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The case k = a of the 1974 conjecture of Andrews on two partition functions Aj x4 (1)
and B, k4 (n) was proved by the first author and Sudha (1993) and the case k = a+1 was
established by the authors (2000). In this paper, we prove that the conjecture is false and
give a revised conjecture for a particular case when A is even.
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1. Introduction. Andrews [3] proved a general theorem from which the well-known
Rogers-Ramanujan identities, Gordon’s theorem [7], the Gollnitz-Gordon identities [6]
and their generalization [1], Schur’s theorem and its generalization [10] could be de-
duced. In 1969, Andrews [2] proved the following theorem.

THEOREM 1.1 [2, Theorem 2]. If A, k, and a are positive integers with A/2 < a <k,
k > 2A —1, then for every positive integer,

Arka () = Byka(n), (1.1

where A k.a(n) and Bak,qa(n) are defined as follows.

DEFINITION 1.2. For an even integer A, let Aj k(1) denote the number of parti-
tions of n into parts such that no part which is not equivalent to O(mod A + 1) may
be repeated and no part is equivalent to 0,x(a—A/2)(A+1)mod[(2k—A+1)(A+1)].
For an odd integer A, let A4 (n) denote the number of partitions of n into parts
such that no part which is not equivalent to O(mod((A+1)/2)) may be repeated, no
part is equivalent to A + 1(mod2A + 2), and no part is equivalent to 0, +(2a — A) ((A +
1)/2)mod[(2k—A+1)(A+1)].

DEFINITION 1.3. Let By q(n) denote the number of partitions of n of the form
b1+ ---+bswith b; > b;,1, no part which is not equivalent to O(mod A + 1) is repeated,
bi—b;,x_1 = A+1 with strictinequality if A+ 1/b;, Z?;Jj“fi <a—-jforl<j<(A+1)/2,
and f1 +- - -+ fas1 < a—1, where f; is the number of appearances of j in the partition.

Since Schur’s theorem [10] is the case A = k = a = 2, it is not a particular case
of Theorem 1.1 as k > 2A — 1 is not satisfied. Hence Andrews [2] conjectured that
Theorem 1.1 may be still true if k > A. In fact, he gave a proof of this result [4].

In the conclusion of [4], Andrews stated the following two conjectures.
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CONJECTURE 1.4. ForA/2<a<k <A, letn®=(k+A-a+1)(k+A—a)/2+(k—-A+
1)(A+1). Then

Baka(n) = Axxa(n) for0<n<n,

Baka(m) = Axka(n)+1 forn=n-. (1.2)

CONJECTURE 1.5. For all positive integers n, A433(n) = 32‘3,3(11), where 32,3,3 (n) de-
notes the number of partitions of n enumerated by By 3 3(n) with the added restrictions:

fsjrz+fs5j03<1 forj=0,
Ssjrat+ fsjre <1 forj=0, (1.3)
Ssic1+fsj+fsjes+f5546 <3 forj=1.

Conjecture 1.5 is designed to show that when the condition k > A is removed with
some additional restrictions on the summands, some partition identities can be ob-
tained in a few cases. In 1994, Andrews et al. [5] proved Conjecture 1.5.

The first author and Sudha [9] have proved the case k = a of Conjecture 1.4 while the
authors in [8] have established the case k = a + 1 of Conjecture 1.4. The objective of the
present paper is to prove that Conjecture 1.4 is false if n exceeds (2k—a—A/2+1)(A+
1) for even A and k > a + 2. For odd A, we have verified and checked that Conjecture 1.4
is false when A = 11, k =9, and a = 6. We also give the following revised conjecture for
a particular case when A is even.

