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We obtain global estimates for the modulus, interior gradient estimates, and boundary
Holder continuity estimates for solutions u to the capillarity problem and to the Dirichlet
problem for the mean curvature equation merely in terms of the mean curvature, together
with the boundary contact angle in the capillarity problem and the boundary values in the
Dirichlet problem.
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1. Introduction. Let O be a bounded domain in R", n > 2. Consider a solution to the
mean curvature equation

divTu=H(x,u(x)) inQ, (1.1)
with
Du
= . 1.2
u 1+ |Dul? (1.2)

A solution of the Dirichlet problem can be regarded as a solution of (1.1) subject to the
Dirichlet boundary condition

u:(p, (13)

where @ is a given function on 0Q; a solution of the capillarity problem can be regarded
as a solution of (1.1) subject to the “contact angle” boundary condition

Tu-v =cos0, (1.4)

where v is the outward pointing unit normal of 0Q, and where cos 0 is a given function
on 0. (Thus, in the capillarity problem, we are considering geometrically a function u
in @ whose graph has the prescribed mean curvature H and which meets the boundary
cylinder in the prescribed angle 0.) Here, H = H(x,t) is assumed to be a given locally
Lipschitz function in Q X R satisfying the structural conditions

aa—lz(x,t)zo, forxeQ, teR. (1.5)
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Equation (1.1) is the Euler equation of the functional

I(v) :JQ\I1+|Dv|2dx+JQJ:H(x,t)dtdx. (1.6)

The Dirichlet problem corresponds to the variational problem
I(v) —min, Vv e€BV(Q)n{v|m =@}. (1.7)

The capillarity problem corresponds to the variational problem
I1(v) —ﬂ; Bvd#, -1 — min, with B=cos0, Vv € BV(Q), (1.8)
30

where ¥ is the k-dimensional Hausdorff measure. The work of de Giorgi, Miranda,
and Giusti (see, e.g., [13, Chapter 14]) initiates the study of the following generalized
version of the variational problem (1.7), namely, to find a solution u € H1(Q) of the
variational problem

I(v)+§ lv—@|d¥,-1 — min, v € BV(Q). (1.9)
2Q

The main purpose of this paper is to obtain global estimates for the modulus of
solutions, interior gradient estimates, and boundary Hoélder continuity estimates of
solutions to the capillarity problem and to the Dirichlet problem merely in terms of
the mean curvature H, together with the boundary contact angle 0 in the capillarity
problem and the boundary values @ in the Dirichlet problem. Since in the capillarity
problem and in Dirichlet problem the only prescribed data are the mean curvature H,
together with the boundary contact angles € and the boundary values @, respectively,
estimates which are the most natural and convenient for use take such a form.

We recall that [1] (or later [23, 24]) established the following interior gradient esti-
mates for any solutions u of (1.1) and for any point y’ € Q:

|[Du(y")| <c; -exp{cz - sup

Q d
where d = dist(y’,0Q) and where ¢; = c;(n,dsupg |DHI), ¢ = c2(n,dsupg |H],
d? supg, |DH|). Thus, once we obtain the global estimates for the modulus of solutions
in terms of the above-mentioned quantities, the interior gradient estimates in terms of
the same set of quantities follow as an immediate consequence of (1.10).

1.1. Global estimates of the desired type will be obtained and formulated in Sec-
tions 3 and 4.3. In Section 3, estimates for |u||q in terms of fmud%n,l, H, and the
n-dimensional Hausdorff measure of Q are established under various conditions on H,
the geometry of Q, and the Hausdorff measure of Q. Estimates which are valid in the
most general case are formulated in Theorem 3.8. In particular, these results provide
us with global estimates of |u| for solutions to the Dirichlet problem.
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In Sections 4.2.1, 4.2.2, and 4.2.3, we estimate [, u d%,_1 in terms of the L'-norm of
|u| and |Du| in case 0Q) is piecewise Lipschitz continuous without outward cusps. Using
this, in Sections 4.2.4 and 4.5, we formulate and prove Theorem 4.10 which provides
us with estimates of the oscillation of the trace of u on 0Q in terms of H and | cos 0| for
variational solutions to the capillarity problems with | cos 6| being bounded away from
both 0 and 1, and |H (x,t)| being bounded in Q x R. Combining this with Theorem 3.8,
we obtain Theorem 4.11 in Section 4.4, which yields global estimates of the oscillation
of u for solutions to the capillarity problem with | cos 8| bounded away from 0 and 1,
and |H(x,t)| bounded in Q x R.

For the capillarity problem with cos & not bounded away from 0 and/or 1 on 0Q, we
will treat only the special case where H satisfies certain growth condition and obtain
Theorem 4.13 in Section 4.6.

1.2. Simon and Spruck treat in [21] the boundary regularity for the capillarity prob-
lems in the case where Q is C*, 8 in (1.4) is C1* on 0Q for some 0 < « < 1, and H (x, t)
is strictly monotone in t:

inf OH(x,t) >

: 0. (1.11)
xeQ;teR t

In case 0 < 0 < 11, [21] shows the existence of a C2(Q) solution of (1.1) and (1.3). In case
0 is allowed to take the values O or 1, setting

S7 ={x € 9Q: 0 =0 in some neighborhood of x},
S; ={x €0Q:0 = 1 in some neighborhood of x}, (1.12)
S ={xe€oQ:0<0<T1}

[21] shows the existence of a function u defined on Q which is of class C2(Q U S»),
satisfies (1.1) in Q, and satisfies (1.3) on S»; furthermore, u is Holder continuous at each
point of S; USy, has a restriction to dQ which is Lipschitz continuous at each point of
S} uST, and satisfies (1.3) on S7 U S in the sense that

lirgl lv-Tu+1ldx =0 foreach UcC QwithUndQcCSy, (1.13)
=0t JUNQ,

assuming that Tu is extended to some boundary strip Q. with width € so that it is
constant along the normals to Q. To prove this, a transformation of coordinates near
the boundary is performed analogously to that in [20], which, together with a subse-
quent differentiation of (1.1), (1.3), and an application of (1.11), establishes an estimate
of the tangential derivative of u along 0Q, under the condition that |cosf| <y <1
for some positive constant y; in case 6 is constant in a neighborhood of the point
under consideration, this estimate of tangential derivative is independent of y. This
proves the Lipschitz continuity of the trace of u on 0Q, which together with the result
in [19] yield the boundary Holder continuity of u. The disadvantage of their proof is
that H is assumed to satisfy the strict inequality (1.11) rather than the less restrictive
condition (1.5).
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In contrast, as a consequence of the estimates of local oscillation on 0Q, under the
assumptions

H(x) :H(x,iglgu) cLP(Q), ﬁ(x) =H<x,s;§2pu) e LP(Q), (1.14)

for some p > n, the Lipschitz continuity of the trace of u on 0Q will be established in
Section 4.4 at each point x of 0Q which satisfies the following assumptions:
(A1) a small neighborhood QN Bg(xg) exists such that cos 9 is continuous in 0Q N
Br(x9), and, for some constant B 1> B > 0, we have

0<|cosO|<pB (1.15)

in aQﬂBR(Xo),
(A2) 0Q N Br(xy) is either C2 or the graph of a Lipschitz continuous function with
Lipschitz constant L:

B-V1+I2<1. (1.16)

The Lipschitz norm of the trace of u on 0Q in such a small neighborhood of x( will be
shown to depend only on H, B, and the geometry of Q.

