x,y), that is,

G = gij(x,y)dx @dx! + gij(x,y)5y @5y, (3.40)

where the index (t) denotes that we have a geometrical object defined on a tangent
space.
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An almost complex structure ]f( is compatible with a d-metric of type (3.40) and a
d-connection D on tangent bundle TM if the conditions

J8J39ps = Gays  DaJ} =0 (3.41)

are satisfied.

The pair (G(),J) is an almost Hermitian structure on TM.

One can introduce an almost sympletic 2-form associated to the almost Hermitian
structure (G),J),

0=gij(x,y)5y Andx/. (3.42)

If the 2-form (3.42), defined by the coefficients g;;, is closed, we obtain an almost
Kahler structure in TM.

DEFINITION 3.1. An almost Kdhler metric connection is a linear connection D" on
TM = TM\ {0} with the following properties:
(1) D™ preserves by parallelism the vertical distribution defined by the N-connec-
tion structure;
(2) DU is compatible with the almost Kéhler structure (G(p,J), that is,

D{g=0, DPj=0, VvXex(TM). (3.43)

By a straightforward calculation, we can prove that a d-connection DI = (Lj-k, ;k, C}C,
C},) with the coefficients defined by

D6, =148,  D{e; =148, DJ’s;=Choin  DEVe;=Cid,  (3.44)

where L%, and C5), — Cly on TM are defined by the formulas (3.34), defines a torsionless
(see the next section on torsion structures) metric d-connection which satisfies the
compatibility conditions (3.26).

Almost complex structures and almost Kahler models of Finsler, Lagrange, Hamilton,
and Cartan geometries (of first higher orders) are investigated in detail in [45, 49, 50,
51, 52, 92].

3.5. Torsions and curvatures. We outline the basic definitions and formulas for
the torsion and curvature structures in v-bundles and cv-bundles provided with N-
connection structure.

3.5.1. N-connection curvature. (1) The curvature Q of a nonlinear connection N in
a v-bundle ¢ can be defined in local form as (see [46, 47, 48])

Q= %Q?jdi/\df@aa, (3.45)

where
Qf = 6;Ni - 8;N = 0;N{ —0;N% + NN, - N/ N, (3.46)

Ny being that from (3.31).
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(2) For the curvature € of a nonlinear connection N in a cv-bundle €, we introduce

1

Q= ZQijadi/\dj@aw“, (3.47)

where

Qija = —SJ'Nm-i-SiNja = —aij+ai1\71a +NibN§7a_ijN?a'
N (3.48)
opp

~ PN =

(3) The curvatures Q of different types of nonlinear connections N in higher-order
anisotropic bundles were analyzed for higher-order tangent/dual tangent bundles and
higher-order prolongations of generalized Finsler, Lagrange, and Hamilton spaces in
[45, 49, 50, 51, 52] and for higher-order anisotropic superspaces and spinor bundles in
[82, 83, 90, 91, 92, 93]. For every higher-order anisotropy shell, we will define the coef-
ficients (3.46) or (3.48) depending on the fact what type of subfiber we are considering
(a vector or covector fiber).

3.5.2. d-tor§ions in v-and cv-bundles. The torsion T of a d-connection D in v-bundle
¢ (cv-bundle €) is defined by the equation
T(X,Y) =XY.T=DxY-DyX—[X,Y]. (3.49)
The following h- and v-decompositions hold:
T(X,Y) = T(hX,hY) + T(hX,vY) + T(vX,hY) + T(VX,VY). (3.50)
We consider the projections

hT(X,Y),vT(hX,hY),hT(hX,hY),... (3.51)

and say that, for instance, hT (hX,hY) is the h(h,h)-torsion of D, vT (hX,hY) is the v(h,h)-
torsion of D, and so on.

The torsion (3.49) in v-bundle is locally determined by five d-tensor fields, torsions,
defined as

Th =hT(6,6;)-d', T =vT(6x,6;)- 6%

. . (3.52)
Pi, =hT(3y,6;)-d',  P%=vT(3,6;)-6% S =vT(3,) 6%

Using formulas (2.29), (2.30), (3.46), and (3.49), we can compute [46, 47, 48] in explicit
form the components of torsions (3.52) for a d-connection of type (3.9) and (3.10):

i i g i i _ i i i
Th =T = L — Ly, Ti = Cla, T =-Cia

T} =0, W =—Phi, (3.53)
The =S%e =Coe=Clp T3 =06Ni'=6;N},  Tj;=Pj;=0pNj'—L%;.
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Formulas similar to (3.52) and (3.53) hold for cv-bundles:

T}k :hT((Sk,(Sj) -di, Tjka :VT((Sk,(SJ‘) -Su,

.. . ) . . . . .. . (3.54)
PP =nT(3%,6;)-d',  PY,=vT(3",8;)-8a,  SL°=VT(55") 8a,
Tho=Th=Lytly,  T=Ci Tt
Fia—0, 7, =Pl
J ab ab (3.55)

Tabc=§gc=égc—ééb, T.ija=_5j1\7ia+5j1\v]ja,
Ti = phi = _§b R, — b,
The formulas for torsion can be generalized for hvc-bundles (on every shell we must

write (3.53) or (3.55) depending on the type of shell, vector or co-vector one, we are
dealing with).

3.5.3. d-curvatures in v- and cv-bundles. The curvature R of a d-connection in v-
bundle € is defined by the equation

R(X,Y)Z =XY:ReZ =DxDyZ-DyDxZ —DixyZ. (3.56)

The next properties for the h- and v-decompositions of curvature hold:

VR(X,Y)hZ =0, hR(X,Y)vZ =0,

R(X,Y)Z =hR(X,Y)hZ+VR(X,Y)VZ. (3.57)

From (3.57) and the equation R(X,Y) = —R(Y,X), we get that the curvature of a d-
connection D in ¢ is completely determined by the following six d-tensor fields:

Rﬁ_jk=di-R(5k,5j)5h, R;,“_jk=6“-R(5k,6j)ah,
Py =d" -R(3c,0)8;,  Pif%, = 6% -R(dc, ), (3.58)
Sipe =d'R(3c,0p)8j,  Sif'eq = 6% -R(0a,0c) 0.

By a direct computation, using (2.29), (2.30), (3.9), (3.10), and (3.58), we get

R'ﬁ.jk = 5]1L.ihj — 8Ly + L.prijink - L.yﬂkanj + C.ihaR.ujk’
Ry ik = kLY ; = 6Ly + LY ;L% — Ly L% ; + CHe RSy

Pj’%ka = al/lL.ijk - <5kC.ija +L.ilkC.lja _L.ljkC.ila _L.Cakc.ijc) + C.ijhp.lia’ (3.59)
Pixa = OaLlyy — (5kC.Cba + L Cha =L Ca _Litkc.chd) +ChaPlas
Sj.'l:bc =0c C.ijb -0 C.ijc + C.l}b C.ihc - C.l}c CPiLh!

Sl.o‘.lcd = adc.al/}c —0c C.ahd + C.ebc C.%d - CidC%C'

We note that d-torsions (3.53) and d-curvatures (3.59) are computed in explicit form
by particular cases of d-connections (3.33), (3.36), and (3.38).
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For cv-bundles, we have

RY =04 -R(k,5,)0",
Pt =d'-R(3°,0k)8;,  PLS =04-R(2°,01)0", (3.60)

a.
Sibe =gt .R(5¢,0%)5;,  Shed =5,-R(6%,0°)0",
Ryl o =0nLh, —5;L! k+L’;;J.L;nk—Lm Li,;+CHR ajk,
R_b-‘. = Okl =& Ly +LE L, —LE L+ ChRe i,
pia ~ gL, — (8 Cl-“+leCl‘-‘fL.ljkal“f a.Cie) + C PG,
U (3.61)
Pho = 5Lk, — (8, Cha+ b Cha Y Cad) - L4, Chd+Chapg,,
¢.ibc _ ib _ b hb hc /~ib
Sijbe = geCib —gbCle 4 ChbCle - Che P,
Sted = 3ot ekt Clecsd - CAC.

