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The case k = a of the 1974 conjecture of Andrews on two partition functions Aλ,k,a(n)
and Bλ,k,a(n) was proved by the first author and Sudha (1993) and the case k = a+1 was
established by the authors (2000). In this paper, we prove that the conjecture is false and
give a revised conjecture for a particular case when λ is even.
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1. Introduction. Andrews [3] proved a general theorem from which the well-known

Rogers-Ramanujan identities, Gordon’s theorem [7], the Göllnitz-Gordon identities [6]

and their generalization [1], Schur’s theorem and its generalization [10] could be de-

duced. In 1969, Andrews [2] proved the following theorem.

Theorem 1.1 [2, Theorem 2]. If λ, k, and a are positive integers with λ/2 ≤ a ≤ k,

k≥ 2λ−1, then for every positive integer,

Aλ,k,a(n)= Bλ,k,a(n), (1.1)

where Aλ,k,a(n) and Bλ,k,a(n) are defined as follows.

Definition 1.2. For an even integer λ, let Aλ,k,a(n) denote the number of parti-

tions of n into parts such that no part which is not equivalent to 0(mod λ+ 1) may

be repeated and no part is equivalent to 0,±(a−λ/2)(λ+1)mod[(2k−λ+1)(λ+1)].
For an odd integer λ, let Aλ,k,a(n) denote the number of partitions of n into parts

such that no part which is not equivalent to 0(mod((λ+1)/2)) may be repeated, no

part is equivalent to λ+1(mod2λ+2), and no part is equivalent to 0,±(2a−λ)((λ+
1)/2)mod[(2k−λ+1)(λ+1)].

Definition 1.3. Let Bλ,k,a(n) denote the number of partitions of n of the form

b1+···+bs with bi ≥ bi+1, no part which is not equivalent to 0(modλ+1) is repeated,

bi−bi+k−1 ≥ λ+1 with strict inequality if λ+1/bi,
∑λ−j+1
i=j fi ≤ a−j for 1≤ j ≤ (λ+1)/2,

and f1+···+fλ+1 ≤ a−1, where fj is the number of appearances of j in the partition.

Since Schur’s theorem [10] is the case λ = k = a = 2, it is not a particular case

of Theorem 1.1 as k ≥ 2λ− 1 is not satisfied. Hence Andrews [2] conjectured that

Theorem 1.1 may be still true if k≥ λ. In fact, he gave a proof of this result [4].

In the conclusion of [4], Andrews stated the following two conjectures.
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Conjecture 1.4. For λ/2 < a ≤ k < λ, let nc = (k+λ−a+1)(k+λ−a)/2+(k−λ+
1)(λ+1). Then

Bλ,k,a(n)=Aλ,k,a(n) for 0≤n<nc,
Bλ,k,a(n)=Aλ,k,a(n)+1 for n=nc. (1.2)

Conjecture 1.5. For all positive integers n, A4,3,3(n)= B0
4,3,3(n), where B0

4,3,3(n) de-

notes the number of partitions of n enumerated by B4,3,3(n) with the added restrictions:

f5j+2+f5j+3 ≤ 1 for j ≥ 0,

f5j+4+f5j+6 ≤ 1 for j ≥ 0,

f5j−1+f5j+f5j+5+f5j+6 ≤ 3 for j ≥ 1.
(1.3)

Conjecture 1.5 is designed to show that when the condition k ≥ λ is removed with

some additional restrictions on the summands, some partition identities can be ob-

tained in a few cases. In 1994, Andrews et al. [5] proved Conjecture 1.5.

The first author and Sudha [9] have proved the case k= a of Conjecture 1.4 while the

authors in [8] have established the case k= a+1 of Conjecture 1.4. The objective of the

present paper is to prove that Conjecture 1.4 is false if n exceeds (2k−a−λ/2+1)(λ+
1) for even λ and k≥ a+2. For odd λ, we have verified and checked that Conjecture 1.4

is false when λ= 11, k= 9, and a= 6. We also give the following revised conjecture for

a particular case when λ is even.