1.3. Furthermore, we will establish in Section 2.1 useful growth lemmas by con-
structing suitable barriers, adapting the work in [14, I1.1.4] and [16, Lemma 4.1]. Theo-
rem 2.7 in Section 2.2 provides us with an interior Hélder seminorm estimate with expo-
nent log, (5/2) merely in terms of (supy u —infou)/(d(y’))'°845/2) under the assump-
tion that H is nonnegative. We notice that, in contrast to the classical interior gradient
estimate (1.10) which depends exponentially on the quantity (supgu —infqu)/d(y’),
the interior Holder seminorm estimate is linearly proportional to the quantity (supg U —
infou)/(d(y’))l0845/2),

These growth lemmas also yield boundary Holder continuity with exponent 1/2 in
the case that H is nonnegative and bounded above for solutions to the mean curva-
ture equation with C'/2 Dirichlet data @, without an assumption on the regularity of
the domain. This result, being formulated as Theorem 2.6 in Section 2.1, improves in
some respects a previous work of Korevaar and Simon [15], in which boundary Holder
continuity with exponent 1/2 is established for solutions with C? Dirichlet data ¢, also
with no dependence on the regularity of the domain. However, the Holder norm cannot
be estimated in our result and is explicitly estimated in [15] in terms of supg |u/l, the
C2%-norm of ||, and the Lipschitz constant of H.

We notice that Theorems 4.12 and 2.6 yield the Holder continuity with exponent
1/2 of u up to the boundary locally in Q N Bg(xo) under the assumption that H is
nonnegative and bounded above.

The results in Sections 3 and 4 are, however, derived without resort to results in
Section 2.



GLOBAL BOUNDEDNESS, INTERIOR GRADIENT ESTIMATES, ... 917

2. Growth lemmas, interior gradient estimates, and boundary Hoélder continuity.
The formulation and proof of the following growth lemma are adapted from [14, 1I.1.4]
and [16, Lemma 1.4.1].

GROWTH LEMMA 2.1. Suppose that D is a domain in R" such that 0D has nonempty
intersection with the ball Bsg (x(). Suppose that H(x,t) is nonnegative for all x € D N
Bur(x0) and for all t € R. Let u be a solution to (1.1) in D which is continuous in D n
Byr(x0). Suppose that

u'aDﬁB4R(X0) =0. (2.1)
Then, there exists a positive constant & > 1 such that

sup u(x)=& - sup u(x). (2.2)

DnByg (xo) DnBR(xq)

Indeed,
& =4. (2.3)

GROWTH LEMMA 2.2. Suppose, in addition to the assumptions in Growth Lemma 2.1,
that H(x,t) is bounded above in (D NByg(xg)) X R such that there exists a constant H .
for which

H(x,t) <Hyy, Vx€DnNBsr(xo), tE€R. (2.4)

Suppose furthermore that

inf
lim M >a for some x < l, a > 0. (2.5)
r—0 X 2

Then, there exist positive constants £, > 1 and R, such that for R < Ry, there holds

inf u(x)=<&- inf u(x). (2.6)
DnByg (x0) DnBR(xo)

Indeed, for R < Ry,
& =2. (2.7)

GROWTH LEMMA 2.3. Under the assumptions in Growth Lemma 2.2, let Ry be the
number introduced in Growth Lemma 2.2. For R < Ry,

sup u(x)— inf uzmin(fl,gz)-[ sup u(x)- inf u} (2.8)
DNByg (x0) DnByg(xo) DNBR(xg) DnBg(xo)

PROOF OF GROWTH LEMMAS 2.1, 2.2, and 2.3. Let

M= sup u=0, m= inf u<DO0. (2.9)

DnByg (x0) DnBygr(x0)



918 FEI-TSEN LIANG

We set

_ Uy (| x —xo]) _ Uz (|x—x0])
vl(x)—M-( U (4R) ) vz(x)—m-( U, (dR) s (2.10)

where
Uy (r)=r, U (7) = 8Hy s 72, (2.11)

and |x —xg| = dist(x,x0). We observe that U; () and U (¥) are two strictly increasing
functions of class C2(0, ) such that

divTU; (|x-x0]) =0,

. . (2.12)
divTUx(|x —x0|) < —Hyx for |x—xo| sufficiently small.
Indeed, we have
o =302
divU, < ~2H,, — =111 = (o)l SEETES (2.13)
[1+Zi | xi = (x0) | ]
which yields
divTUx(|x —x0|) < —Hyx for |x—xo| sufficiently small. (2.14)
Furthermore, we have
U>(4R) < |m| for R sufficiently small, (2.15)
by virtue of assumption (2.5).
Thus, we have, for R sufficiently small,
divTvy (x) < H(x,u(x)), divTva(x)=H(x,u(x)) in Bsr(xo)ND. (2.16)
Furthermore, we have
V1laDnBag (x0) = 0 = UlaDABag (x0)s
(2.17)
V2|aDnBag (x0) < 0 = UlaDNBg (x0)>
and, if 0B4g (x0) N D is nonempty,
V1 l3Bag (xo)nD = M = Ul3B4x (x0)nD> 2.18)

V2[3Byg (xo)nD = M < U|3B4z (x0)nD-
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Therefore,
u=vy, U=V il’lDﬁB4R(X0). (2.19)

Since M > 0 and m < 0, these yield

R
sup u < sup vlsM-<U1( )>,

DNBR(x0) DnBg(xg) U1 (4R) (2.20)
inf u> inf vzzm-<U2(R)).
DBg (x0) DB (x0) U, (4R)
Hence, we can take
Ui (R) U>(R)

= = . 2.21
& Uy (4R)’ & U, (4R) (&.21)
The choice of U; and U, yield (2.3) and (2.7). O

We note that in the proof of Growth Lemma 2.1, the comparison function U; (x) can
be taken instead to be |x —xo|*", for any o*, 0 < o* < 1/2. A closer examination of the
role (2.1) plays yields the following.

GROWTH LEMMA 2.4. Let D, B4r(x¢), and H(x,t) satisfy the assumptions of Growth
Lemma 2.2. Let u be a solution to (1.1) in D which is continuous in D with xq € Q such
that

su u(x)—u(x
lim paDﬂB4R(Xo)| (x) ( 0){ -0 (2.22)
r—0 \/7
that is, Wlopng,g (xo) 1S Of class CY/? and
inf 3
lim | ZE20B4r (x0) |ux) ~u(xo) | +0 for some x < l (2.23)
r—0 r 2

Then, there hold

sup u—u(x0)22< sup u—u(x0)>,

DnByg(x0) DnBR(xp) (2.24)
inf u—u(x0)52< inf u—u(xo)),
DnByg (x0) DnBgr(xp)
and thus
sup u- inf u=x= 2( sup u-— inf u) (2.25)
DnBag (x0) DnB4g (xo) DnBg (xg) DnBRr(x0)

for R sufficiently small.

2.1. Growth lemmas and Holder continuity for solutions to the Dirichlet problem.
We now recall the following result from [11, Lemma 8.23], which is also used in [16,
Theorem 7.1, page 39].
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LEMMA 2.5. Let w be a nondecreasing function on the interval (0,R] satisfying, for
R < Ry, the inequality

w(TR) = yw(R), (2.26)

where 0 < y,T < 1. Then, for any R < Ry,

w(R)sl-<£>a-w(Ro), (2.27)
Y \Ro
where
«=1logy l (2.28)
Y

From Growth Lemma 2.4 and Lemma 2.5, we obtain the following.

THEOREM 2.6. Let u be a solution to (1.1) which is continuous in Q and let xo € Q.
Suppose that H is nonnegative and bounded above by a positive constant. If W|aongg (xo)
is of class C1/? in the sense of (2.22), then u is Holder continuous with exponent 1/2 up
to the boundary near xy.

Indeed, suppose that u is not Hoélder continuous with exponent 1/2 up to the bound-
ary near xo; that is, (2.23) fails to hold. Then (2.22) and (2.23), Growth Lemma 2.4, and
Lemma 2.5 yield the Holder continuity of u on QN Bg/4(x¢), which contradicts (2.23).
This contradiction proves Theorem 2.6.

We notice that since we do not know how small R has to be in Growth Lemma 2.4, we
are not able to obtain estimates of the boundary Holder norm of u from our argument.