The formulas for curvature can also be generalized for hvc-bundles (on every shell
we must write (3.53) or (3.54) depending on the type of shell, vector or covector one,
we are dealing with).

4. Generalizations of Finsler geometry. We outline the basic definitions and formu-
las for Finsler, Lagrange, and generalized Lagrange spaces (constructed on tangent bun-
dle) and for Cartan, Hamilton, and generalized Hamilton spaces (constructed on cotan-
gent bundle). The original results are given in detail in [45, 46, 47, 48, 49, 50, 51, 52],
see also developments for superbundles in [90, 91, 92].

4.1. Finsler spaces. The Finsler geometry is modeled on tangent bundle TM.

DEFINITION 4.1. A Finsler space (manifold) is a pair F* = (M,F(x,y)), where M is
a real n-dimensional differentiable manifold and F : TM — R is a scalar function which
satisfies the following conditions:
(1) Fis adifferentiable function on the manifold T™M =TM \{0} and F is continuous
on the null section of the projection 1w : TM — M;
(2) Fis apositive function, homogeneous on the fibers of the TM, thatis, F(x,Ay) =
AF(x,y), A €R;
(3) The Hessian of F2 with elements

F) 1 0°F?
gij () = 20yidy

is positively defined on ™.

The function F(x,y) and g;;(x, ) are called, respectively, the fundamental function
and the fundamental (or metric) tensor of the Finsler space F.

One considers “anisotropic” (depending on directions y?) Christoffel symbols. For
simplicity, we write gff ) = Jijs

W<8grk L 99ir _ agjk>, 4.2)

y”‘(x y) = oxJ  oxk  oxr
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which are used for the definition of the Cartan N-connection

P e e 4.3)

©1= 23y
This N-connection can be used for the definition of an almost complex structure like in
(3.39) and to define on TM a d-metric

G = gij(x,y)dx ®@dx! + gij(x,y)5y @5y, (4.4)

with g;j(x,y) taken as in (4.1).
Using the Cartan N-connection (4.3) and Finsler metric tensor (4.1) (or, equivalently,
the d-metric (4.4)), we can introduce the canonical d-connection

DI (Nio)) =Ty = (Licyjio Clorje) (4.5)

with the coefficients computed as in (3.44) and (3.34) with hg, — gi;. The d-connection
DT'(N()) has the unique property that it is torsionless and satisfies the metricity con-
ditions for both the horizontal and vertical components, that is, Dxggy = 0.

The d-curvatures

R'ﬁ.jk = {Rﬁ.jk’lifli!sii)j.kl} (4.6)

on a Finsler space provided with Cartan N-connection and Finsler metric structures are
computed following the formulas (3.59) when the a, b, c,... indices are identified with
i,J,k,... indices. It should be emphasized that in this case all values g}, F(‘E)By, and
R'(ﬁ‘) p.ys are defined by a fundamental function F(x,y).

In general, we can consider that a Finsler space is provided with a metric g;; =
0%F2/20y'0y7, but the N-connection and d-connection are defined in a different man-
ner; they are not even determined by F.

4.2. Lagrange and generalized Lagrange spaces. The notion of Finsler spaces was
generalized by Kern [30] and Miron [38, 39]. It is widely developed in [46, 47, 48] and
extended to superspaces in [76, 77, 78, 81, 90, 91, 92].

The idea of extension was to consider instead of the homogeneous fundamental
function F(x,y) in a Finsler space a more general one, a Lagrangian L(x,y) defined
as a differentiable mapping L : (x,y) € TM — L(x,y) € R, of class C® on manifold
TM, and continuous on the null section 0 : M — TM of the projection t: TM — M. A
Lagrangian is regular if it is differentiable and the Hessian

0%L?
oyioyJ

(L _1
9ij (Xsy)—z 4.7)

is of rank n on M.

DEFINITION 4.2. A Lagrange space is a pair L™ = (M,L(x,y)), where M is a smooth
real n-dimensional manifold provided with regular Lagrangian L(x,y) structure L :
TM — R for which g;;(x,y) from (4.7) has a constant signature over the manifold TM™.
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The fundamental Lagrange function L(x,y) defines a canonical N-connection

; 1 0 , 02I2 oL
i _ Y ik h_ Y&
N(cL)j_ Zay, |:g <ayk6yhy axk>:| (48)
as well as a d-metric
G =gij(x,y)dx ®dx! +gij(x,y) 5y @5y, (4.9)

with g;j(x,y) taken as in (4.7). We can also introduce an almost Kahler structure and
an almost Hermitian model of L™, denoted as H%" as in the case of Finsler spaces but
with a proper fundamental Lagrange function and metric tensor g;;. The canonical
metric d-connection DI'(N(cr)) = I} )5, = (Licp)jxrClopyji) is to be computed by the
same formulas (3.44) and (3.34) with hgp — gEJLv), for N(icL)j. The d-torsions (3.53) and
d-curvatures (3.59) are defined, in this case, by L{;,; and C{.;, ;.. We also note that
instead of N(.;); and I}z, one can consider on an L"-space arbitrary N-connections
N ;'-, d-connections F;;‘y, which are not defined only by L(x,y) and gﬁf) but can be metric
or nonmetric with respect to the Lagrange metric.

The next step of generalization is to consider an arbitrary metric g;j(x,») on TM
instead of (4.7) which is the second derivative of “anisotropic” coordinates y! of a
Lagrangian [38, 39].

DEFINITION 4.3. A generalized Lagrange space is a pair GL" = (M, g;j(x,y)), where
gij(x,y) is a covariant, symmetric d-tensor field of rank n and of constant signature
on TM.

One can consider different classes of N- and d-connections on TM, which are com-
patible (metric) or noncompatible with (4.9) for arbitrary g;;(x,y). We can apply all
formulas for d-connections, N-curvatures, d-torsions, and d-curvatures as in a v-bundle
¢, but reconsidering them on TM, by changing ha, — gij(x,») and N{* — Nf.

4.3. Cartan spaces. The theory of Cartan spaces (see, e.g., [29, 66]) was formulated
in a new fashion in Miron’s works [40, 42] by considering them as duals to the Finsler
spaces (see details and references in [45, 49, 50, 51, 52]). Roughly, a Cartan space is
constructed on a cotangent bundle T*M like a Finsler space on the corresponding
tangent bundle TM.

Consider a real smooth manifold M, the cotangent bundle (T*M,t*,M), and the
manifold T*M = T*M\{0}.

DEFINITION 4.4. A Cartan space is a pair C"* = (M,K(x,p)) such that K: T*M — R
is a scalar function which satisfies the following conditions:
(1) K is adifferentiable function on the manifold T*M = T*M \ {0} and is continuous
on the null section of the projection t* : T*M — M;
(2) K is a positive function, homogeneous on the fibers of the T*M, that is, K (x,Ap)
=AF(x,p), A €R;
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(3) the Hessian of K2 with elements

il ey = 2 EK
e 20piop;

(4.10)

is positively defined on T*M.

The function K (x, v) and g% (x, p) are called, respectively, the fundamental function
and the fundamental (or metric) tensor of the Cartan space C"™. We use symbols like
“g” to emphasize that the geometrical objects are defined on a dual space.

We consider “anisotropic” (depending on directions, momenta, p;) Christoffel sym-

bols; for simplicity, we write the inverse to (4.10) as géf) =Jij,

o 1., (0drk  Odjr Odjk
i — _AJWr —
Yiex,p) =54 < oxcs T axk T aar ) (4.11)
which are used for the definition of the canonical N-connection,
N “k 1k 15n = sp_ O
Nij = ¥YijPx— 5 ¥YuPrp 0" gij, 0" = . (4.12)
2 o0pPn

This N-connection can be used to define an almost complex structure like in (3.39) and
to define on T*M a d-metric

G = gij(x,pldxiedx’ + gl (x,p)dpi® 6p;, (4.13)

with g% (x,p) taken as in (4.10).
Using the canonical N-connection (4.12) and Finsler metric tensor (4.10) (or, equiva-
lently, the d-metric (4.13)), we can introduce the canonical d-connection

. 5 . ik
DI (Nw) =Tty py = (Hitju Cli) (4.14)
with the coefficients
i Loz « S 5. _8.5 Sk g 08 gk
Hyx = 59 (5jgrk+5kgjr—5rgjk), Cixyi = gis90°g’~. (4.15)

The d-connection DI'(N()) has the unique property that it is torsionless and satis-
fies the metricity conditions for both the horizontal and vertical components, that is,
D(xggy =0.