Revised Conjecture 1.6. Let λ be even, a−λ/2 = 1, θ = k−a, θ(θ−1)/2 < [a−
λ/2](λ+1), and 0≤ θ ≤ λ/2−3. Then

Bλ,k,a(n)=Aλ,k,a(n) for n<
(

2k−a− λ
2
+1
)
(λ+1),

Bλ,k,a(n)=Aλ,k,a(n)+Bλ,k,a(x),

where n=
(

2k−a− λ
2
+1

)
(λ+1)+x, 0≤ x ≤ θ(θ−1)

2
.

(1.4)

These results support (i) Andrews’ contention that k ≥ λ is essential for the truth

of Theorem 1.1 and (ii) his belief that Theorem 1.1 was the best possible one, but his

conjecture about first counterexamples when k≥ λ is false.

2. Preliminaries. Let PBλ,k,a(n) and PAλ,k,a(n) denote the sets of partitions enumer-

ated by Bλ,k,a(n) and Aλ,k,a(n), respectively. Let P ′A(n) (resp., P ′B(n)) denote the set of

partitions enumerated byAλ,k,a(n) (resp., Bλ,k,a(n)) but not by Bλ,k,a(n) (resp.,Aλ,k,a(n)).
π ∈ P ′A(n) implies that it violates one of the conditions on f ′s or b′s. Let Sj (j =

1,2, . . . ,λ/2) denote the condition
∑λ−j+1
i=j fi ≤ a−j, let S denote the condition

∑λ+1
i=1 fi ≤

a−1, and let S∗ be the condition on b′s.
Let (2k− a− λ/2+ 1)(λ+ 1) ≤ n < (2k− a− λ/2+ 1)(λ+ 1)+ θ(θ−1)/2, where

θ(θ−1)/2< (a−λ/2)(λ+1) and θ = k−a. Then

P ′B(n)=Q1∪···∪Qa−1∪R(n), (2.1)
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where for 1≤ i≤ a−1,

Qi =
{
π ∈ P ′B(n) :

(
a− λ

2

)
(λ+1) appears i times

}
,

R(n)=
{(

2k−a− λ
2
+1
)
(λ+1)+π :π is a partition of

n−
(

2k−a− λ
2
+1
)
(λ+1) into parts with C

}
.

(2.2)

Here C stands for “subjected to the conditions in the definition of B.” Clearly, #R(n)=
Bλ,k,a[n−(2k−a−λ/2+1)(λ+1)].

From the method explained in [8, 9], it follows that the partitions violating S1, . . . ,Sλ/2
will be mapped onto Q1∪···∪Qa−1. If a−λ/2= 1, then S reduces to S1. As such, any

contribution to R(n) can come only from those partitions of P ′A which violate S∗ but

do not violate any of S1, . . . ,Sλ/2. For the counterexample in Section 3, we enumerate

separately the partitions counted by R(n). If there are no partitions of n violating only

S∗, then for suchn, we have that P ′A(n) is the union of the partitions violating S1, . . . ,Sλ/2
andQa−1 is the set containing a−1 times λ+1. This set is identified with the first stage

of S1 where all the parts from 1, . . . ,λ appear. Qa−2 will be the union of the two sets,

one containing a−2 times λ+1 and the other containing a−2 times λ+1 plus a part

between 1 and λ. These two sets are, respectively, identified with the first stage of S2

where all the parts from 2, . . . ,λ−1 appear, and the second stage of S1 in which all the

parts except one part from 1, . . . ,λ appear and so on.

3. Counterexample. Let λ = 12, k = 11, a = 7, θ = 4, a−λ/2 = 1, θ(θ−1)/2 = 6 <
(a−λ/2)(λ+1)= 13, and nc = 136. In this case,

Sλ/2 = S6 : f7+f6 ≤ 1, S5 : f8+f7+f6+f5 ≤ 2, S4 : f9+···+f4 ≤ 3,

S3 : f10+···+f3 ≤ 4, S2 : f11+···+f2 ≤ 5, S1 : f12+···+f1 ≤ 6,

S : f13+···+f1 ≤ 6;

P ′B(n)=Q1∪···∪Q6∪R(n),

(3.1)

where Qi = {π ∈ P ′B(n) : 13 appears i times}, 1 ≤ i ≤ 6, and R(n) = {130+π : π is a

partition of n−130 into parts with C}. Here #R(n)= B12,11,7(x), where x =n−130. We

now prove

B12,11,7(n)=A12,11,7(n), n < 130, (3.2)