REVISED CONJECTURE 1.6. Let A be even,a—A/2=1,0=k—a, 0(0-1)/2<[a-
AJ21(A+1),and 0 <0 <A/2-3. Then

Bura(n) = Ayga(n) forn < (Zk—a— % + 1)()\+ 1,

Byka(n) = Apka (1) +Baka (X)), (1.4)

0(60-1)

2

where n = (2k—a—%+1)(?\+1)+x, 0<x=<

These results support (i) Andrews’ contention that k > A is essential for the truth
of Theorem 1.1 and (ii) his belief that Theorem 1.1 was the best possible one, but his
conjecture about first counterexamples when k > A is false.

2. Preliminaries. Let Pg,a (n) and Paysa (n) denote the sets of partitions enumer-
ated by Bak.a(n) and A, k.4 (n), respectively. Let P, (n) (resp., Pz(n)) denote the set of
partitions enumerated by A, k(1) (resp., Ba k,a(1)) butnot by By k,a(1n) (resp., A k,a(1)).

1 € P, (n) implies that it violates one of the conditions on f’s or b’s. Let S; (j =
1,2,...,A/2) denote the condition Z?;f“ fi <a—j,letS denote the condition Z;‘:f fi<
a—1, and let S* be the condition on b's.

Let Rk—a—-A/2+1)A+1) <n< Rk—-a-A/2+1)(A+1)+0(0-1)/2, where
0(0-1)/2<(a—-A/2)(A+1) and O = k—a. Then

Py(n)=Qtu---UQa UR(N), (2.1)
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whereforl <i<a-1,

Qi = {ﬂ € Pp(n): (a—%>()\+1) appears i times},
R(n) = {(2k—a— % +1)(/\+ 1) + 1T : 1T is a partition of (2.2)

n-— <2k—a—%+1)(z\+1) into parts with C}.

Here C stands for “subjected to the conditions in the definition of B.” Clearly, #R(n) =
Bakaln—QRk—a—-A/2+1)(A+1)].

From the method explained in [8, 9], it follows that the partitions violating Sy, ...,Sx/2
will be mapped onto Q' uU---uUQ4 1. If a—A/2 =1, then S reduces to S;. As such, any
contribution to R(n) can come only from those partitions of P which violate $* but
do not violate any of Si,...,Sx/2. For the counterexample in Section 3, we enumerate
separately the partitions counted by R (n). If there are no partitions of n violating only
S*, then for such n, we have that P, (n) is the union of the partitions violating S1,...,Sx/2
and Q%! is the set containing a — 1 times A + 1. This set is identified with the first stage
of S| where all the parts from 1,...,A appear. Q42 will be the union of the two sets,
one containing a — 2 times A+ 1 and the other containing a —2 times A + 1 plus a part
between 1 and A. These two sets are, respectively, identified with the first stage of S»
where all the parts from 2,...,A — 1 appear, and the second stage of S; in which all the
parts except one part from 1,...,A appear and so on.

3. Counterexample. LetA =12, k=11,a=7,0=4,a-A/2=1,0(0-1)/2=6<
(a—A/2)(A+1) =13, and n¢ = 136. In this case,

Sap2=Se:fr+fes=<1, Ss:ifs+fr+fot+f5<2, Siifo+---+f4 <3,
S3:fiot-+f3<4, Seifut--+fo<5 0 Siifiet--+f1<6,
S:fiz+---+f1 <6 G-
Py(n) =Q'u---UQ°UR(n),

where Q! = {r € Pp(n) : 13 appears i times}, 1 <i <6, and R(n) = {130+ m:mis a
partition of n—130 into parts with C}. Here #R (n) = Bj,11,7(x), where x = n—130. We
now prove

Bi2g1,7(n) = Ap11,7(n), n <130, (3.2)
Biz11,7(n) = A1211,7(n) +Bi211,7(x), n=130+x, 0 <x <6, (3.3)
Bi12,11,7(136) = A12,11,7(136) +B12,11,7(6) =1 = A1211,7(136) + 3, (3.4)

since B(6) =4 as 6, 5+ 1,4+ 2, and 3 +2 + 1 are the only relevant partitions of 6
enumerated by B.
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Proof of (3.2), (3.3), and (3.4). Equation (3.2) follows from [8]. We now prove that
for 1 <n < 136, there are no partitions of n violating only $* and that

18+17+16+15+14+12+11+10+9+8+6 (3.5)

is the only partition of 136 violating only S*.