The d-curvatures

. ) ) -
R y5 = {Riom o Pl jaoms S} (4.16)

on a Finsler space provided with Cartan N-connection and Finsler metric structures are
computed following formulas (3.61) when the a,b,c,... indices are identified with the
i,j,k,... indices. It should be emphasized that in this case all values g;;, f(‘}‘()ﬁy, and
1?'(% p.ys are defined by a fundamental function K (x, p).

In general, we can consider that a Cartan space is provided with a metric g¥ =
9%K?/20pi0p , but the N-connection and d-connection could be defined in a different
manner, even if they are not determined by K.
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4.4. Generalized Hamilton and Hamilton spaces. The geometry of Hamilton spaces
was defined and investigated by Miron in [41, 43, 44] (see details and references in
[45, 49, 50, 51, 52]). It was developed on the cotangent bundle as a dual geometry
to the geometry of Lagrange spaces. Here, we start with the definition of generalized
Hamilton spaces and then consider the particular case.

DEFINITION 4.5. A generalized Hamilton space is a pair GH" = (M, g%/ (x,p)), where
M is a real n-dimensional manifold and ¥/ (x, p) is a contravariant, symmetric, nonde-
generate tensor of rank n and of constant signature on T*M.

The value g/ (x, p) is called the fundamental (or metric) tensor of the space GH™. One
can define such values for every paracompact manifold M. In general, an N-connection
on GH" is not determined by g*/. Therefore, we can consider arbitrary coefficients
Nij(x,p) and define on T*M a d-metric like (3.27)

G=Jgup(i1)6%®@88 = gij()d @ d’ + GV (i) 6, ® 5. (4.17)
These N-coefficients N; j(x,p) and d-metric structure (4.17) allow to define an almost
Kéhler model of generalized Hamilton spaces and to define canonical d-connections,
d-torsions, and d-curvatures (see, respectively, formulas (3.34), (3.36), (3.55), and (3.59)
with the fiber coefficients redefined for the cotangent bundle T* M).

A generalized Hamilton space GH" = (M, g% (x,p)) is called reducible to a Hamilton
one if there exists a Hamilton function H(x,p) on T*M such that

1 °H
2 apiapj ’

gv(x,p) = (4.18)
DEFINITION 4.6. A Hamilton space is a pair H" = (M,H (x,p)) such that H: T*M —
R is a scalar function which satisfies the following conditions:
(1) H is adifferentiable function on the manifold T*M = T*M \ {0} and is continuous
on the null section of the projection m* : T*M — M,
(2) the Hessian of H with elements (4.18) is positively defined on T*M and Ji(x,p)
is a nondegenerate matrix of rank n and of constant signature.

For Hamilton spaces, the canonical N-connection (defined by H and its Hessian)
exists,

2 2
92H 92H ) 4.19)

- 1., 1/(. .
Nij=~{gij, H} - = | di -+ g .

ij 4{guy } Z(glkapkaXJ .gjkapkaxl
where the Poisson brackets, for arbitrary functions f and g on T*M, act as

_90f 99 09 op
f,9} = 3p, axi 3p; oxi’ (4.20)

The canonical d-connection DI'(Ni¢)) = I 5, = (Hl, 4, C5,) is defined by the coeffi-
cients
(4.21)

. 1oire o« o« . ..
H(lc)jk = Egls <5jg5k +06kgjs *6sgjk); C(Jc)i =--0is0'g



NONLINEAR CONNECTIONS AND SPINOR GEOMETRY 1215

In result we can compute the d-torsions and d-curvatures like on cv-bundle or on Cartan
spaces. On Hamilton spaces, all such objects are defined by the Hamilton function
H(x,p) and indices have to be reconsidered for cofibers of the cotangent bundle.

5. Clifford bundles and N-connections. The theory of anisotropic spinors was ex-
tended on higher-order anisotropic (ha) spaces [92, 93, 106]. In brief, such spinors will
be called ha-spinors which are defined as some Clifford ha-structures defined with re-
spect to a distinguished quadratic form (3.28) on an hvc-bundle. For simplicity, the bulk
of formulas will be given with respect to higher-order vector bundles. To rewrite such
formulas for hvc-bundles is to consider for the “dual” shells of higher-order anisotropy
some dual vector spaces and associated dual spinors.

5.1. Distinguished Clifford algebras. The typical fiber of dv-bundle &;, 74 : HE &
ViE®---®V,E — E,is a d-vector space, ¥ = hFo v, %o - - - ®V,F, split into horizontal
h% and vertical v, %, p = 1,...,z, subspaces, with a bilinear quadratic form G(g,h)
induced by an hvc-bundle metric (3.28). Clifford algebras (see, e.g., [28, 61, 62, 63])
formulated for d-vector spaces will be called Clifford d-algebras [88, 89, 101]. We will
consider the main properties of Clifford d-algebras. The proof of the theorems will
be based on the technique developed in [28, 92, 106], correspondingly adapted to the
distinguished character of spaces in consideration.

Let k be a number field (for our purposes k = R or k = C, R and C are, respectively,
real and complex number fields) and define %, as a d-vector space, on k provided with
nondegenerate symmetric quadratic form (metric) G. Let C be an algebra on k (not nec-
essarily commutative) and j : % — C a homomorphism of underlying vector spaces such
that j(u)? = G(u) -1 (1 is the unity in algebra C and d-vector u € %). We are interested
in the definition of the pair (C, j) satisfying the next universality conditions. For every
k-algebra A and arbitrary homomorphism @ : % — A of the underlying d-vector spaces,
such that (@ (u))2 — G(u) - 1, there is a unique homomorphism of algebras  : C — A
defined as commutative diagrams.

The algebra solving this problem will be denoted as C(%, A) (equivalently as C(G) or
C(%)) and called Clifford d-algebra associated with pair (%,G).

THEOREM 5.1. There is a unique solution (C, j) up to isomorphism.
PROOEF. See [82, 83, 92]. O
Now we reformulate for d-algebras the Chevalley theorem [13].
THEOREM 5.2. The Clifford d-algebra
C(hFouvFe---ov,F,g+h +---+h;) (5.1)
is naturally isomorphic to C(g)®C(h1)®---®C(h;).
PROOF. See [82, 83, 92]. O

From the presented theorems, we conclude that all operations with Clifford d-
algebras can be reduced to calculations for C(h%, g) and C (v )%, h(p)) which are usual
Clifford algebras of dimensions 2" and 2™r, respectively [6, 28].
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Of special interest is the case when k = R and % is isomorphic to a vector space
RP+4.a+b provided with quadratic form

2 2 2 2 2 2
_Xl_"'_xp+xp+q_yl_"'_ya+"'+ya+h' (5.2)

In this case, the Clifford algebra, denoted as (CP4,C%P), is generated by the symbols

e e e e o). .,e;{)b satisfying the properties

(e)’=-1 (<i<p), (e))'=-1 (U=j=<a),
(ex)’=1 (p+l<k<p+q), (5.3)

(ej)Z:I (n+l<s<a+b), eiej=—eje;, 1+]j.

Explicit calculations of CP4 and C%? are possible by using the isomorphisms [28, 61,
62, 63]

crtmatn ~ cr.a ®M2([R) Q- - ®M2(|R) =~ Cp’q®M2n(lR) = Mon (Cp’q), (5.4)

where M;(A) denotes the ring of quadratic matrices of order s with coefficients in
ring A. Here, we write the simplest isomorphisms C% =~ C, C%! ~ R@ R, and C>° = %,
where % denotes the body of quaternions.