B12,11,7(n)=A12,11,7(n)+B12,11,7(x), n= 130+x, 0≤ x < 6, (3.3)

B12,11,7(136)=A12,11,7(136)+B12,11,7(6)−1=A12,11,7(136)+3, (3.4)

since B(6) = 4 as 6, 5+ 1, 4+ 2, and 3+ 2+ 1 are the only relevant partitions of 6

enumerated by B.
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Proof of (3.2), (3.3), and (3.4). Equation (3.2) follows from [8]. We now prove that

for 1≤n< 136, there are no partitions of n violating only S∗ and that

18+17+16+15+14+12+11+10+9+8+6 (3.5)

is the only partition of 136 violating only S∗.

In [8, 9] we have shown that for n < 130, if a partition violates S∗, then it violates

either S or S1. However, for 130≤n≤ 136, we now investigate such partitions.

If a partition violates S∗, then there exist a partition

n= b1+···+bi+···+bi+10+···+bs (3.6)

and an integer i with bi−bi+10 < 13. We get the following possibilities.

Case 1. If bi+10 ≥ 13, then the number being partitioned is greater than or equal to

(
12+x11

)+···+(12+x1
)+··· ,

11(12+1), where x11−x1 < 13.
(3.7)

If (3.7) contains the part 13 more than 6 times, then it violates S. Let x ≤ 6 be the

number of 13′s and let y denote the number of terms greater than 13 in (3.7) so that

x+y = 11. Then (3.7) becomes

13x+(12+2)+···+(12+11−x)= 11(13)+ (11−x)(11−x−1)
2

. (3.8)

Let nc denote the n in the conjecture. If k= a+θ, then

nc =
(

2k−a− λ
2
+1
)
(λ+1)+ θ(θ−1)

2

= k(λ+1)+
(
k−a− λ

2
+1
)
(λ+1)+ (k−a)(k−a−1)

2

< k(λ+1)+
(
k−a− λ

2
+1
)
(λ+1)+ (k−x)(k−x−1)

2

< k(λ+1)+ (k−x)(k−x−1)
2

since k−a− λ
2
+1< 0.

(3.9)

In this case, we have that nc < 11(13)+(11−x)(11−x−1)/2.

Case 2. Let bi+10 < 13 and bi < 13. Then (3.6) violates S1.

Case 3. Let bi+10<13 and bi≥13. Let β denote the number of parts among 1,2, . . . ,13.

If β≥ 7, then (3.6) violates S or S1. Hence, 1≤ β≤ 6. Let α denote the number of parts

13 so that 5≤α≤ 10 and α+β= 11. Then the number being partitioned is

(
12+xα

)+···+(12+x1
)+y1+···+yβ. (3.10)

Since (12+xα)−yβ < 13, we have xα = yβ. Now, x1 ≥ 2, x2 ≥ 3, . . . ,xα ≥ α+1. Thus,

yβ ≥α+1, . . . ,y1 ≥α+β= 11. Hence, (3.10) is greater than or equal to

(12+α+1)+···+(12+2)+(α+β)+···+(α+1) (3.11)
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and equals

13α+(α+β)(α+β+1)
2

. (3.12)

Let β= 1,2,3,4,5. Then (3.10) is, respectively, 196, 183, 170, 157, and 144, all of which

are greater than 136=nc .
Now let β = 6. Since we have to choose 6 parts from 1,2, . . . ,13 and 5 parts greater

than 13 for a partition violating S∗ (and not violating any of S,S1, . . . , S6), it is clear

that the minimum part should be 6. Let S∗1 = {6,7} and S∗2 = {8,9,10,11,12,13}. Since

f6+f7 ≤ 1, we can choose either 6 or 7 from S∗1 and the other five must be from S∗2 .