2.2. Growth Lemma 2.1 and interior Holder seminorm estimates. From Growth
Lemma 2.1 and Lemma 2.5, we obtain the following estimates of the interior Holder
seminorm.

THEOREM 2.7. Let u be a solution to (1.1) and suppose that H is nonnegative. Then,
for

o =log, ; (2.29)

the estimate

(5/2) (supgu —infqu)

o < 2.30
llco (dist (x0,30))" (2.30)
is valid for x¢ € Q.
Indeed, setting Ry = dist(xp,0Q) and setting, for Ry < Ry/4,
a= sup u-— inf u, v=u- inf u—g, (2.31)

Bg, (xX0) Bg, (x0) Bg, (xo) 2
we let

E* = {x € Bsg, (x0) : v(x) = 0}. (2.32)
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Then, 0E* N Bag, (X0) is nonempty. We obtain from Growth Lemma 2.1 that
sup u— inf u= sup wv- inf v
B4Rl (x0) B4R1 (x0) E+ﬂB4R1 (x0) B4R1 (x0)
>4 sup v-— inf v

E*NBR, (x0) B, (x0) (2.33)

(R
>—| sup u— inf u|,

BRI (X0) BRl (X0)

which together with Lemma 2.5 yield Theorem 2.7.

3. Estimates for |u||q in terms of u|;n and global estimates for solutions to the
Dirichlet problem. We will establish local and global estimates for the modulus of so-
lutions to the variational problems (1.7) and (1.9). The reasoning below will be adapted
from that used in [7, 8, 9] to demonstrate the boundedness of solutions with respect
to the capillarity problem or to the Dirichlet problem.

We assume that Q is a bounded domain with piecewise Lipschitz boundary. We first
consider the following variational problem, which is slightly more general than the
preceding ones. Namely, let H € C%!(R" x R) be given functions such that (1.5) holds;
let j: 0Q xR — R satisfy a Carathéodory condition, that is, it is measurable in x (with
respect to the (n — 1)-dimensional Hausdorff measure on 0Q) and continuous in the
second variable. Then, we consider the functional

Jv) = szll + |Dv|2dx+J’Q JOUH(x,t)dtdx+ﬁgj(x,v)d%n,l. (3.1)

We note that by taking
JjOt) ==Bx)-t,  jx,t)=[t-p®)], (3.2)

the functionals I in (1.7) and (1.9) are included in the general setting.

3.1. The simplest case where H satisfies a certain growth condition. Under the
above assumptions on Q, H, and j, we will prove that the following holds in the simplest
case where H satisfies a certain growth condition.

PROPOSITION 3.1. Let u be a solution of the variational problem
J(v) —min inBV(Q). 3.3)
Suppose
Hi (x)=H(-,ty) 20 (3.4)

for some ty € R and all x € Q. Then a constant C; exists, which is determined completely
by |Q|, n, and ty such that the following estimate is valid:

usmax(supu,to) + (. (3.5)
2Q
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Suppose, instead, that

H(x) <0 (3.6)
for all x € Q, then
min(iargl)fu,to) -C =u. 3.7)
Indeed, take
Cr=2""(ex) QM (3.8)

where c, is a constant depending only on n such that the Sobolev inequality takes the
form

n

I flns < cxIDfIly for each f € Wy (Q), n* =~ (3.9)

Here and in the following, we denote by | - | either an n-dimensional or (n —1)-
dimensional Hausdorff measure.

We notice that such £, exists in the case where H satisfies the relations

}iming(x,t) = +o00, (3.10)
tlim SupH (x,t) = —oo. (3.11)
e,

Concus and Finn [2] and Gerhardt [9, Lemma 4.1] obtain a bound for the solution to
the capillarity problem with H satisfying the previous two relations in the case where
Q satisfies an interior sphere condition.

In the proof of Proposition 3.1, we will apply a result due to Stampacchia [22, Lemma
4.1], which can be stated as follows.

LEMMA 3.2 (Stampacchia). Suppose that @ (t) is a nonnegative nondecreasing func-
tion defined on R such that for some positive constants C, ko, and y, there holds

(h—k)-@(h) <C-[p(k)]” foreachh >k > k. (3.12)

Then
hl/a-y) ~@(h) < 21/(17;/)2 . {Cl/(l—y) " (Zko)l/(lfy) k)], ify <1, (3.13)
@(ko+T) =0, ify>1, (3.14)

where
T=2Y0-D.C. (ko) ]V V. (3.15)

PROOF OF PROPOSITION 3.1. Let k be a number greater than max(supzq u,to) and
set Uy = min(u, k). From the minimizing property of u, we obtain

J(u) < J(ug). (3.16)
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Hence, using the notation
A(k) ={x e Q:u(x) =k} (3.17)

and assuming for a moment that u is smooth, we obtain

L(k) J1+|Dul2+ LZ J:k H(x,t)dtdx < |A(k)]. (3.18)

We set
w =max(u—k,0) = u—ug. (3.19)

The monotonicity condition (1.5) on H(x, -) yields

! H(x,t)dt = H(x,to) - (u—ux) = H,w. (3.20)

Uk

Inserting this into (3.18), we obtain
J |Dw|dx+J Hywdx < |A(k)]. (3.21)
Q Q

It is easy to see that this is also valid for u € BV (Q) by using an approximation argu-
ment. From (3.20) and (3.4), we obtain

J IDwldx < |A(k)]|. (3.22)

Q

From this and the Sobolev inequality (cf. [13, Theorem 1.28, page 24]), we obtain
lwllns <cx- [AK) ], (3.23)

where the constants n* and c4 are given in the statement of Proposition 3.1. This and
Holder inequality yield

L(k)‘”""d" —wlh < s - |AGR) | T, (3.24)

and hence

1+(1/n)

(h—=k)-|Ah) | <cys-|AK)| for eachh>k>max<supu,to). (3.25)

0Q

From this and Lemma 3.2, we obtain
usmax(supu,to>+2"+1 cCx Q™ (3.26)
20

By setting uyx = max(u,—k), —k < min(infsq u,tg), k > 0, in (3.3), a lower bound of
u can be obtained in case (3.6) is valid, which completes our proof of Proposition 3.1.
O
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3.2. The general cases. We are however interested in the cases where (3.4) or (3.6)
fails to hold.

3.2.1. Estimates for small domains. Assume for a moment that for some t; € R,

Hi, =H(x,ty) € LP(Q) for some p > n, (3.27)
-1
|Q|P—m)/(np) < A 7@*) (3.28)
[Heoll1r 0

for some constant 0 < A < 1. We will prove the following.
PROPOSITION 3.3. Letu be a solution of the variational problem (3.3). Suppose (3.28)
holds and (3.27) holds for some ty € R. Then, the following inequalities are valid:

supu < max (supu,to) +2M N1 =) e, - 1Q)YT,
o o0 (3.29)
igfu > min(iglg)fu,to) —2mtL(1 = A) e, - 1Qm.

Choosing k > sup;q u and setting uy = min(u, k), (3.7) is still valid for each k > ty no
matter (3.4) or (3.6) holds or not and, we can still obtain (3.21) from (3.16), (3.18), and
(3.20). To treat the second integral in (3.21), we observe that under assumption (3.27),
we obtain from Holder inequality that

1/n

H HtOWdX‘ < IIWHn*{J |Ht0|"dx}
a A(k) (3.30)

< ”an* '||Ht0 i |A(k){(pfn)/(mﬂ)_

|

Inserting this into (3.21) and treating the first integral in (3.21) by means of the Sobolev
inequality and the Holder inequality as above, we obtain

[(c) ™ =1Hy I, - 1AGR) [PV we < [AR) ] (3.31)
Assume that (3.28) holds. Then, by (3.31), we have
(1=2)-(cs) " Nwlnx < |AK) . (3.32)
Inserting (3.23) into (3.32), we obtain
(h=k) - [A) | = Q1=2)"" -y |AGR) |1 (3.33)

for each h > k > max(supyq u, to). Proposition 3.3 follows from this and Lemma 3.2.