Now, we emphasize that higher-order Lagrange and Finsler spaces, denoted by H?"-
spaces, admit locally a structure of Clifford algebra on complex vector spaces. Really,
by using almost Hermitian structure J {i and considering complex space C" with nonde-
generate quadratic form > _; 1z41?, z4 € C?, induced locally by metric (3.28) (rewritten
in complex coordinates as z,; = x, +1Y,), we define Clifford algebra

C"=Cle---oC!, (5.5)

where C! = C®z C = Ca C or, in consequence, C" =~ C"% @z C ~ CO" @y C. Explicit
calculations lead to isomorphisms

C?=C"2@p C~My(R)®p C~ Mo (C"),  C? = Moy (C),
- (5.6)
C?P+ = Mop (C) @ Map (C),

which show that complex Clifford algebras, defined locally for H?"-spaces, have peri-
odicity 2 on p.

Considerations presented in the proof of Theorem 5.1 show that the map j: % —
C (%) is monomorphic, so we can identify the space & with its image in C(%, G), denoted
asu —u,if u € CO(F,G) (ue CV(F,G)); then u =u (resp., U = —1u).

DEFINITION 5.3. The set of elements u € C(G)*, where C(G)* denotes the multi-
plicative group of invertible elements of C(%,G) satisfying uFu~! € %, is called the
twisted Clifford d-group, denoted as lN"(%).

Let §: T(F) — GL(%F) be the homorphism given by u — pii, where j, (w) = wwu 1.
We can verify that kerp = R* is a subgroup in I'(%).
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The canonical map j: % — C (%) can be interpreted as the linear map ¥ — C (%) satis-
fying the universal properties of Clifford d-algebras. This leads to a homomorphism of
algebras, C(¥) — C(%)!, considered by an anti-involution of C(%) and denoted as u —
ty. More exactly, if u;---u, €%, thenty = up---up and U =tu = (=1)"uyp - - - u;.

DEFINITION 5.4. The spinor norm of arbitrary u € C(%) is defined as S(u) ='u-u €
C(%).

It is obvious that if u,u’,u"” f(@), then S(u,u’) = S(u)S(u') and S(uu'u") =
Suw)S(u"HSu"”).Foru,u' €%, S(u) =-G(u) and S(u,u’) =Su)Su') =Suu’).

We introduce the orthogonal group O(G) C GL(G) defined by metric G on % and
denote sets

SO(G) = {u € 0(G), detlu| =1},  Pin(G) = {u eT'(F), S(w) =1},  (5.7)

and Spin(G) = Pin(G) N C%(%). For & = R"™*™, we write Spin(ng). By straightforward
calculations (see similar considerations in [28]), we can verify the exactness of these
sequences:

| — % — Pin(G) — 0(G) — 1,
] — % — $pin(G) — SO(G) — 0, 5.8)
% _
1— 5 — Spin (ng) — SO (ng) — 1.

We conclude this subsection by emphasizing that the spinor norm was defined with
respect to a quadratic form induced by a metric in dv-bundle ¢‘?’. This approach differs
from those presented in [4, 57, 58, 59, 74].

5.2. Clifford ha-bundles. We will consider two variants of generalization of spinor
constructions defined for d-vector spaces to the case of distinguished vector bundle
spaces enabled with the structure of N-connection. The first is to use the extension to
the category of vector bundles. The second is to define the Clifford fibration associated
with compatible linear d-connection and metric G on a dv-bundle. We will analyze both
variants.

5.2.1. Clifford d-module structure in dv-bundles. Because functor & — C(%) is
smooth, we can extend it to the category of vector bundles of type

£9 = {ny: HE? e ViE? @ - - @ V.E® — E@]. (5.9)

Recall that by % we denote the typical fiber of such bundles. For £2, we obtain a bun-
dle of algebras, denoted as C(&‘?’), such that C(£‘?’),, = C(%,). Multiplication in every
fiber defines a continuous map C(&‘?) x C(§®)) — C(&@). If €@ is a distinguished
vector bundle on number field k, C(£(?’)-module, the d-module, on £? is given by the
continuous map C (&%) x £ — £(2) with every fiber %, provided with the structure of
the C(%,)-module, correlated with its k-module structure. Because & C C(%), we have a
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fiber-to-fiber map % x &%) — €2 inducing on every fiber the map %,, X E((i)) - E((i)) (R-
linear on the first factor and k-linear on the second one). Inversely, every such bilinear
map defines on £¢?’ the structure of the C(&‘?’)-module by virtue of the universal prop-
erties of Clifford d-algebras. Equivalently, the above-mentioned bilinear map defines a

morphism of v-bundles
m: g — HOM (§%),8%), (5.10)

where HOM(E¢?’ £(2)) denotes the bundles of homomorphisms when (m(u))? = G(u)
on every point.

Vector bundles &) provided with C(&(2))-structures are objects of the category with
morphisms being morphisms of dv-bundles, which induce on every point u € £’ mor-
phisms of C (%, )-modules. This is a Banach category contained in the category of finite-
dimensional d-vector spaces on field k.

We denote by H*(¢‘?),GLy, (R)), where ng = n+mj + - - - + m;, the s-dimensional
cohomology group of the algebraic sheaf of germs of continuous maps of dv-bundle
{2 with group GL,, (R), the group of automorphisms of R" (for the language of
algebraic topology, see, e.g., [28]). We will also use the group SLy, (R) = {A C GL,; (R),
detA = 1}. Here, we point out that cohomologies H (M, Gr) characterize the class of a
principal bundle 7t : P — M on M with structural group Gr. Taking into account that we
deal with bundles distinguished by an N-connection, we introduce into consideration
cohomologies H*(¢?),GL,, (R)) as distinguished classes (d-classes) of bundles ‘!
provided with a global N-connection structure.

For a real vector bundle £’ on compact base ¢?, we can define the orientation on
£?) as an element oy € H' (¢'?",GLy, (R)) whose image on map

H'(€¢?,SLy, (R)) — H (€% ,GLy, (R)) (5.11)

is the d-class of bundle €¢?’.

DEFINITION 5.5. The spinor structure on &% is defined as an element 8, € H! (€¢‘?,
Spin(ng)) whose image in the composition

H'(¢'?,Spin (ng)) — H'(¢?,50 (ng)) — H'(€'*),GLy, (R)) (5.12)

is the d-class of €{#,

The above definition of spinor structures can be reformulated in terms of principal
bundles. Let £ be a real vector bundle of rank 7 +m on a compact base €2, If there
is a principal bundle P; with structural group SO(ng) (or Spin(ng)), this bundle £?
can be provided with orientation (or spinor) structure. The bundle P, is associated with
element &g € H' (€‘?),S0(nz))) (or By € H' (€2, Spin(ng))).

We remark that a real bundle is oriented if and only if its first Stiefel-Whitney d-class
vanishes,

wi(&q) € H (E%) =0, (5.13)
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where H'(¢(2),%/2) is the first group of Cech cohomology with coefficients in %/2.
Considering the second Stiefel-Whitney class w» (£'2)) € H2(€?),%/2), it is well known
that vector bundle £‘?’ admits the spinor structure if and only if w, (£/?’) = 0. Finally, we
emphasize that taking into account that base space €%’ is also a v-bundle, p : E©?) — M,
we have to make explicit calculations in order to express cohomologies H* (€2, GLy41m)
and H*(¢‘?,SO(n+m)) through cohomologies

H*(M,GLy),H*(M,SO (my)),...,H*(M,SO (m;)), (5.14)

which depend on global topological structures of spaces M and ¢‘?. For general bundle
and base spaces, this requires a cumbersome cohomological calculus.

5.2.2. Clifford fibration. Another way of defining the spinor structure is to use Clif-
ford fibrations. Consider the principal bundle with the structural group G being a
subgroup of orthogonal group O (G), where G is a quadratic nondegenerate form de-
fined on the base (also being a bundle space) space ¢‘’. The fibration associated to
principal fibration P(¢‘?’,Gr) with a typical fiber having Clifford algebra C(G) is, by
definition, the Clifford fibration PC(¢‘?’, G¥). We can always define a metric on the Clif-
ford fibration if every fiber is isometric to PC(%?’, G) (this result is proved for arbitrary
quadratic forms G on pseudo-Riemannian bases). If, additionally, G C SO(G), a global
section can be defined on PC(G).