Also there are 5 parts greater than 13. In this case, the minimum value of n will be

6+8+9+10+11+12+14+15+16+17+18= 136. (3.13)

Thus for all 130 ≤ n < 136, there are no partitions of n violating only S∗. It is easy to

see that when n= 136,

18+···+14+12+···+8+6 (3.14)

is the only partition of 136 violating only S∗. Thus we find

P ′A(n)=
{
union of the partitions violating S1, . . . ,S6

}
for 1≤n< 136 (3.15)

while

P ′A(136)= {union of the partitions violating S1, . . . ,S6
}+1. (3.16)

We now establish a bijection of Q1 ∪ ··· ∪Q6 onto P ′A(n) which is explained in

Table 3.1. This also proves (3.3) and (3.4). Before writing the table, we observe that

for a partition

π+13×i+α1+···+αj, 1≤ i≤ 6, (3.17)

belonging to P ′B , π is a partition of (n−13×i−α1−···−αj) into parts greater than 13

with C , where 1≤αj < ···<α1 ≤ 12, and for a partition

π+β1+···+βj (3.18)

belonging to P ′A, π is a partition of (n−β1−···−βj) into parts greater than β1 such

that 13 is not a part, where 1≤ βj < ···< β1 ≤ 12.

Remark 3.1. In Table 3.1, some partitions in Q2 are not covered. They are

{
π+13×2+x1+x2+1 : 2≤ x2 ≤ 11, 3≤ x1 ≤ 12,

(
x1,x2

)
≠ (7,6)

}
∪ {π+13×2+12+x1+x2 : 3≤ x1 ≤ 11, 2≤ x2 ≤ 10,

(
x1,x2

)
≠ (7,6)

}
.

(3.19)

Here we split 13×2 into pairs (α,β) and (γ,δ) in the following order:

(7,6) (8,5) (9,4) (10,3) (11,2) (12,1). (3.20)



1102 PADMAVATHAMMA AND M. R. SALESTINA

Table 3.1

P ′B12,11,7
(n) P ′A12,11,7

(n)

Q6 = {π+13×6} 1st stage of S1 = {π+12+···+1}
Q5 = {π+13×5} 1st stage of S2 = {π+11+···+2}
∪{π+13×5+(13−x1) : 2nd stage of S1 = {π+12+···+(x1+1)

1≤ (13−x1)≤ 12} +(x1−1)+···+2+1 :

1≤ x1 ≤ 12}
Q4 = {π+13×4+x : x = 0,1,2,12} 1st stage of S3 = {π+10+···+3+x : x

= 0,1,2,12}
∪{π+13×4+(13−x1) : 2nd stage of S2 = {π+11+···+(x1+1)

2< (13−x1)≤ 11} +(x1−1)+···+2 : 2≤ x1 < 11}
∪{π+13×4+(13−x1)+(13−x2) : 3rd stage of S1 = {π+12+···+(x1+1)

1≤ (13−x2) < (13−x1)≤ 12} +(x1−1)+···+(x2+1)+(x2−1)
+···+1 : 1≤ x2 <x1 ≤ 12,
(xi,xj)≠ (7,6)}

Note 1. If (xi,xj)= (7,6), then it will be covered

in the 3rd stage of S2.

Q3 = {π+13×3+x : x = 0,1,2,11,12} 1st stage of S4 = {π+9+···+4+x : x =
0,1,2,11,12}

∪{π+13×3+(13−x1) : 2nd stage of S3 = {π+10+···+(x1+1)
3≤ (13−x1)≤ 10} +(x1−1)+···+3 : 3≤ x1 ≤ 10}

∪{π+13×3+(13−x1)+(13−x2) : 3rd stage of S2 = {π+11+···+(x1+1)
2≤ (13−x2) < (13−x1)≤ 11} +(x1−1)+···+(x2+1)+(x2−1)

+···+2 : 2≤ x2 <x1 ≤ 11,
(xi,xj)≠ (7,6)}

Note 2. If (xi,xj)= (7,6), then it will be covered

in the 3rd stage of S3.

∪{π+13×3+x+y : (x,y) 4th stage of S4 = {π+9+···+4+x+y :

= all possible pairs of 1,2,11,12 (x,y)= all possible pairs of

except (11,2)} 1,2,11,12 except (11,2)}
∪{π+13×3+(13−x1)+··· 4th stage of S1 = {π+12+···+(x1+1)
+(13−x3) : 1≤ (13−x3) +(x1−1)+···+(x3+1)+(x3−1)
< (13−x2) < (13−x1)≤ 12} +···+1 : 1≤ x3 <x2 <x1 ≤ 12,

(xi,xj)≠ (7,6)}
Note 3. If (xi,xj)= (7,6), then it will be covered

in the 4th stage of S2.

