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Let h be an entire function and Ty, a differential operator defined by Tj, f = f’ + h f. We show
that Tj, has the Hyers-Ulam stability if and only if h is a nonzero constant. We also consider
Ger-type stability problem for |1 — f'/hf| < €.
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1. Introduction. The first result, which we now call the Hyers-Ulam stability (HUS),
is due to Hyers [4] who gave an answer to a question posed by Ulam (cf. [11, Chapter VI]
and [12]) in 1940 concerning the stability of homomorphisms: for what metric groups
G is it true that an e-automorphism of G is necessarily near to a strict automorphism?

An answer to the above problem has been given as follows. Suppose E; and E, are
two real Banach spaces and f : E; — E» is a mapping such that f(tx) is continuous
in t € R, the set of all real numbers, for each fixed x € E;. If there exist 8 = 0 and
p € R\ {1} such that

[fx+)=F0)—F < a(lxI?+IyIP) (1.1)

for all x,y € Ej, then there is a unique linear mapping T : E; — E»> such that || f(x) —
T(x)|l <20 x]/?/|2-2P]| for every x € E;. Hyers [4] obtained the result for p = 0. Then
Rassias [7] generalized the above result of Hyers to the case where 0 < p < 1, while the
proof given in [7] also works for p < 0. Gajda [2] solved the problem for 1 < p and also
gave an example that a similar result does not hold for p = 1 (cf. [8]).

In connection with the stability of exponential functions, Alsina and Ger [1] remarked
that the differential equation y’ =  has the HUS. More explicitly, suppose I is an open
interval, € > 0, and f :I — R is a differentiable function such that |f'(t) — f(t)| < ¢
for all t € I. Then, there is a differentiable function g : I — R such that g’ = g and
|f(t)—g(t)| < 3¢ for all t € I. The third and first authors of this paper along with
Miyajima [10] considered the Banach-space-valued differential equation y’ = Ay, where
A is a complex constant. Then they proved the HUS of v’ = Ay under the condition that
ReA + 0. Though, they treated the result as the stability of the operator D — I;, where
D denotes the ordinary differential operator and I; the identity. Some stability results
of other differential equations (or operators) are also known (cf. [5, 6, 9]).
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Taking the group structure of C\ {0} into account, Ger and Semrl [3] considered the
inequality

Sfx+y)
SO f ()

for amapping f: S — C\ {0}, where (S, +) is a semigroup and C is the set of all complex
numbers. If 0 < 0 < 1 and if (S, +) is a cancellative abelian semigroup, then they proved
that there is a unique function g: S — C\ {0} such that g(x +y) = g(x)g(y) for all
x,y €S and that

<0 (x,y€8) (1.2)

flx)
ax{ g(x)

(1-0)2 1-0

g(x)—l‘}s\JlJr L L+0 (1.3)

for all x € S. The stability phenomena of this kind is called Ger-type stability.
Throughout this paper, H(C) stands for the set of all entire functions. Let h € H(C)
and Ty : H(C) — H(C) be a linear differential operator defined by

Tnf(z) = f'(z2)+h(z2)f(z) (f€H(C), ze). (1.4)

DEFINITION 1.1. The operator Tj is said to have the HUS if and only if there ex-
ists a constant K > 0 with the following property: to each € > 0 and f,g € H(C) sat-
isfying sup,cc [Th.f(z) — g(z)| < &, there exists an fy € H(C) such that T fy =g and
sup,ec |.f(z) — fo(z)| < Ke. Such K is called an HUS constant for Tj,. If, in addition, the
minimum of all such K’s exists, then it is called the HUS constant for Tj,.

In this paper, we first consider the HUS of the differential operator Tj,. Then we show
that T, has the HUS if and only if h € H(C) is a nonzero constant function. Moreover,
we give the HUS constant for Tj,. Finally, we consider the Ger-type stability problem of
the differential equation ' = A7y. To be more explicit, suppose € > 0 and f € H(C)
satisfies

f(z) ‘
su -1 <e. 1.5
zeg Af(Z) (1.5)
Does there exist K > 0 such that
f(2) ‘ celM ‘
su —1| <K& or su <Ke¢ 1.6
ze@IC) ceMl ze}g f(Z) (1.6)

holds for some ¢ € C\ {0}? To this problem, we give a negative answer: the Ger-type
stability does not hold in general. Moreover, we show that the solution f € H(C) to the
differential equation ' = Ay is only the function which satisfies both (1.5) and (1.6).