Let (€2, Gr) be the set of principal bundles with differentiable base ¢’ and struc-
tural group Gr. If g : Gr — Gr’ is a homomorphism of Lie groups and P(¢‘?’,Gr) c
P (€2}, Gr) (for simplicity in this subsection, we will denote mentioned bundles and
sets of bundles as P, P’, and, resp., , ?’), we can always construct a principal bun-
dle with the property that there is a homomorphism f : P* — P of principal bundles,
which can be projected to the identity map of ¢ and corresponds to isomorphism
g:Gr — Gr'. If the inverse statement also holds, the bundle P’ is called the extension
of P associated to g and f is called the extension homomorphism denoted as g.

Now we can define distinguished spinor structures on bundle spaces.

DEFINITION 5.6. Let P € #(%¢‘?),0(G)) be a principal bundle. A distinguished spinor
structure of P, equivalently, a ds-structure of ¢‘?, is an extension P of P associated to
homomorphism h : PinG — O(G), where O(G) is the group of orthogonal rotations,
generated by metric G, in bundle €2,

So, if P is a spinor structure of the space €2, then P € ?(¢‘?,PinG).

The definition of spinor structures on varieties was given in [16, 17]. It has been
proved that a necessary and sufficient condition for a space-time to be orientable is to
admit a global field of orthonormalized frames. We mention that spinor structures can
also be defined on varieties modeled on Banach spaces [2]. As we have shown, similar
constructions are possible for the cases when space-time has the structure of a v-bundle
with an N-connection.

DEFINITION 5.7. A special distinguished spinor structure, ds-structure, of principal
bundle P = P(¢?",SO(G)) is a principal bundle P = P(%¢?,SpinG) for which a homo-
morphism of principal bundles p : PP, projected onto the identity map of €‘2 and
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corresponding to the representation
R :SpinG — SO(G), (5.15)

is defined.

In the case when the base space variety is oriented, there is a natural bijection between
tangent spinor structures with a common base. For special ds-structures, we can define,
as for any spinor structure, the concepts of spin tensors, spinor connections, and spinor
covariant derivations (see [82, 83, 101]).

5.3. Almost complex spinor structures. Almost complex structures are an impor-
tant characteristic of H?"-spaces and of osculator bundles Osck=2k (M), where k; =
1,2,.... For simplicity in this subsection, we restrict our analysis to the case of H%"-
spaces. We can rewrite the almost Hermitian metric [46, 47, 48], H?"*-metric, in complex
form [88, 89]:

G =Hap(z,6)dz%e®dz?, (5.16)
where

2% =xV+iy®,  Z8=x%—iy%,  Hap(2,Z) = Gan (x, )35 02), (5.17)

and define almost complex spinor structures. For a given metric (5.16) on H"-space,
there is always a principal bundle PV with unitary structural group U (n) which allows
us to transform H?"-space into v-bundle EY =~ PV xy,) R?™. This statement will be
proved after we introduce complex spinor structures on oriented real vector bundles
[28].

We consider momentarily k = C and introduce into consideration (instead of the
group Spin(n)) the group Spin‘x«,2U (1) being the factor group of the product Spin(n) x
U (1) with respect to the equivalence

(¥,2) ~(-y,—a), ¥ €Spin(m). (5.18)
This way we define the short exact sequence
1 — U(1) — Spin‘(n) == SO(n) — 1, (5.19)

where p¢(y,a) = p¢(y).If A is oriented, real y-bundle 1 : Ex — M" of rank n, with base
M™", the complex spinor structure, spin structure, on A is given by the principal bundle
P with structural group Spin®(m) and isomorphism A =~ P Xgpinc () R (see (5.19)). For
such bundles, the categorial equivalence can be defined as

€ el (M™) — &} (M™), (5.20)

where €°(E€) = P Agpinc(n) E€ is the category of trivial complex bundles on M",
€M(M™) is the category of complex v-bundles on M" with action of Clifford bundle
C(A), P Agpinc(n), and E€ is the factor space of the bundle product P xp E€ with respect
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to the equivalence (p,e) ~ (pg~',ge), p € P, e € E, where g € Spin® (n) acts on E via
the imbedding Spin(n) ¢ C%" and the natural action U(1) ¢ C on complex v-bundle &¢,
E€ = tot&°, for bundle ¢ : E€ — M™.

Now we return to the bundle € = ¢‘1. A real v-bundle (not being a spinor bundle)
admits a complex spinor structure if and only if there exists a homomorphism o :
U(n) — Spin‘(2n) defining a commutative diagram. The explicit construction of o for
arbitrary y-bundle is given in [6, 28]. Let A be a complex, rank n, spinor bundle with

T:Spin‘(n) X, U(1) — U(1) (5.21)

the homomorphism defined by T(A,8) = §2. For Ps being the principal bundle with fiber
Spin®(n), we introduce the complex linear bundle L(A¢) = Ps Xgpinc () C defined as the
factor space of Psx C on equivalence relation

(pt,z) ~ (p, L)' 2), (5.22)

where t € Spin€ (n). This linear bundle is associated to complex spinor structure on A€.

If A° and A¢" are complex spinor bundles, the Whitney sum A¢ @ A¢" is naturally pro-
vided with the structure of the complex spinor bundle. This follows from the holomor-
phism

w’ :Spin(n) x Spin® (n') — Spin® (n+n’) (5.23)

given by formula [(B,z),(B8’,z")] — [w(B,B"),zz"], where w is the homomorphism
defining a commutative diagram of maps. Here, z,z’ € U(1).Itis obvious that L(A°® AC)
is isomorphic to L(A¢) ® L(A¢).

We conclude this subsection by formulating our main result on complex spinor struc-
tures for H2"-spaces.

THEOREM 5.8. LetA¢ be a complex spinor bundle of rank n and H*"-space considered
as a real vector bundle A° ® A¢" provided with almost complex structure J g‘ ; multiplication

P 0 -6t . . L .
on i is given by (51' o ) Then, there is a diagram of maps which is commutative up to
J

isomorphisms €¢ and €¢ defined as in (5.20), ¥ is a functor E¢ — E¢ ® L(A°), ‘6%2"(M")
is defined by functor é€c(M™) — ‘(‘5%2"(M”) given as correspondence E€ — A(C") ® E€
(which is a categorial equivalence), A(C™") is the exterior algebra on C", and W is the
real bundle A¢ ® A¢" provided with complex structure.

PROOEF. See [88, 89, 92, 93, 106].

Now consider bundle P Xgpine (n) SPin (2n) as the principal Spin‘(2n)-bundle, associ-
ated to M @ M being the factor space of the product P x Spin©(2n) on the equivalence
relation (p,t,h) ~ (p,u(t)"1h). In this case, the categorial equivalence (5.20) can be
rewritten as

€’ (EC) =P Xspin® (n) Spinc (zn)ASpinC(Zn)EC (5.24)
and seen as a factor space of P x Spin®(2n) X E€ on equivalence relations

(pt,h,e) ~ (p,u(t) *h,e),  (p,hi,hz,e) ~ (p,hi,hyte) (5.25)
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(projections of elements p and e coincide on base M). Every element of €°(E°) can

be represented as PAgpinc () E€, that is, as a factor space PAE on equivalence relation

(pt,e) ~ (p,uc(t),e), when t € Spin°(n). The complex line bundle L(A¢) can be inter-

preted as the factor space of P Xgpinc () C on equivalence relation (pt,8) ~ (p,7(t)716).
Putting (p,e) ® (p,6) (p,de), we introduce morphism

€°(E) X L(A®) — €°(A°) (5.26)
with properties

(pt,e)® (pt,5) — (pt,8e) = (p,uc(t)"18e),

(5.27)
(p,uc(t)te) o (p,l(t)te) — (p,uc(t)r(t)~8e),

pointing to the fact that we have defined the isomorphism correctly and that it is an
isomorphism on every fiber. |

6. Spinors and N-connection geometry. The purpose of this section is to show
how a corresponding abstract spinor technique entailing notational and calculational
advantages can be developed for arbitrary splits of dimensions of a d-vector space
¥ =hFeoviFe---0v,%, where dimh¥ = n and dimv,% = m,. For convenience, we
will also present some necessary coordinate expressions.