3.2.2. Estimates for general domains. In general, (3.28) does not hold and we as-
sume that (3.27) holds for some t; € R and set

1 pn/(p-n)
Cn= | yeellHillur o | |, . (3.34)

The following will be established.



GLOBAL BOUNDEDNESS, INTERIOR GRADIENT ESTIMATES, ... 925

PROPOSITION 3.4. Let u be a solution of the variational problem (3.3). Suppose (3.27)
holds. Then, for the constant Cy given in (3.34), there hold

Supu < max (supu,to,C;\) +2M (1 =) e, QM
o o (3.35)

igfu > min (iggu,to, —CA) —2mt (1 =) e Q)T
Indeed, we observe that
1
|A(k)| < —J luldx. (3.36)
kJa
Hence, if (3.27) holds, for Cy given in (3.34), we obtain (3.32) from (3.31) and (3.30) for
each h > k > max(supzq u, to,Cx). From this and Lemma 3.2, we prove Proposition 3.4.

To estimate Cy, we proceed to estimate |lu|l; in terms of §,(, |1|d%,_1. For this, we
set Hy = H(-,0) and first assume that

LHodx‘ < (1-&)M(3E) (3.37)

for some positive number &, independent of E, where E is any measurable subset of Q
and M (0E) denotes the mass of 0F in the sense of [4, Chapter 4.1.7]. (We may note that
in the case that H does not depend on t, Giaquinta [10] demonstrated the existence
of solutions for each @ € L'(Q) in BV(Q) to problem (1.9) provided that H satisfies
condition (3.30).) We assume, in addition, that

H(x,0) e L' (Q) (3.38)

holds. The proof of [8, Theorem 5] yields the following.

PROPOSITION 3.5. Let u be a solution of the variational problem (2.2). Let H satisfy
conditions (1.5), (3.37), and (3.38) and let u|;q € L' (0Q). Then

J \Du|dx+j uldx (3.39)
Q Q

is bounded by a constant depending only on &y, Q, $,o [uld¥H,_1, and [ H(x,0)dx.

The proof of Proposition 3.5 given in [10] is based on the observation that u is a
solution of the problem

J«(v) — min in BV(Q), (3.40)

where

J«(v) = JQ A1+ \Dvlzalx+‘[Q J:H(x,t)dtdx+J;Q [v—uld#y,_1. 3.41)

Let B be any ball containing Q. Extend u|3q to some function @p in H!(B\ Q) having
boundary values zero on 9B (cf. [6]). Then, extend H to H which vanishes outside Q, let
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K ={v €BV(Q),v|pq = @z}, and set

Jw) =JB\/1+\Dv\zdx+IBJ:H(x,t)dtdx. (3.42)

To solve problem (3.40) is equivalent to finding a solution u of the problem
J(w) —min inK. (3.43)
By (1.5),
u ~ ~ ~ ~
J H(x,t)dt > Hy-u for Hy=H(-,0), (3.44)
0
and by (3.37), it is shown in [10, page 77] that
J Ho-udx = —(1-¢) J [Duldx — (1 -&) J lu|d9,_1. (3.45)
Q Q 2Q

Inserting these into (3.42) and using the minimizing property of u for J, we obtain

J*(0)+L\Q\/1 +|Dg | dx
zf(u)zsoj |Du|dx+J _\/1+|Du\2(71x—(1—50)Ia lu|d¥,_1.
o B\Q o

This yields a bound of the L'-norm of |Du|, which together with Sobolev inequality
yield a uniform bound of the BV-norm of u. This reasoning motivates the work below
in Section 3.2.3 for general domains where (3.37) and hence (3.45) do not necessarily
hold.

(3.46)

3.2.3. General cases without (3.27) or (3.37). In general, (3.27) does not hold and it
is not straightforward to estimate the number &, in (3.37). To treat general cases, we
recall the following isoperimetric inequality whose proof is presented in [13, Corollary
1.29].

LEMMA 3.6 (isoperimetric inequality). Let E and A be bounded Caccioppoli sets in R™.
Assume A to be of positive n-dimensional Hausdorff measure and to be sufficiently
smooth such that Poincaré inequality

(JA 1 f - fa l"”"’”dx)(wm <ca L IDf] (3.47)

holds for every v € WH1(A), where c4 is a constant depending only on n and A, and
define fa = (1/1Al) [4 f dx. Then

min {|[EnA[, | (R"\E)nA|}" DM < CAL | DXE | (3.48)

where Xg is the characteristic function of the set E.
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In [25, Chapter 4], Poincaré inequality of the above type is shown to hold in a wide
class of domains, called extension domain in the sense that there exists for such a
domain A a bounded linear operator L: Wk? (A) — Wk? (R") such that L(f)|4 = f for
all f € WkP(Q). In particular, every Lipschitz domain is an extension domain.

We notice that the reasoning leading to [11, (7.45)] enables us to take

w 1-1/n .
ca = (ﬁ) (diamA)™", (3.49)

where A is the convex hull of A and w, is the Lebesgue measure of the n-dimensional
unit ball.

Select a Caccioppoli set A such that 0Q N A is of positive (n — 1)-dimensional Haus-
dorff measure and such that

IQNA| < | (R"\Q)NnA]. (3.50)
Given 04, 0 < 04 < 1, suitably choose A so that
CA<31(12p|H0(x)|)|QmA\””56* (3.51)
under the additional assumption
(sgp | Ho(x) |> < 0. (3.52)
Inequalities (3.50) and (3.51) yield
Houdx > —6*J |Du|dx—6*J luld¥,-1. (3.53)
QnA QnA 30NA
Indeed, we obtain from (3.50) and Lemma 3.6 that
[ONA| <cal0QNA]| (3.54)
and, for every Caccioppoli set E C Q,
|[ENA| <ca|l0ENAJ; (3.55)

hence,

Ho dx

‘ s(sup|Ho(x)|)|QmA|
QnA Q

(3.56)
< cA(sup |H0(x)|)|QmA\”"\anA|;
Q

and, for every Caccioppoli set E C Q,

J Hodx‘ < (sup \Ho(x)|>\EmA| scA<sup |H0(x)|>|E|”"|6EmA|. (3.57)
EnA Q Q
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From the reasoning in [10, page 77], we have

Houdx = J dt Hydx, (3.58)
QNA 0 SNA
where
Sr={xeQ:ulx) >t} (3.59)

hence, by (3.56), (3.57), and (3.58),

Houdx‘ scA<sup{Ho(x)|>-\QmAI”"-[J |Du\dx+J Iu\dx],
Q QNA 0QNA
(3.60)

QNA

which, together with (3.51), yields (3.53).
We intend to estimate [, |Duldx by using (3.53) and adapting the reasoning lead-
ing to Proposition 3.5. Setting d(x) = dist(x,0Q) for x € Q and letting

0*Qp = {x:x € Q, dist(x,0Q) =t}, fort>0, (3.61)
we let the boundary of QN A be made up of three parts:
2(QNA)=(0QNA)UR*A)U((0ANQ)\0*A) (3.62)

such that 0Q N A is either Lipschitz continuous or of zero n-dimensional Hausdorff
measure, 0*A is an (n —1)-dimensional Lipschitz continuous surface included in 0*Qs,
and several connected (n — 1)-dimensional surfaces on which if 9Q N A is C2, then we
have

Dad -vonaleanane+a =0, (3.63)

where we let v(ona) be the unit outward normal to d(A N Q) and if 0Q N A can be
represented as the graph of a Lipschitz continuous function f, then we have that