2. The HUS for Tj,. For simplicity, we write [;.f(©)d¢ for fol f(zt)zdt, where z € C
and f € H(C). We associate to each h € H(C) a function h defined by

h(z) :expjo n(@)dc (zeQ). (2.1)
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Let h € H(C). Throughout this section, Ty, : H(C) — H(C) denotes a linear differential
operator defined by (1.4). Suppose f,g € H(C). Then note that T, f = g if and only if f
is of the form

f@ =5 ){fw) +I g(c)h(z;)dg} (zeO). 2.2)
LEMMA 2.1. Suppose h € H(C) is not a constant function, f € H(C), and
0<sup |Thf(2)] < oo, (2.3)
zeC
Then
Sup| fiz) - W‘ - =4

for every c € C.

PROOF. By hypothesis, Ty f is a bounded entire function, and so Ty f must be con-
stant, say ¢y € C\ {0} by Liouville’s theorem. Hence, by (2.2), f is of the form

f(2) = {f(0)+coj h(;)d;} (ze ). 2.5)

Suppose sup,.c | f(z)—c1 /fL(z)I < oo for some c¢; € C. Another application of Liouville’s
theorem yields the existence of a constant ¢, € C such that ¢, = f —c¢;1/h, and therefore
(2.5) gives

c2h(2) = f(0) —c1 +co Efz(g)dg (ze€Q). (2.6)
By differentiating both sides of (2.6) with respect to z, we obtain
cohh = coh, (2.7)
and hence
coh = cp. (2.8)

Since h is not constant, this implies that ¢, = 0. Thus, f = ¢; /h, and hence Tnf =0 (see
(2.2)), which contradicts 0 < sup,cc | Tnf(2)]. O

THEOREM 2.2. Ifh € H(C), then each of the following statements implies the other:
(a) h is a nonzero constant function,
(b) Ty has the HUS.

PROOF. (a)=(b). Suppose h is a nonzero constant function, say A € C\ {0}. Then,
h(z) = e?? for z € C. Suppose € = 0 and f,g € H(C) satisfy sup,cc |Tnf(z) —g(z)| <&.
Then there exists a ¢y € C such that Ty, f — g = c¢ by Liouville’s theorem. Put

u(z) = e’AZ{ J:g(C)eACdE} (ze Q). (2.9)
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Then Tpu = g, and so T (f —u) = co, Ico| < €. Hence, by (2.2), f is of the form
1 z.
f@ =u@)+ 1O -uO+a | hac) -,
_ C_O _ _@ -Az
- & +u(z)+<f(0) u(0) A)e

for all z € C. Put
Jo(2) :u(z)+(f(O)—u(O)—%O)e’AZ (ze ), (2.11)

then Ty fo = g and

_|Co| . &
| f(2)=fo(z)| = I (2.12)
for every z € C so that Ty, has the HUS with an HUS constant 1/|A]|.
(b)=(a). Put
fi) = = | g zeo. (2.13)
h(z) Jo

Then we obtain Ty f; = 1. Let K < o be an HUS constant for Tj. Since Ty has the HUS,
there is an f» € H(C), such that Ty, f> = 0 and

sup | fi(z) - f2(2)| <K. (2.14)

Note that f> is of the form f>(z) = fz(O)/fl(z) for all z € C, since Ty f> = 0. Lemma 2.1,
applied to f71, yields that h is a constant function. If h were 0, then (2.13) would be writ-
ten in the form f)(z) = z for z € C, and hence from (2.14), sup,cc|z— f2(0)| < K < o,
which is a contradiction. Thus, we conclude that h is a nonzero constant function.

O

THEOREM 2.3. Suppose A € C\ {0}, f,g € H(C), and sup,cc|Taf(z) —g(z)| < oo.
Then there exists a unique f, € H(C) such that Tx fy = g and

sug|f(z)—f0(z)| < 0. (2.15)

Furthermore, 1/|A| is the HUS constant for Tj.

PROOF. The existence of such a function f, € H(C) is proved by Theorem 2.2, and
so we need to show only the uniqueness. Suppose f; € H(C) and f» € H(C) satisfy
T\fj =g and

sup | f(2) - fj(2)]| < (2.16)
zeC
for j =1,2. Since T, fj = g,

filz) = e*AZ{fJ(O) +J0 g(z;)eACdg} (ze Q) (2.17)
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for j = 1,2, and hence

f1(2) = f2(2) = (f1(0) = £2(0))e ™™ VzeC. (2.18)

It follows from (2.16) that f; — f> is constant by Liouville’s theorem. Therefore, f;(0) =
f2(0) by (2.18), which implies that f; = f», proving the uniqueness.