Q2 = {π+13×2+x : x = 0,1,2, 1st stage of S5 = {π+8+7+6+5+x :

3,10,11,12} x = 0,1,2,3,10,11,12}
∪{π+13×2+(13−x1) : 2nd stage of S4 = {π+9+···+(x1+1)

4≤ (13−x1)≤ 9} +(x1−1)+···+4 : 4≤ x1 ≤ 9}
∪{π+13×2+(13−x1)+(13−x2) : 3rd stage of S3 = {π+10+···+(x1+1)

3≤ (13−x2) < (13−x1)≤ 10} +(x1−1)+···+(x2+1)
+(x2−1)+···+3

: 3≤ x2 <x1 ≤ 10,
(xi,xj)≠ (7,6)}
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Table 3.1. Continued.

P ′B12,11,7
(n) P ′A12,11,7

(n)

Note 4. If (xi,xj)= (7,6), then it will be covered in

the 3rd stage of S4.

∪{π+13×2+x+y : (x,y) 4th stage of S5 = {π+8+7+6+5+
= all possible pairs of 1,2,3,10 x+y : (x,y)= all possible

11,12 except (10,3)} pairs of 1,2,3,10,11,12

except (10,3)}
∪{π+13×2+(13−x1)+··· 4th stage of S2 = {π+11+···+(x1+1)
+(13−x3) : 2≤ (13−x3) +(x1−1)+···+(x3+1)
< (13−x2) < (13−x1)≤ 11} +(x3−1)+···+2 : 2≤ x3

<x2 <x1 ≤ 11}
(xi,xj)≠ (7,6)}

Note 5. If (xi,xj)= (7,6), then it will be

covered in the 4th stage of S3.

∪{π+13×2+(13−x1)+··· 5th stage of S1 = {π+12+···+(x1+1)
+(13−x4) : 1≤ (13−x4) +(x1−1)+···+(x4+1)
< ···< (13−x1)≤ 12} +(x4−1)+···+1 : 1≤ x4

< ···<x1 ≤ 12}
(xi,xj)≠ (7,6)}

Note 6. If (xi,xj)= (7,6), then it will be

covered in the 5th stage of S2.

Q1 = {π+13+x : 1st stage of S6 = {π+7+6+x :

x = 0,1,2,3,4,9,10,11,12} x = 0,1,2,3,4,9,10,11,12}
∪{π+13+(13−x1) : 2nd stage of S5 = {π+8+···+(x1+1)

5≤ (13−x1)≤ 8} +(x1−1)+···+5

: 5≤ x1 ≤ 8}
∪{π+13+(13−x1)+(13−x2) : 3rd stage of S4 = {π+9+···+(x1+1)

4≤ (13−x2) < (13−x1)≤ 9} +(x1−1)+···+(x2+1)
+(x2−1)+···+4 : 4≤ x2

<x1 ≤ 9}
∪{π+13+x+y : (x,y) 4th stage of S5 = {π+7+6+x+y : (x,y)

= all possible pairs of 1,2,3,4,9, = all possible pairs of 1,2,
10,11,12 except (9,4)} 3,4,9,10,11,12 except (9,4)}

∪{π+13+(13−x1)+··· 4th stage of S3 = {π+10+···+(x1+1)
+(13−x3) : 3≤ (13−x3) + (x1−1)+···+(x3+1)
< (13−x2) < (13−x1)≤ 10} +(x3−1)+···+3 : 3≤ x3

<x2 <x1 ≤ 10}
∪{π+13+(13−x1)+···+(13−x4) : 5th stage of S2 = {π+11+···+(x1+1)

2≤ (13−x4) < ···< (13−x1) +(x1−1)+···+(x4+1)
≤ 11} +(x4−1)+···+2 : 2≤ x4

< ···<x1 ≤ 11}
∪{π+13+(13−x1)+···+(13−x5) : 6th stage of S1 = {π+12+···+(x1+1)

1≤ (13−x5) < ···< (13−x1) +(x1−1)+···+(x5+1)
≤ 12} +(x5−1)+···+1 : 1≤ x5

< ···<x1 ≤ 12}
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We arrange π +α+β+γ+δ+x1+x2+y (y = 12 or 1) in the decreasing order and

associate it to the rearranged partition π∗ which belongs to P ′A.

A similar procedure is adopted for some partitions in Q1 which are also not covered

in Table 3.1. This completes the proof of (3.3) and (3.4).
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