6.1. d-spinor techniques. The problem of a rigorous definition of spinors on locally
anisotropic spaces (d-spinors) was posed and solved [82, 83, 88, 89] in the framework
of the formalism of Clifford and spinor structures on v-bundles provided with compat-
ible nonlinear and distinguished connections and metric. We introduced d-spinors as
corresponding objects of the Clifford d-algebra C(%, G), defined for a d-vector space &
in a standard manner (see, e.g., [28]) and proved that operations with C(%,G) can be
reduced to calculations for C(h%, g),C(v1%F,h,),...,.C(v.F, h;), which are usual Clifford
algebras of respective dimensions 2",2™1,...,2™z (if it is necessary, we can use quadratic
forms g and h, correspondingly induced on h% and v, % by a metric G (3.28)). Con-
sidering the orthogonal subgroup O(G) C GL(G) defined by a metric G, we can define
the d-spinor norm and parametrize d-spinors by ordered pairs of elements of Clifford
algebras C(h%,g) and C(v,%,hy), p = 1,2,...,z. We emphasize that the splitting of a
Clifford d-algebra associated to a dv-bundle ¢’ is a straightforward consequence of
the global decomposition defining an N-connection structure in ¢,

In this subsection, we will omit detailed proofs which in most cases are mechani-
cal but rather tedious. We can apply the methods developed in [7, 9, 26, 27, 31, 54,
61, 62, 63] in a straightforward manner on h- and v-subbundles in order to verify the
correctness of affirmations.

6.1.1. Clifford d-algebra, d-spinors, and d-twistors. Inorder torelate the succeeding
constructions with Clifford d-algebras [88, 89] we consider a la-frame decomposition
of the metric (3.28):

(&)

Grootpy (W) = 1) LG ()G (g 5y (6.1)



NONLINEAR CONNECTIONS AND SPINOR GEOMETRY 1223

where the frame d-vectors and constant metric matrices are distinguished as
Baw) 0 0

_ 0o 1w - 0
e = " . o

(6.2)

9i; and hﬁlfn'“"hﬁz@z are diagonal matrices with g;; = hgq, =+~ =h; ;5 ==*1.

To generate Clifford d-algebras, we start with matrix equations
T@ 0+ 0@ 0 = —Gapl (6.3)

where I is the identity matrix, matrices oy (0-objects) act on a d-vector space & =
hFevFe---ov.%, and their components are distinguished as

-k
@)F 0 0
: 0 (0a)p' - 0
o@=(o@w)g =| . o _ : (6.4)
0 0 (0w

indices B,y,... refer to spin spaces of type ¥ = Sn) & S(v;) ® - - - ® S(v,), and under-
lined Latin indices j, k,... and by,cy,...,b;,c,... refer, respectively, to h-spin space
) and vj,-spin space Y,y (p =1,2,...,2z), which are correspondingly associated to
h- and v, -decompositions of a dv-bundle ¢?. The irreducible algebra of matrices o7z,
of minimal dimension N X N, where N = N(;) + Nun,) + - -+ + Non,), dimF (n) = N(»), and
dim¥y,) = Nn,), has the dimensions

2=D2 0 =2k +1, 2mp=lI2my, = 2k + 1
N = ) (mp) = , (6.5)
ni2, n =2k, 2my mp = 2kp
where k, k, =1,2,....
The Clifford d-algebra is generated by sums on n+ 1 elements of the form
AT +Blo+Clos+ Do - - (6.6)
and sums of m, +1 elements of the form
Ao+ B g + Carbr Tai, +Drbyéy Tapipey ™" (6.7)

with antisymmetric coefficients C'/ = Clifl| Carbp = Claphpl piik = plijkl papbpép —

[Apbpép] ; (T = s O = (T A~
DtarPpcpl . and matrices 035 = 01305 Og,b, = Olayp, 1 Oijk = 01307075+ Really,
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we have 27+1 coefficients (A;,CiJ, DUk _..) and 2mr*1 coefficients (A2(p), Cavby Dapbptp
...) of the Clifford algebra on %.

For simplicity, we will present the necessary geometric constructions only for h-spin
spaces ¥ of dimension N(,). Considerations for a v-spin space ¥(,) are similar but
with proper characteristics for a dimension Ny).

In order to define the scalar (spinor) product on &), we introduce into consideration
the following finite sum (because of a finite number of elements U[;Jq__,;]):

e =o0h 11 (01), (o) + 5y (o), (o) By (o) (0™ 0 69
which can be factorized as
(i)Ei‘im =Nuw “erm Ped for n =2k, (6.9)
(”Eilm = 2N(n)€kmeY, (‘)Eilm =0 forn =3(mod4),
(”E;J—'m =0, (’)Ei]-'m = 2N €xmeY  for n =1(mod4). (010

Antisymmetry of 077 and the construction of the objects (6.6), (6.8), (6.9), and (6.10)
define the properties of e-objects *) €y, and €x, which have an eight-fold periodicity
on n (see details in [61, 62, 63] and, with respect to locally anisotropic spaces, [88, 89]).

For even values of n, it is possible the decomposition of every h-spin space ¥
into irreducible h-spin spaces S, and S;h) (one considers splitting of h-indices, e.g.,
l=Lel',m=MeM,...; for v,-indices, we will write a, =Ap GBA;,, b, =B, GBB;,,...)
and one defines new e-objects

lm

((+)€lm+(—>€lm), Am _ <(+)€1m_<f)€-—)_ (6.11)

1
2
We will omit similar formulas for e-objects with lower indices.

In general, the spinor e-objects should be defined for every shell of anisotropy, where
instead of dimension n, we will consider the dimensions m,, 1 < p < z, of shells.

We define a d-spinor space ¥,m,) as a direct sum of horizontal and vertical spinor
spaces, for instance,

S 8k,8k’) = So ®S, ®S. GBSIO, S 8ksk'+1) = So oS, GBSPFJ),...,

P (skrask+5) = Sa OSAOF |,

(6.12)

The scalar product on a ¥ (,,m,) is induced by e-objects (corresponding to fixed values
of n and m;) considered for h- and v;-components. We present also an example for

Ef(n’m]+...+mz):

(6.13)

7 (-) 7
=SA®Sp S| )p® - ®S(pa @S‘,(p)AGB ©®S(2)0 B ()0
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Having introduced d-spinors for dimensions (n,m; + - - - +m_), we can write out the
generalization for ha-spaces of twistor equations [61, 62, 63] by using the distinguished
o-objects (6.4):

(O_(&>)--X Swh 1 (08)Y Swh

— = PPN —_— .14
1Bl S4B n+m1+---+mZG<°‘)<5) B suc’ 6.14)

where [B] denotes that we do not consider symmetrization on this index. The general
solution of (6.14) on the d-vector space ¥ looks like

wh = 0f 4+ @ (a<&>)fné, (6.15)
where Qf and II€ are constant d-spinors. For fixed values of dimensions n and m =
mi + - - - +m;, we must analyze the reduced and irreducible components of h- and v,-
parts of (6.14) and their solutions (6.15) in order to find the symmetry properties of a d-
twistor Z* defined as a pair of d-spinors Z% = (w¥, Wé), where T = Tré(?) c SNP(n,ml _____ mz)
is a constant dual d-spinor. The problem of the definition of spinors and twistors on ha-
spaces was firstly considered in [101] (see also [86]) in connection with the possibility
to extend (6.15) and their solutions (6.16), by using nearly autoparallel maps on curved,
locally isotropic or anisotropic, spaces. We note that the definition of twistors has been
extended to higher-order anisotropic spaces with trivial N- and d-connections.

6.1.2. Mutual transforms of d-tensors and d-spinors. The spinor algebra for spaces
of higher dimensions cannot be considered as a real alternative to the tensor algebra as
for locally isotropic spaces of dimensions n = 3,4 [61, 62, 63]. The same holds true for
ha-spaces and we emphasize that it is not quite convenient to perform a spinor calculus
for dimensions n,m > 4. The concept of spinors is important for every type of spaces.
We can deeply understand the fundamental properties of geometrical objects on ha-
spaces, and we will consider in this subsection some questions concerning transforms
of d-tensor objects into d-spinor ones.