(B) (0ANnQ)\0*A is orthogonal to the coordinate plane of f.
We require [0QNA|, |0ANQ|, and 6y to be so small and in such a suitable proportion
to each other that (3.51) is satisfied for given §.. For example, we may take

diamoQnA < (50)"' ™Y, diamo*A < (50)" "7,

=< (
1 1 (3.64)
|3QﬁA|Z§(50) , or |o*A] 25(60) :

This assures us of the validity of (3.53).
We have the estimate

1
QNA|l+
1*6*| | 1*6* QNA

1+6*J 1 J’
+ uld#, -1 — ——— udHy, -
1_6* anA| | not 1_6* BAmQﬁA nol

J |Duldx < H(x,0)dx
QNA

(3.65)
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with
B =Tu-v = "V
QNA (QNA) 171 |D |2 QNA

and with vg~4 being the unit outward normal of 0A N Q. Indeed, motivated by the rea-
soning leading to Proposition 3.5, we observe that u|qn4 is a solution of the variational
problem

(3.66)

Ji(w) —min in BV(QNA), (3.67)

where we set

Jiw) = JQ A\/1+ |Dv|2dx+JQ AJOUH(x,t)dtdx

(3.68)
+J |U—u|d%n71—J‘ BAUd%nfl.
0QNA 0ANQ

We extend u|3qna) to some function @4 p in H1(B\ (2N A)), for some smooth set
B> (QnA) with 0B > 0ANQ such that ¢4 3 has boundary value zero on 0B\ (0ANQ).

Then we set
- H(x,t), ifxeQnA,
Hy(x,t) =
0, if x e R*"\ (QNA), (3.69)
Ks={v €BV(B): VI (ani) = Pas}-
Then we let

v
Jav) =J \/1+\Dv\2dx+J( J HA(x,t)dtdx—J Bavd¥,_1,
B 8Jo 3ANQ
v
= \1+|Dv|%2d J JH ,tydtd —J A¥,_1.
JA(V) JQHA +| U| X QNnAJO (X ) x BAmQﬂAv not

Thus, we have

(3.70)

Ja(v) :]A(v)+L\(Q 1+ |Doag|dx, (3.71)

NA)

and to solve problem (3.67) is equivalent to finding a solution of the problem
Ja(v) — min inK. (3.72)

We obtain from (3.53) that

fA(u)zJ 7 7\/1+\D(pA,B|2dx+(1—6*)J \Duldx
B\ (Q QNA

nA) (3.73)

o[ luldd —j Bantt d¥n_.
0ONA 0ANQ

Now that J4(u) is estimated from above by

JA(0)+L\ 1+ |Doagl|’dx, (3.74)

(QnA)
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we obtain that

(1-6.)

Qn

Duldx < Ja () +6. | Juldit 1~ [ Banauditns
A 0QNA 0ANQ
<|QNA| +J H(x,0)dx (3.75)
QNA
+(1+6*)J |u|d%n71—'[ Banaudity-1,
0QNA 0ANQ

which is (3.65).
To treat the last boundary integral in (3.65) and gain estimates of [, |Du|dx, we
consider a tubular neighborhood of the boundary 0Q:

QY = {x:x €Q, dist(x,0Q) < fo(x)} (3.76)

with f(x) being nonnegative, piecewise Lipschitz continuous and f,(x) being so small
that Q° can be covered by sets Ag NQ, x € lp, with 1y being a set of indices such that
sets with distinct indices can intersect at most on their boundaries and each set A9
satisfies condition (3.51), and is of the type described in the previous paragraph for
A= AS.

Then, for each « € Iy, (3.65) is valid for A = A%. By our choice of the covering {A% N
Q} xely, We decompose the set

U (@A%nQ)\o*A% (3.77)

«elp

in such a way that each element in this decomposition belongs to the boundary of
exactly two elements of this covering. Since the unit outward normal points in opposite
directions along (0A% N Q) \ 0* AY for each pair of two elements of the covering meeting
there, the integral along (0A% N Q)\3*AY vanishes by summing over « € [y, and we
obtain

J [Duldx < ! [ Qs | + 1 J H(x,0)dx
0o 1-04 1-04 Jao
146 (3.78)
*
* 1—5* JBQ ‘uld%ykl 1—5* 0% Q0 BQ% ud%n—l,
where we set 0*Q0 = 0Q%N Q.
Setting
0700 = {x:x € Q\QO, dist(x,0*Q%) =t}, fort >0, (3.79)
we now consider a tubular neighborhood of 9Q°:
Q= {x:x €Q\Q dist(x,0Q%) < f1(x)} (3.80)

with f] being nonnegative, piecewise Lipschitz continuous and f; (x) being so small
that Q! can be decomposed into sets Q' N AL, « € Iy, with [; being a set of indices. For
each « € [, the boundary of Q n A}, consists of 9*Q%n A}, an (n — 1)-dimensional
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surface 0* Al included in B*le, and several connected (n — 1)-connected (12— 1)-
dimensional surfaces such that, if 0* A is C2, setting d; = dist(x,0Q"), then we have

Dd, - V|(8A&NQI)\B*A}X =0, (3.81)

and if 0Q N A can be represented as the graph of a Lipschitz continuous function f,
then (0ANQ)\0*Al is orthogonal to the coordinate plane of f. Furthermore, &§; is
sufficiently small that there holds, analogously to (3.51),

ey QT NAL| <6 (3.82)

We further require that each two distinct elements in this covering can intersect at most
at their boundaries and 0*QP is decomposed in such a way that each element in this
decomposition belongs to the boundary of exactly one element of this covering. Then,
we obtain analogously

Ox
1_5* o*

1 . 1 I
Lﬂ |Duldx < —— |Q| + s, QIH(x,O)dx+ o |u|d, -1

1 1 (3.83)

a 1-04 L*QO BQ&O uddln-1 - mja*gl BQ}SI “ud¥n-1,

where we set 0*Q! = 0Q!\ 0*QV.
Adding (3.78) and (3.83), the integral of Bo, u along 0*Q0 vanishes and we obtain

1 1

0 1
JQOUQI [Duldx < T [QPuQl| + =5, Qoung(X’O)dx
+ 15, th/L‘d%nfl"r =5, a*gomm%”*l (3.84)

1
1 _6* Ja*Ql BQ(IS] 'ud%n—l.

We then set iteratively Q™*1 N to be a tubular neighborhood of 9*Q:

QM = Ix:x € Q\Q™, dist (x,0%Q™) < fiui1(x)], (3.85)

where 0*Q™ = (0Q™)\0*Q™, f,,41 is nonnegative, piecewise Lipschiz continuous, and
with fi,+1(x) being sufficiently small such that Q™*! can be decomposed into A1 n
QM+l « € 1, in a manner analogous to that for Q° and Q! described above. After a
finite iteration, the set Q™+*! is empty for some m, € N, and we finally arrive at the
inequality

1
1-64

1+64
1—6* 0Q

J \Duldx < Q] + j H(x,0)dx + | d%,
Q Q

5, (3.86)

Mx
+ ulds, 1.
e EOL*Q’"| A1

To treat the last integral along 0QF, 0 < i < M,, we appeal to the results in Sections 4.2.1
and 4.2.2 to conclude that the last integral in (3.86) approaches 0 as 6, — 0. Indeed, by
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(4.25), (4.27), (4.35), and (4.38), and our choice of O™, we have

5*J A%
oxQm

sé*x/1+L2J |Duldx+68: > c“amwm-f luldx
Qm+l\om ’ ANQ

xe€lm

<04 [Duldx + 04 z éa*Afx",ém . |A1;109m|1/n.£‘m ‘u|1+l/ndx’

1
Qm+l\om aely mn

(3.87)

where L = maxuei,, L, L« 1S the Lipschitz constant of QN oAy, CAB*A&n,(;m =2(8p) Lif
0* A™ can be represented as the graph of a Lipschitz continuous function, and C;« Am =
2H v am +2(8,) "L if 0¥ A is C2. By (3.51), we have

A 1/n
6* 'Ca*Aa",(Sm . |AZL QO|

-1
< 2(6*)2[1”&3“@ +max (|0*AT |, |0AT noQ™ ! | )] Sea) (sgp \Ho(x)|) ,
(3.88)

where

Howam, if 9¥AM is C2,

Roxam = if 0* A" can be represented as the graph (3.89)
’ of a Lipschitz continuous function.