In [8, 9] we have shown that for n < 130, if a partition violates $*, then it violates
either S or S;. However, for 130 < n < 136, we now investigate such partitions.

If a partition violates S*, then there exist a partition

n=by+---+bj+---+bjs10+--+b;s (3.6)

and an integer i with b; — b;, 19 < 13. We get the following possibilities.
CASE 1. If b;,19 > 13, then the number being partitioned is greater than or equal to

(124 x11)+--+(12+x1)+-- -,

3.7
11(12+1), where x;;7 —x1 <13. (3.7)

If (3.7) contains the part 13 more than 6 times, then it violates S. Let x < 6 be the
number of 13’s and let y denote the number of terms greater than 13 in (3.7) so that
x +7y =11. Then (3.7) becomes

11-x)(11-x-1)

13x+(12+2)+---+(12+11-x) =11(13) + 5 (3.8)
Let n¢ denote the n in the conjecture. If k = a + 0, then
nC:(Zkfaf%+1>(A+l)+@
=k(?\+1)+(k—a—%+1>(2\+1)+(k—a)(’;——“—1)
<k(?\+1)+(k7a7%+1)()\+1)+(k_x)(];—_x_1) (3.9)
<k(7\+1)+w Sincek_a_%+1<0_

In this case, we have that n© <11(13)+ (11 -x)(11—-x—-1)/2.

CASE 2. Let bj;109 <13 and b; < 13. Then (3.6) violates S.

CASE 3. Letb;;19<13 and b;>13. Let 8 denote the number of parts among 1,2,...,13.
If B = 7, then (3.6) violates S or S;. Hence, 1 < 8 < 6. Let « denote the number of parts
13 so that 5 < @« <10 and &+ S = 11. Then the number being partitioned is

(12+xx)+---+(12+x1) + 1+ - -+ V5. (3.10)

Since (12 +x4) —yp < 13, we have x« = yg. Now, x1 = 2, x» = 3,...,X« = &+ 1. Thus,
yg=«&+1,...,y1 = x+f=11. Hence, (3.10) is greater than or equal to

12+x+1)+---+(12+2)+ (x+B)+- -+ (x+1) (3.11)
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and equals

130+ (x+B)(x+p+1)
5 .

Let B =1,2,3,4,5. Then (3.10) is, respectively, 196, 183, 170, 157, and 144, all of which
are greater than 136 = n¢.

Now let B = 6. Since we have to choose 6 parts from 1,2,...,13 and 5 parts greater
than 13 for a partition violating S* (and not violating any of S,Sy,..., Sg), it is clear
that the minimum part should be 6. Let S{* = {6,7} and ) = {8,9,10,11,12,13}. Since
fe+ f7 < 1, we can choose either 6 or 7 from S; and the other five must be from S5
Also there are 5 parts greater than 13. In this case, the minimum value of n will be

(3.12)

6+8+9+10+11+12+14+15+16+17+18 =136. (3.13)

Thus for all 130 < n < 136, there are no partitions of n violating only S*. It is easy to
see that when n =136,

18+---+14+12+---+8+6 (3.14)
is the only partition of 136 violating only S*. Thus we find
P (n) = {union of the partitions violating Si,...,Ss} for1<n <136 (3.15)
while
P} (136) = {union of the partitions violating Si,...,S¢} + 1. (3.16)

We now establish a bijection of Q' U --- U Q° onto P)(n) which is explained in
Table 3.1. This also proves (3.3) and (3.4). Before writing the table, we observe that
for a partition

T+13Xi+op+---+xj, 1<i<6, (3.17)

belonging to Py, 1T is a partition of (n—13xi—&; —- - - — «;) into parts greater than 13
with C, where 1 < &j < --- < x; <12, and for a partition

7T+Bl+"'+ﬁj (3.18)

belonging to P}, 1 is a partition of (n—f; —- - - — ;) into parts greater than B, such
that 13 is not a part, where 1 < ;< --- < f; <12.