We show that 1/|A] is the HUS constant for Ty. Indeed, 1/|A| is an HUS constant by
(2.12). Conversely, let K be an arbitrary HUS constant for Ty, and put

_L
fa(z2) = 3 Ae (ze Q). (2.19)
A simple calculation shows that f5(z) + Af2(z) = 1 for all z € C, and hence
sup,cc |ITaf2(z)| = 1. Then, there exists an f3€H (C) such that Tj f3 =0 and sup,c¢ |f>(z)
— f3(z)| < K. Since |fo(z) + Ate 22| = 1/|A| for z € C, the uniqueness implies that
f3(z) = —A~1e=22 which proves 1/|A| < K. Thus, 1/|A| is the HUS constant for Tj. O

3. Stability for the Ger-type differential inequality. In this section, we consider the
Ger-type stability problem. First, we show that the Ger-type stability does not hold in
general. Indeed, the following proposition is true.

PROPOSITION 3.1. For A € C\ {0} and € > 0, there exists an f € H(C) with the fol-
lowing properties:

{7

zeC
3.1
su f(z)—l’*su cg/\z_l'ioo ve el io) (3.1)
zeg cerz zeg f(z) '
PROOF. We associate to each A € C\ {0} and € > 0 a function f defined by
f(z)=eMNOZ (7 e (), (3.2)
As above, we obtain
f(2)=@A+Ale) f(z) (zeQ), (3.3)
so that
f'(z) ' 3
AF(z) 1|=¢ VzeC. 3.4)
If c € C\ {0}, then we have
f(z) _1‘ - i|e|)\|£z| “1— o (Rez— o),
cerz lc]
Ce?\z (3.5)

1‘ >|cl|e™N#Z ] -1 — 0 (Rez — —),

f@@
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and so

CeAz

SPIF

zeC

f(2)

celz

sup
zeC

,1.

1‘ _w Ve {0l (3.6)
O

One might ask when the Ger-type stability is true. We give an answer to this question.
If the Ger-type stability holds, then the function f € H(C) must be of the form f(z) =
f(0)e?2. That is, the only solution to the differential equation y’ = Ay has the Ger-type
stability.

THEOREM 3.2. Suppose A € C\ {0}, € > 0, and f € H(C) satisfies f(z) + 0 for all
z € C and (1.5) holds. Suppose

f(2)

celz

sup
zeC

—1‘ or sup’%—l‘ 3.7)

zeC

is finite for some c € C\ {0}; then f is of the form f(z) = £(0)e*? for all z € C.

PROOF. It follows from (1.5) that 1 — f'/Af is constant, say ¢y € C, by Liouville’s
theorem. Thus, " = (1 —c)Af, and hence

f(2) = f(0)el=0*2 (z (). (3.8)

Suppose that there is a ¢; € C\ {0} such that

f(z) ‘
—-1 .
Set leers |57 39
From (3.8), it follows that
sup &e’c‘ﬂz - 1. < o, (3.10)
zeC C1
and hence ¢y must be 0, proving f(z) = £(0)e? for all z € C.
Similarly, we can treat the case where
Az
Ccoe
su -1 ‘ < oo (3.11)
zeg Af(z)
for some ¢, € C\ {0}, and so the proof is omitted. |

Thus far, we have treated entire functions. Finally, we consider the Ger-type stability
problem in the category of holomorphic functions on a bounded region.

THEOREM 3.3. Let 0 € Q be a bounded convex region of C and put M = sup,.q |z|.
Suppose A € C\ {0}, 0< e <1, and f :Q — C is holomorphic such that f(z) + 0 for all
zeQ and

sup (3.12)

zeQ

f'(z)
Af(2) 1‘SE
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Then there are Ky > 0 and c € C\ {0} such that

f(2)

celz

Ce)\z

f(2)

PROOF. Putg(z)=-1+f'(2)/Af(z) for z € Q, and so

max{sup —1‘} <Kje. (3.13)

zeQ zeQ

f(2)=A1+g(2)f(2) (zeQ). (3.14)

From (3.14), it follows that

£ =f<o>e“expj0 AJ(C)dT (3.15)

for every z € Q, and hence

Pl 1= |ow ), =S all
-1| = A 1
F(0)er exp | Ag(T)dT -
® (3.16)
Z |)\ez| MM _1)¢
for all z € Q. Similarly, we can show that
f(o)e)\z ‘ |A|M
sup |=——-1| < (e —-1)s, (3.17)
el f@ ( )
and so the proof is complete. O
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