By the Sobolev embedding theorem (cf. [11, (7.30)]), we know that u € L+*1/*(Q). Hence,
the last integral in (3.87) approaches zero as 64 — 0.

We obtain the following by setting 6« — 0 in (3.86) and an application of the modified
Sobolev inequality, Lemma 4.8, and Holder inequality.

THEOREM 3.7. Let u be a solution to the variational problem (3.3) and suppose H
satisfies (3.27), (3.38), and (3.52) for some t, € R. Suppose Q is piecewise Lipschitz con-
tinuous without outward cusps such that the decomposition Q = | Jn* Qg':n of Q indicated
above can be constructed. Then the L' -norm of |Du| and u can be estimated in terms
of 1Q1, Jo H(x,0)dx, [3o |uld,_1, namely,

J |[Duldx < |Q|+J H(x,O)dx+J luld¥#, 1,

Q Q 0Q
J luldx < i-m\l“/ui-mw"-J H(x,0)dx (3.90)
Q Wy Wn Q

+2£-\Q|1/"-J luld, ;.
w 0Q

n

From Proposition 3.4 and Theorem 3.7, we obtain the following theorem.
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THEOREM 3.8. Under the assumption made onu, H, and Q, estimates (3.35) are valid
for each A, 0 < A < 1, with the constant Cy,

]wfn)/(np)

1
Cy < [X < [[Heo w0

(3.91)
-[—" QiHimy 1L |Q|1/"J H(x,O)dx+2i|Q”|””J |u|d%n,1].
Wy Wy Q W o0Q

4. Estimates for capillary surfaces

4.1. Global estimates for the oscillation of |u| in terms of H and the contraction
of j. Estimates for capillary surfaces with | cos 6| bounded away from 1. In order to
gain estimates for sup;qu, infaqu, and sup;o u — infaq u, with u being a minimizing
function of the functional J (1), we impose some additional restrictions on the domain
Q and the functions H(x,t) and j(x,t). Namely, the function j(x,-) is assumed to be
a contraction for %,_1, almost every x in Q, that is, for some constant a,

0O<ax<l, 4.1)
which is independent of x, we have
[jx,7)—j(x,8)| <(1—a)-|r-s|. 4.2)
Moreover, we assume that
J(-,0) e L' (09). (4.3)

We assume the existence of two positive constants y and Cq depending only on Q such
that in the case where a > 0, there hold

(1-a)-pu=<1, (4.4)
jg vd%n,lsu-J \Dv\dx+CQ-J lvidx 4.5)
20 Q Q

for all v € BV(Q).

We note that [12, Lemma 1.1] establishes (4.5) for u = 1 in the special case where
Q is a bounded domain with C? boundary, and we formulate a generalized version of
this result in Section 4.2.1 as Lemma 4.2. An inequality of type (4.5) appears first in
[3] with pu = +/1+ L2 for any Lipschitz domain with Lipschitz constant L. (See also [17,
page 203].) In [5, pages 141-143], this result is extended to include domains in which
one or more corners with inward opening angle appear. As pointed out in [5, page
197], this extended result permits inward cusps and even boundary segments that may
physically coincide but are adjacent to different parts of Q. However, it is pointed out
in [5, page 143] that an outward cusp or a vertex of an outward corner is not permitted.
A modified version of this result will be presented in Section 4.2.3; in particular, the
results in Lemma 4.7 permit domains with vertices of outward corners.

Under the assumption that (4.5) holds, a modified Sobolev inequality

If I < Cxse - IDSf Il +Csxe - L I (4.6)
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is valid for all f € WL1(Q); here c4x and ¢4y depend only on n and Q. This can be
reduced to Friedrich’s inequality. We will show this in Section 4.2.3.

Global estimates for the oscillation of 1 can be obtained in the special situation
indicated below. Results which are valid in the general situations will be indicated in
Section 4.3.

PROPOSITION 4.1. Under the above assumptions on Q, H, and j and under the as-
sumption that (3.27) holds for some ty € R, leta > 0 and u be a solution of the variational
problem (3.3). Furthermore, set

ac=[1-(1—a)u]- (csx) " —|1Heo | (@ - 11109

A U (4.7)
~[-a) - Co-[1-(1-a)-u]-Eus- () |- 101"
with
n(u+1 R ncC,
*k = Ms Cyx = —Q (4.8)
Wn Wn
Suppose that
asx > 0. (4.9)

Then there exists a constant C3 determined completely by a, n, to, |Q|, and the geometry
of Q such that

supu —infu < Cs. (4.10)
Q Q
PROOF OF PROPOSITION 4.1. Let k be a number greater than max (infq u, ty). We set

Uy = min(u, k). Then uy belongs to BV (Q) and the minimizing property of the function
u yields

Ju) < J(ug). (4.11)

Adopting again the notation A(k) = {x € Q: u(x) = k} and for a moment assuming
that u is smooth, we obtain

u
I w/1+|Du\2dx+‘[ J H(x,t)dtdx
Ak) a Juy

4.12)
+§ [, u) —j(x,ur)]d¥n 1 < |A(K)|.
20
Condition (4.2) yields
j( [, u) —j(x,u)]d¥, 1 < (1-a) jg |u—ug|d¥n,-1, (4.13)
20 20
which together with (4.5) yield
f [ e, u) = 7 (x, uk) |d%,
o0 (4.14)

<(1-a) -u-J |Dw|dx+(1fa)-CQ-J lwldx,
A(k) A(k)
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where we have set
w =max(u—k,0). (4.15)

Inserting (3.38) and (4.14) into (4.12), we obtain

[1—(1—a)-u]-I |Dw|dx+J Hto-wdx—(l—a)-Cg-J wdx < |A(k)|.
Q Q A(k)

(4.16)
This is also valid for u € BV (Q) using an approximation argument.
By the modified Sobolev inequality (4.6) and Holder’s inequality, we obtain
[(1 —(—a)u)(cex) ' - [[Heoll1p ) - |AK) | (p=mimp
A . n (4.17)
“la-a)-Co- (- -a@m) G- (en) - TAGO "] wlles = [AGR].
Thus, by (4.7) and (4.9), we have
as-wln, < A |, (4.18)
which together with Holder’s inequality imply
(h=k)-|A() | < (ay) " [AGR) [ (4.19)
for each h > k > max(infg u, to). This and Lemma 3.6 yield
supu < max (igfu,t0> +2m+ L (@) |, (4.20)
Q
This completes the proof of Proposition 4.1. |

4.2. Local estimates for the oscillation of u near the boundary. Estimates for cap-
illary surfaces with | cos 0| bounded away from 1. We are interested in the situations
where in some local sense a modified version of (4.5) holds for some proper subset I' of
0Q); however, (4.9) does not necessarily hold. We will follow the approach taken in [8,
pages 176-179]. We consider the capillarity problem (1.8), rather than the variational
problem (3.3). Under the assumption that

0<|cosO|=|Bl<1-a withO<a<1, (4.21)

for some constant a, we will arrive at local estimates for the oscillation of u indicated in
Theorem 4.10, which will give us estimates for the Lipschitz constant near the boundary
as indicated in Theorem 4.12. In case (4.4) holds locally on 0Q in the sense indicated
in Section 4.3 below, we arrive at estimates of the oscillation of u along the boundary,
which, together with Theorem 3.8, gives us global estimates of the oscillation of u as
indicated in Theorem 4.11.