REMARK 3.1. In Table 3.1, some partitions in Q? are not covered. They are

{r+13x2+x1+x2+1:2<xp <11, 3<x1 <12, (x1,x2) # (7,6)}

(3.19)
U{m+13x2+12+x1+x2:3<x1 <11, 2<xp <10, (x1,x2) # (7,6)}.

Here we split 13 x 2 into pairs («, ) and (y,d) in the following order:

(7,6) (8,5) (9,4) (10,3) (11,2) (12,1). (3.20)



1102

PADMAVATHAMMA AND M. R. SALESTINA

TABLE 3.1
! ’
P312,11,7 (n) PA12,11,7(n)

Q6 = {m+13x6}

Q% = {mr+13x5}
U{m+13x5+(13—x1):
1<(13-x1) <12}

Q*={m+13x4+x:x=0,1,2,12}

U{m+13x4+(13-x1):
2<(13—-x1) <11}

U{m+13x4+(13—-x1)+(13—-x2):

1<(13—-x2)<(13—x71) <12}

Q3 ={m+13x3+x:x=0,1,2,11,12}

u{m+13x3+(13—x1):
3<(13—x1) <10}

U{m+13x3+(13—-x1)+(13—x2):

2<(13—-x2) < (13—-x7) <11}

Uim+13x3+x+y:(x,y)
= all possible pairs of 1,2,11,12
except (11,2)}
U{mm+13x3+(13—x1)+---
+(13—x3):1=<(13—x3)
<(13-x2) < (13—-x71) <12}

Q2={m+13x2+x:x=0,1,2,
3,10,11,12}
U{mm+13x2+(13-x1):
4<(13-x1) <9}

U{m+13x2+(13—-x1)+(13—x2):

3<(13—x2)<(13-x71) <10}

1st stage of S1 = {mr+12+---+1}

1st stage of Sp = {mr+11+---+2}

2nd stage of S; = {mmr+12+---+(x1+1)
+(x1—=1)+---+2+1:
1<x1 <12}

1st stage of S3={mr+10+---+3+x:x
=0,1,2,12}

2nd stage of Sp = {mr+11+---+(x1+1)
+(x1—-1)+---+2:2<x1 <11}

3rd stage of S1 = {mr+12+---+(x1+1)
+(x1—-D)+---+0+1)+(x2—-1)
+ee+1lil<xp<x1 <12,
(xi,x5) # (7,6)}

Note 1. If (xi,x5) = (7,6), then it will be covered

in the 3rd stage of S».

1st stage of Sy = {mT+9+---+4+x:x =
0,1,2,11,12}

2nd stage of S3 = {rr+10+---+(x1+1)
+(x1—-1)+---+3:3<x1 <10}

3rd stage of So = {mr+11+---+(x1+1)
+(x1-1D+-+(x+1)+(x2-1)
+o-42:12<x2<x1 =11,
(xi,x5) # (7,6)}

Note 2. If (x;,xj) = (7,6), then it will be covered

in the 3rd stage of S3.

4th stage of S4 = {m+9+ - - +4+x+y:
(x,y) = all possible pairs of
1,2,11,12 except (11,2)}

4th stage of S| = {mm+12+---+(x1+1)
+(x1 -1+ +(x3+1)+(x3-1)
+ooeF+1i1<x3<x2<x1 <12,
(xi,x5) # (7,6)}

Note 3. If (x,x;) = (7,6), then it will be covered

in the 4th stage of S».