6.1.3. Transformation of d-tensors into d-spinors. In order to pass from d-tensors
to d-spinors, we must use o-objects (6.4) written in reduced or irreduced form (depend-
ing on fixed values of dimensions n and m):

(O’(&));, <0-<3<))§Z, <o’<&))ﬁz,_., (U(@))bg,..., (O‘{) PREREE (O‘(@))AA’,..., (O'{>H,,....

B (6.16)

It is obvious that contracting with corresponding o-objects (6.16), we can introduce
instead of d-tensors indices the d-spinor ones, for instance,

whY = (O'(BO)EX‘U(&), WaAp = (U@)

; A
@@ s T = <0k)-1§’?""' (6.17)

For d-tensors containing groups of antisymmetric indices, there is a more simple pro-
cedure of their transforming into d-spinors because the objects

(U&Emy)éz’ (Uaz?--.a>ig, - (U{f”'lz)n,,--- (6.18)
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can be used for sets of such indices into pairs of d-spinor indices. We enumerate some
properties of o-objects of type (6.18) (for simplicity, we consider only h-components
having g indices f,f, 12, ... taking values from 1 to n; the properties of v,-components
can be written in a similar manner with respect to indices (i,,,@,,,(?p, ... taking values

from 1 to m):

kl | symmetric on k, 1 for n—2q =1,7(mod38),
(0') Is . . (6.19)
J antisymmetric on k,l for n—-2q = 3,5(mod8),
for odd values of n, and an object
1 Iy
(0:.)" ((00.)"")
| symmetricon I,J (I',]J") for n—2q = 0(mod?8), (6.20)
is
antisymmetricon I,J (I',J’) for n—2q = 4(mod8),
or
1y J'1|n+2q=6(mod8),
(00 )" = () 4=0(mods) 6.21)
7 J n+2q = 2(mod8),

with vanishing of the rest of reduced components of the d-tensor (o7, . f)ﬂ with prime/
unprime sets of indices.

6.1.4. Fundamental d-spinors. We can transform every d-spinor &% = (&L, &41 ...,
&2z) into a corresponding d-tensor. For simplicity, we consider this construction only
for an h-component &! on an h-space being of dimension 7. The values

«xp i 7 .
ggh(o J)gﬁ (n is odd) (6.22)
or

EIgJ(g-?--f)U (or gl'er (o-f--j‘)”’) (n is even) (6.23)

with a different number of indices i - - -f, taken together, define the h-spinor &L to
an accuracy to the sign. We emphasize that it is necessary to choose only those h-
components of d-tensors (6.22) (or (6.23)) which are symmetric on pairs of indices xf

(orIJ (orI'J’)) and the number g of indices i fsatisﬁes the condition (as a respective
consequence of the properties (6.19) and/or (6.20), (6.21))

n-2q=0,1,7(mod8). (6.24)

Of special interest is the case when

(n+x1) (nisodd) (6.25)

N | =

q:
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or
1 .
q= En (n is even). (6.26)

If all expressions (6.22) and/or (6.23) are zero for all values of g with the exception of
one or two ones defined by the conditions (6.24), (6.25) (or (6.26)), the value E? (or &
(&! ")) is called a fundamental h-spinor. Defining in a similar manner the fundamental
v-spinors, we can introduce fundamental d-spinAors as pairs of fundamental h- and v-
spinors. Here we remark that an h(v,)-spinor & (E4r) (we can also consider reduced
components) is always a fundamental one for n(m) < 7, which is a consequence of
(6.26).

6.2. Differential geometry of ha-spinors. This subsection is devoted to the differen-
tial geometry of d-spinors in higher-order anisotropic spaces. We will use denotations
of type

v = (vi’v(m) c gf® = (O’i,0'<a>),
) , (6.27)
g% = (¢, g%) e = (a'r,0%)
for, respectively, elements of modules of d-vector and irreduced d-spinor fields (see de-
tails in [88, 89]). We will interpret d-tensors and d-spinor tensors (irreduced or reduced)
as elements of corresponding o-modules, for instance,

(ax) () /] _ XpYp QpYp  Iplp Irlfn
digy. €0 /[ 0¢p), Ll’ép. GO'EV. , JnK;’vae TpKpNp? ] (6.28)

We can establish a correspondence between the higher-order anisotropic adapted to
the N-connection metric gqg (3.28) and d-spinor metric €xp (e-objects for both h- and
v,-subspaces of €(?)) of a ha-space ¢?) by using the relation

- 1
IDOB =" Nm)+N(my) +- - - +N(m,) (6.29)
x((mm(u)) ;<0'<B)(”)) z)‘frxx%é’
where
(mw(u))v Ezi(u)( )(z><z>’ (6.30)

which is a consequence of formulas (6.3), (6.4), (6.6), (6.8), (6.9), (6.10), and (6.11). In
brief, we can write (6.29) as

Jix)(B) = €x) 0, €B, B, (6.31)

if the o-objects are considered as a fixed structure, whereas e-objects are treated as
carrying the metric “dynamics” on higher-order anisotropic space. This variant is used,
for instance, in the so-called 2-spinor geometry [61, 62, 63] and should be preferred if we
have to make explicit the algebraic symmetry properties of d-spinor objects by using
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metric decomposition (6.31). An alternative way is to consider as fixed the algebraic
structure of e-objects and to use variable components of o-objects of type (6.30) for
developing a variational d-spinor approach to gravitational and matter field interactions
on ha-spaces (the spinor Ashtekar variables [5] are introduced in this manner).

We note that a d-spinor metric

€ij 0 0
0 eyp, -+ 0
€Evr = . . . . (632)
0 0 Eﬂzhz
on the d-spinor space & = (Y(n), ¥ (v,),-..,F(v,)) can have symmetric or antisymmetric h

(Vp)-components €;; (€g oby ), see e-objects. For simplicity, in order to avoid cumbersome
calculations connected with eight-fold periodicity on dimensions n and m, of a ha-
space €‘2), we will develop a general d-spinor formalism only by using irreduced spinor
spaces () and F(y,,).

6.2.1. d-covariant derivation on ha-spaces. Let ¢‘?) be a ha-space. We define the
action on a d-spinor of a d-covariant operator

Vi = (Vi,Via) = (0(a) ¥ Vara

= (((fi)m2 Viriz, (Oay) M Vayay )
i (6.33)
= ((O—i)hlz Vi, (Ual )ﬂlﬂzv“)ﬂl@z ey

(O'ap )EIQZV(p)ﬂlﬂz yaony (Uaz)@lﬂz V(z)ﬂlﬂz )

(in brief, we will write V(q = Ve = (Viyi,, V()a1az,...,Vpaiaz,...,Vzaar)) as
maps

B B
Vo cof — Oy = Oy
B B B B
= (O‘i =0iliy Ohay = Ty apr =0 (6.34)
B _ B B _ B
Oprap = Tyt =+ Tz)az = U(Z)ﬂgz)

satisfying conditions
Vi (EE+nB) = V& +Viwnt, Vi (fE) =V EE+EEV (o f  (6.35)

for every &8, nf e of and f being a scalar field on €¢‘?’. It is also required that the
Leibnitz rule

(Vi Cp)nt = Vi (Cpnh) = Cp V(w0 (6.36)

holds and that V4 be a real operator, that is, it commutes with the operation of
complex conjugation:

Vi Wapy.. = Viw (ngz___). (6.37)
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We now analyze the question on uniqueness of action on d-spinors of an operator
V(0 satisfying necessary conditions. Denoting by V& and V () two such d-covariant
operators, we consider the map

(Vﬁ«lxﬁ = Vi ) cof — O-Qélﬂz- (6.38)

Because the action on a scalar f of both operators v and V « must be identical, that
is,

Vit = Vs, (6.39)
the action (6.38) on f = wégﬁ must be written as
(Vi ~ Vi ) (wpE) =0. (6.40)
In consequence, we conclude that there is an element ®a1az B € Oy, 0‘2 p for which
Vi = Ve w8 + 05, b Ve, Wp = Vo, W — O g, 0y - (6.41)

The action of the operator (6.38) on a d-vector v‘#’ = v8182 can be written by using
formula (6.41) for both indices §1 and éz:

(VE}XK —Viw |V ) BBy — @ yXﬁz +@)§2 y§1X

- (f . 55 (my 5y Y (6.42)
(B) (y
= Qv
where
(B) BB B
Q(tx Wy) = Q"‘l‘xZZyl}/Z = ®(a)y 5 <0‘)116X§' (6.43)

The d-commutator V)V (g)] defines the d-torsion. So, applying operators V[ m)V (B)]
and Vi Vg on f = wﬁgﬁ, we can write

(D (y) <y> (¥) (y)
Tioy 8y — Tiayipy = Qigyier ~ Quanripy (6.44)

with Q{%) 4 from (6.43),

The action of operator V ) on d-spinor tensors of type qu ,,(2,,(3 must be constructed
by using formula (6.41) for every upper index §1§2 ... and formula (6.43) for every lower
index o1 6, &x5....