We first pay some special attention to the case where (4.4) holds locally on 0Q. For
this, we present some preliminary results in Sections 4.2.1, 4.2.2, and 4.2.3. These re-
sults were used to derive (3.87).
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4.2.1. Boundary integrals along piecewise C2 boundary. The proof of the following
lemma can be modified from that of [12, Lemma 1.1] in an obvious way.

LEMMA 4.2. Let E be a Caccioppoli set in R", let T be a subset of 0E which is a C?
manifold, and let d(x) = dist(x,0E) for x € E. Let

Fr;={x € E:dist(x,I) <t} fort>0. (4.22)

Let &r be so small that the function d(x) is of class C? in Er ¢, and consider, for 0 < & < g,
a domain Ef .

Er,g/ < Elikygr < Er‘gr (423)

such that on a portion of its boundary, a*Effgr C Er¢ \Er e, and on the remaining portion
of its boundary in €,

Dd-vlegg, nanexet, =0 (4.24)

with v being the unit outward normal to OEf ... Then, there exists a constant Cr ¢ de-
pending only onT and €' such that the inequality

J wd¥#, 1 sj \ledx+Cr,5rJ lwldx (4.25)
r * *

T, El",s’

holds for all w € BV (Er ). In fact, let ne be a C* function with
0<ne <1, ne =1 on'l, ne =0 mE\Erg, (4.26)

then inequality (4.25) holds with

Cre =sup | div(nsDd)|. (4.27)
Effsl.
If, in addition,
wlaegr, =0, (4.28)

then inequality (4.25) holds with

Cr.er = sup | div(Dd) | (4.29)

El‘,sl-
for allw € BV (Erg).

In order to apply Lemma 4.2, we have to estimate the value of Cr ¢ in (4.27) and (4.29).
For this, we formulate the following result which is well known and can be found, for
example, in [11, pages 420-422].

LEMMA 4.3. Let T € OF be of class C? whose principal curvatures are bounded in
absolute value by ¥r. Then d(x) = dist(x,T) is of class C? in Er ¢, for er < 1/, where
Er ¢ is given in (4.22).
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Furthermore, for points X in Erg, & < 1/Hag, define y = y(X) to be the (unique)
nearest point of T to Xx. Consider the special coordinate frame in which the x,-axis is
oriented along the inward normal toT at v and the coordinates x1,...,xn—1 lie along the
principal directions of T at the point . In these special coordinates, there hold at x,

Dd = (0,...,0,1), (4.30)
D?d = diagonal [ —k —Kns 0] (4.31)
1-kid’ "7 1-kpd L

where ky,...,ky—1 are the principal curvatures of T at y.
Inserting (4.30) and (4.31) into (4.27) and (4.29), we obtain the following.

LEMMA 4.4. Let T c OF be of class C? whose principal curvatures are bounded in
absolute value by Hr. Then, for ey < 1/Hr and for each 6,0 < § < 1, there holds in (4.27)
that

Cro < |Dne | +2(n- 1) < (1:—5) L 2(n- 1), (4.32)
and in (4.29) that
Cre < 2(n- 1% (4.33)

4.2.2. Domains with piecewise Lipschitz continuous boundary. In this section, we
formulate some results in connection with (4.4) for piecewise Lipschitz continuous
domains. We first consider a portion of 0Q which can be represented as the graph of a
Lipschitz function.

LEMMA 4.5. Let E be a Caccioppoli set in R" and let T be a subset of 0E which
can be represented over some (n — 1)-dimensional domain D by a Lipschitz function
f(x1,...,Xn_1) With Lipschitz constant Lr. Suppose the strip

Fre={(x1,...,Xn-1) €D, =€ <xpn—f(x1,...,Xn-1) <0} (4.34)

lies in E for 0 < € < &y. Then, for € < &, there exists a constant Cr ¢ depending only on
I' and €' such that the inequality

de%n,ls\/H(Lr)zj |Dw|dx+€r,grj lwdx (4.35)
r 5"?,;' e

holds for all w € BV (Sf*,.), with domains ¥ ., satisfying
yr,y < g)fk‘gr < yr‘gQ. (436)
In fact, letting ne be a C® function with

0<ne <1, ne =1 onT, Ne =0 inoYre \OE, (4.37)
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then inequality (4.35) holds with

<2(e)7 (4.38)

Cre =sup | Dng

P e
Ifw=0on asf;; \ (0Fr,e NFre), then inequality (4.35) holds with
Cre =0. (4.39)

We now formulate a global result for domains with piecewise Lipschitz continuous
boundary.

LEMMA 4.6. Let E € R™ be bounded with OF being piecewise Lipschitz continuous.
Suppose the tubular neighborhood E of OE,

E. = {x:x €E, dist(x,0E) < &}, (4.40)

is covered by a partition of unity with particular properties; namely, suppose E; is covered
by a finite number N of sets E;, 1 < i < N, each of which is open in E and to each of which
is associated a nonnegative function ¢; € Cg (R™) such that > ;b ;(x) =1 for all x € E;
and each 0E N E; can be represented by a Lipschitz function f; of (n—1) variables for
which strips with width ¢,

yaEﬂEi,E = {(xly--'lxi,n*lyxi,n)y (xi,ly--'lxi,n*l) S Di!

(4.41)
—&<Xin—f(xi1,...,Xin-1) <0},

are disjoint to each other. Let the Lipschitz constant of f; be L;, 1 < i < N. Then, the
inequality

jg vd¥H,_1 qu |Dv|dx+CEJ lv|dx, (4.42)
OF E E
with
2
u= |1+ (maXLj> , Cp=> sup |D¢j|+2¢e7!, (4.43)
J j suppd;

is valid for all v € BV (E).
If there is a set E including the tubular neighborhood E¢ of 0E such that v = 0 on

OE4 NE, then inequality (4.42) is valid with p = /1 + (max; L;)? and

Ce=> sup |Dojl; (4.44)
j suppo;

the same is true for those w € BV (E) with {x : x € E,w(x) = 0} being of positive (n—1)-
dimensional Hausdorff measure and dividing 0Q into two connected portions intersecting
with each other at their endpoints.

Other estimates for constants in (4.42) are available for domains with piecewise Lip-
schitz continuous boundary.
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LEMMA 4.7. Let E € R™ be bounded with 0E being piecewise Lipschitz continuous; that
is, 0E can be decomposed into

No
OF = | Jo:E (4.45)

i=1

such that 0;E, 1 < i < Ny, can be represented as the graph of a Lipschitz function f; of
(n—1) variables (xi,...,Xin-1) over an (n —1)-dimensional domain D;. Suppose that
the tubular neighborhood E. of OE, where E; is given in (4.40), can be covered by strips
of width ¢,

g)aiE,é = {(Xll---sxi,n—lyxi,n)l(Xi,ly---sxi,n—l) € Dii

—&<Xin—f(Xi1,. s Xin-1) <0}, (4.46)

and that each point in E; is included in at most N, such strips. Denoting by L; the Lipschitz
constant of fi, then inequality (4.42) with

2
u=N; |1+ ( max LJ) , Cp=2N e ! (4.47)
1<j<Nyp

is valid for all v € BV (E).
If there is a set E, including the tubular neighborhood E: of 0E such that v = 0 on
0E, NE, then inequality (4.42) is valid with u = Nl\/l + (max<;<n, Lj)? and

Ceg=0; (4.48)

the same is true for those w € BV (E) with {x : x € E,w(x) = 0} being of positive (n—1)-
dimensional Hausdorff measure and dividing 0Q into two connected portions intersecting
with each other at their endpoints.

4.2.3. Modified Sobolev inequality. We will give a proof of the modified Sobolev
inequality (4.5) and estimate the constant involved in this inequality. This result has
been used to prove Proposition 4.1 and will be used to prove Theorem 4.10.