1st stage of S5 ={mm+8+7+6+5+x:
x=0,1,2,3,10,11,12}

2nd stage of S4 = {mr+9+---+(x1+1)
+(x1—-1)+---+4:4<x1 <9}

3rd stage of S3 = {mr+10+---+(x1+1)
+(x1—-1)+---+(x2+1)
+(xp2—=1)+---+3
13 <x2 <x1 £10,
(xi,x;j) #(7,6)}
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TABLE 3.1. Continued.

P312,11,7 (n)

PA12,11,7(n)

Ui+ 13x2+x+y:(x,y)
= all possible pairs of 1,2,3,10
11,12 except (10,3)}

U{m+13x2+(13—-x1)+---
+(13—x3):2=< (13—x3)
<(13-x2)<(13—-x1) <11}

U{m+13x2+(13—-x1)+---
+(13—x4):1=<(13—x4)
<+ o< (13—-x1) <12}

Ql={m+13+x:
x=0,1,2,3,4,9,10,11,12}
U{m+13+(13-x71):
5<(13-x71) <8}

U{m+13+(13-x1)+ (13—x2) :
4<(13-x2) <(13—-x1) <9}

ulm+13+x+y:(x,y)
= all possible pairs of 1,2, 3,4,9,
10,11,12 except (9,4)}
U{m+13+(13-x1) +---
+(13—x3):3=<(13—x3)
<(13—x2) < (13—x71) <10}

U{mm+13+(13-x1)+---+(13—-x4):

2<(13—-x4)<---<(13—x7)
<11}

U{m+13+(13-x1)+---+(13-x3):

1<(13-x35)<---<(13-x71)
<12}

Note 4. If (x,xj) = (7,6), then it will be covered in
the 3rd stage of Sy4.

4th stage of S5 ={mm+8+7+6+5+
x+7y:(x,y) = all possible
pairs of 1,2,3,10,11,12
except (10,3)}

4thstageof Sp = {mmr+11+---+(x1+1)
+(x1—-1D)+---+(x3+1)
+(xz3—-1)+---+2:2=<x3
<x2<x1 <11}
(xi,x5) # (7,6)}

Note 5. If (x,xj) = (7,6), then it will be

covered in the 4th stage of S3.

S5th stage of S = {mr+12+---+(x1+1)
+(x1—-1D)+---+(x4+1)
+(xg—1)+---+1:1<x4
<. <x1 <12}

(xi,x5) # (7,6)}

Note 6. If (x,xj) = (7,6), then it will be

covered in the 5th stage of S>.

1st stage of Sg = {mm+7+6+x:
x=0,1,2,3,4,9,10,11,12}

2nd stage of S5 = {mr+8+---+(x1+1)
+(x1—=1)+---+5
:5<x1 <8}

3rd stage of S4 = {mr+9+---+(x1+1)
+(x1—1)+---+(x2+1)
+(xo—1)+---+4:4<x>
<x1 <9}

4th stage of S5 = {mm+7+6+x+y:(x,y)
= all possible pairs of 1,2,
3,4,9,10,11,12 except (9,4)}

4th stage of S3 = {mr+10+---+(x1+1)
+(x1—-1)+---+(x3+1)
+(x3—-1)+---+3:3<x3
<x2 <x1 <10}

S5th stage of So = {mr+11+---+(x1+1)
+(x1—1)+---+(x4+1)
+(xg—1)+---+2:2<x4
<---<x1 =11}

6th stage of S1 = {m+12+---+(x1+1)
+(x1—-1)+---+(xs5+1)
+(xs=1)+---+1:1=<x5
<---<x1 =123
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We arrange M+ x+B+y+0+x1+x2+y (v =12 or 1) in the decreasing order and
associate it to the rearranged partition 7m* which belongs to P}.

A similar procedure is adopted for some partitions in Q! which are also not covered
in Table 3.1. This completes the proof of (3.3) and (3.4). |
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