6.2.2. Infeld-van der Waerden coefficients. Let
o= (61,05 O 1. 0%, Ok ) (6.45)
be a d-spinor basis. The basis dual to it is denoted as

S = (61,6%,...,87 85, 65,...,070 ™). (6.46)

i i T Yot
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A d-spinor k% € o has components k% = k%§%. Taking into account that 6&6%Vg§ =
V «, We write out the components Vg k¥ in the form B

3
SaOROY Vap kY = SESY V ap KE+ KESE V o 06 = V g k¥ + K<Y g (6.47)

where the coordinate components of the d-spinor connection yéﬂg are defined as
Yepe =0T Vap 5c. (6.48)

We call the Infeld-van der Waerden d-symbols a set of o-objects (0x)*8 parametrized
with respect to a coordinate d-spinor basis. Defining

Vo = (00) £ V . (6.49)
introducing denotations

Yisr=Yage(00)*, (6.50)

and using properties (6.47), we can write the relations

l 5BV(D()K V(a)Kﬂ+K ya)5,
(6.51)
l<a>5§V<a> Hp = V<a>#ﬁ*#§3’<7x>g

for d-covariant derivations V yk% and V alp-
We can consider expressions similar to (6.51) for values having both types of d-spinor
and d-tensor indices, for instance,

o)
LY 85V () 05 = V(05 — 08 y 6oy 5+ 05 T (6.52)

(e)(T)

(we can prove this by a straightforward calculation).
Now we will consider some possible relations between components of d-connections
yfa) s and 1"(%) (ry and derivations of (O(ay)*B. We can write

Tty = L Vo L) = 1 Vi) (08) LS Vi) ((04p)) T 6657)
= U 5a0 V () (1)) * + L&) (04p)) T (87 V 1) S+ 6e V 1y) 65) (6.53)
=180V () (04p)) T + 10 € 5% (04)) T (5% V 1) O+ 0E V () 67,
where légi = (0er){, from which follows

) (B u u
(0'<¢x))* (O'aﬂ) ® r(y)(,g) (Ugﬁ) p Viy (th))ﬂz‘*‘éEY@)g“'(sEY(!y)é- (6.54)

Connecting the last expressions on B and v and using an orthonormalized d-spinor

basis when y(%,> 5= 0 (a consequence from (6.48)), we have

uo 1
Y= N(m) +N(my) + - +N(m,

) (tes— (o) ® Vi) (1) E),  (6.55)
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where
HB B Br(x)
Tiyrap = (0(@) " (0ap) T - (6.56)

We also note here that, for instance, for the canonical and Berwald connections and
Christoffel d-symbols, we can express d-spinor connection (6.56) through correspond-
ing locally adapted derivations of components of metric and N-connection by introduc-
ing corresponding coefficients instead of 1"<<;,">>( py in (6.56) and then in (6.55).

6.2.3. d-spinors of ha-space curvature and torsion. The d-tensor indices of the com-
mutator Ay gy can be transformed into d-spinor ones:

Oap = (010 (g Aap = (01j:0ab) = (04, Bayby -+ Oaypby -2 Dazb, ) (6.57)
with h- and v,-components,
0ij = () A wp,  Oap = (09 4, Ay, (6.58)

being symmetric or antisymmetric depending on the corresponding values of dimen-
sions n and m, (see eight-fold parametrizations). Considering the actions of operator
(6.57) on d-spinors 72 and py, we introduce the d-spinor curvature ngﬂ as to satisfy
equations

5
Dgﬁnlnggérré, DgguszggEué. (6.59)

The gravitational d-spinor Yagys is defined by a corresponding symmetrization of d-
spinor indices:

Yapys = X(«iBlys)- (6.60)

We note that d-spinor tensors X §aB and Yupys are transformed into similar 2-spinor ob-
jects on locally isotropic spaces fg 1, 62, 63] if we consider vanishing of the N-connection
structure and a limit to a locally isotropic space.

Putting 6% instead of uy in (6.59) and using (6.60), we can express, respectively, the
curvature and gravitational d-spinors as

XZQQE = 5§ID£§5§! \I’Zégé = 5§ID<EE6§)' (6.61)
The d-spinor torsion éézz is defined similarly as for d-tensors by using the d-spinor
commutator (6.57) and equations

Oapf = Toh* Vi, f- (6.62)

6162 ; 5
y17,0B of the curvature d-tensor R}z can be computed

by using relations (6.56), (6.57), and (6.60) as to satisfy the equations

The d-spinor components R

(Dap—Tag™ Vy,y, ) V102 = RJIP2 (V12 (6.63)

Yy ¥
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Here d-vector VY122 is considered as a product of d-spinors, that is, V¥1¥2 = yY1 Y2, We
find
019; 01 T 0. T 5
Rllliﬁﬁz (XZ T []; ZyTlT2yl>6¥i+( T I; ZyTlTZYZ)(SZ]]' (6.64)

It is convenient to use this d-spinor expression for the curvature d-tensor

5167 _ < 1 T1T2 > L)
YiYox102B18, Yi21028 8, + TO‘IOQﬂ B, yTszyl 6 (6.65)
8> T1T2 ) ’
+ (XZzQﬂZElEz + Tﬂlﬁﬁlé yTlTZyz oy,
in order to get the d-spinor components of the Ricci d-tensor
_ p01d2 _ yO1 T1T2
RZ1X251Q2 - Rzlxzﬂﬁzéﬁz Ty 06y, + ®1 0001, yTlTZyl (6.66)
+Xéz LTI ’
YoX1 0201y, a1y, 62 yTlTZya
and the following d-spinor decomposition of the scalar curvature:
Koy X070 T1T20 & O] o071 T1T200 & | 02
qR Royo, = Xo 5,00 + Ty, Yura ¥ Xaysyeq + Tagos YTiTo0,- (6.67)

Using (6.66) and (6.67), see details in [61, 62, 63], we define the d-spinor components
of the Einstein and &gy d-tensors:
< - ) T1T
Gy = Gzlzzmﬁz = Xzimﬁzél& * Talloé&ly YT1Tz}'1

52 T1T2

+X}’ 0201y, + ®100Y, 62 yT]TZya

1 111 By 17288, Hy
2 EY] .S EYZ &3 |:XB U]BZ EZH] Illzﬁl
Bzuzvl T1T2B,B, 5>
+XB IJZVI BléZ IlIZEZ],
1
Dy = q)XlZzﬁlﬁZ = (6.68)

2(n+my+---+my)

Bk, B, T1728, B, 1y
X Ey 0 Eyya [XB wBy, T B,m, T2,
Bzuzh T1T2B,B) 5y
Bomyvr + 16, yzllzﬁz]

4+ T2

6
1 o1
X101, yTszé’l

) I:leﬁlﬁzélzz

52 T1T2 ]
+X12ﬁlﬁzélzz + Tﬂ‘ll’(2¥15z yTlTZYz

We omit this calculus in this work.
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