To derive the modified Sobolev inequality (4.5), we first formulate the following result
which is a special case of the so-called Friedrich inequality.

LEMMA 4.8 (cf. [18, Theorem 6.5.7]). Suppose E is a Caccioppoli set with piecewise
Lipschitz continuous boundary. Then for any f € BV (E), the inequality

I f e ) < win(L IDfldx+ [ 1f1d% ) (4.49)

is valid, where w,, is the Lebesgue measure of the unit n-dimensional ball.
Inserting (4.25) and (4.42) into (4.49), we obtain the following.

PROPOSITION 4.9. If inequality (4.42) holds, and given f € BV (Q)), the boundary strip
E. adjacent to {x : x € OE : f(x) # 0} and with width ¢ is included in E (cf. (4.40)), then
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the inequality
n(u+1 n-C
e < MDD flax+ B ) plax (4.50)
Wy E wy JE
is valid with
u=1, Ce=2n—-1)Hop+2&! (4.51)
if OF is piecewise C?, and

p=v1+L2,  Cp=>sup|D¢;|+2¢! (4.52)

J

if OF is piecewise Lipschitz continuous with Lipschitz constant L such that there exists a
partition of unity for E satisfying the conditions indicated in Lemma 4.6, and

U=NV1+L2,  Cp=2N;&e! (4.53)

if OF is piecewise Lipschitz continuous such that, with decomposition of 0E into graphs of
Lipschitz continuous functions, each of the associated boundary strips cannot intersect
movre than N others, as indicated in Lemma 4.6.

If {x : x € E,2w(x) = 0} is of positive (n — 1)-dimensional Hausdorff measure and
divides 0Q) into two connected portions intersecting with each other at their endpoints,
then inequality (4.50) holds with

Ce=2(n-1)%oe, > sup|De;|, O, (4.54)
J

respectively in the three cases indicated above.

4.2.4. Consider the capillarity problem (1.8) such that (4.21) holds for some con-
stant a.

Let A be a set with a portion of the boundary 0* A included in 0*Qs, such that QN A
satisfies (3.63), (B), and

diamdQnA < (80)'*5,  diamo*A < (80)' ™,

50)(1+e)(n—1) . (50)(1+5)(n—1)
IanAlz(2 , [0*A| = 5 ,

(4.55)

for a constant 5o, with 8¢ < (Jaqna) ! in case 9QNA € C? and §( being so small that the
boundary strip $30na,s, defined in (4.34) is in O NA in case 0Q N A can be represented
as a graph of a Lipschitz continuous function. Furthermore, let (QN0A) \ 0* A be made
up of gradient trajectories of u; that is,

Du-vonal@naana+a < 0. (4.56)

Choosing 6 to be so small that each component of (QNJA)\0*A can be represented
as the graph of a Lipschitz function with Lipschitz constant L, and that

diama*Q; N A < (89)'™ foreacht, 0<t < &g, (4.57)
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and that there holds

(n/wn)—éamg-éo A
A(l—(l—a)u)-( —(1-a)Csqni00
1+pu++1+ (L**)Z o (*.58)

- ||Hto||Lv(Q) : (50)(’0_")/’0 >0,

where p =1, Cyon4 = 2(n— 1)H ;004 if 0QNAis C2 and p = VI+L2, Cyo.4 = 0 if QN
‘A can be represented as the graph of a Lipschitz continuous function with Lipschitz
constant L. The reason for the choice of such a constant Cq,,; will be made clear in
Section 4.5, where we will show the following.

THEOREM 4.10. Let u be a solution to the variational problem (1.8) which is of class
C%(Q). Suppose H satisfies (3.38) and (3.27) for some tg € R. Let A be a set with 0Q N A
being either C? or the graph of a Lipschitz continuous function. Suppose that (4.21) is
satisfied for all x € 9QNA in which 1 > a > 0 is a constant and (4.55), (4.56), (4.57), and
(4.58) are satisfied with the constant §. Suppose that B(x) is continuous in 0Q N A. If
B(x) >0 for all x € 0Q N A, then the inequality

sup u < C¥ -max( inf u,to,O) +CE-CE* 1QnAlLm (4.59)
0QONA 0QNA

holds true, and if B(x) < 0 for all x € 9Q N A, then the inequality

inf u > C}-min ( sup u,to,0> ~Ci-C*-|Qn Al (4.60)
00ONA 20NA

holds true; thus, if B(x) > 0 for all x € 0Q N A and if infaou = max(tg,0),

— inf u < (C{-1)- inf u+C}-Ci*-|[QnAl™. 4.61
S e = (LD e CL G j00 Al @ob

If B(x) <0 for all x € 00N A and if sup,o u < min(ty,0), then

supu— inf u<—(C{—1)-sup u+C;-Ci*-1QnA|l/" (4.62)
0QNA 0QNA 0QNA

holds true. Here

-1
Cx = <1—2\/§- (60)s(n—1)/n CX*) ’ (4.63)
Cir =21 (10" (1- (A -a)n) " - Cogna, (4.64)

with

(n/wn) - éanAéo

éaﬂmA:
1+pu++/1+ (L**)Z

(4.65)
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4.3. Global estimates for the oscillation of |1| for capillary surfaces with |cos 0|
bounded away from 1. We pay some special attention to the case where (4.22) or
(4.34) holds locally on 09, that is, a sufficiently small tubular neighborhood Qs of the
boundary 0Q can be covered by sets QN Ay, & € N, such that each set A, is of the type
indicated above, which satisfies (4.55) and (4.57) and for which (4.22) or (4.34) is valid
with T = 0Q N A. We note that we here allow elements in this covering with distinct
indices to intersect at a set of positive n-dimensional Hausdorff measure. If condition
(4.21) holds for all x € 0Q and 9 is so small that (4.29) is satisfied for sets QN Ay in
such a covering of Qs,, we obtain estimates of sup;q u, infao u, and supyq u —infaou
from (4.59), (4.60), and (4.61). Combining with Theorem 3.8, we obtain estimates of
supg u —infg u. Thus, we have the following.

THEOREM 4.11. Suppose that (4.22) or (4.34) holds locally in the sense indicated
above; in particular, 0Q is piecewise Lipschitz continuous without outward cusps. Sup-
pose that (3.27) holds for some ty € R. If u is a solution of (1.8) such that cos 8 (x) = B(x)
satisfies condition (4.21) for all x € 0Q and is a piecewise continuous function on 0Q), and
if H(x,t) is bounded in Q xR, then

supu —infu (4.66)
Q Q

can be estimated in terms of to, n, [|Hllir ), Jo H(x,0)dx, |Ql, a, and the geometry
of Q.

4.4. Boundary regularity for capillary surfaces. From Theorem 4.10, we obtain the
following for solutions to the capillarity problem with | cos 8| being bounded away from
1 and 0.

THEOREM 4.12. Letu be a~b0un~ded solution to (1.1) and (1.3). Suppose for xy € 0Q,
and for positive constants B, B, B,B < 1 and a ball Bg(x() intersecting the interior of
Q, that assumptions (A1) and (A2) hold. Furthermore, assumption (1.14) on H holds.
Assume that (3.38) holds. Then the trace of u on 0Q is Lipschitz continuous locally in
o0QN Bgr (X() ). .

The Lipschitz norm of u near xo depends only on H, B, B, and a constant Csq;
depending on the geometry of Q, where Caq 4 = Hoanpg(x) in the case where the portion
of 9Q N Br(xo) is C? and Cyon i = V1+L2 in the case where 0Q N Br(xo) is Lipschitz
continuous with Lipschitz constant L; here Xaonpg (x,) IS an upper bound of the absolute
value of the principal curvatures of 0Q N Bg (x() in the case where 0Q N Bg (x) is C2.

To see that Theorem 4.10 implies Theorem 4.12, we notice that C} and L, in Theo-
rem 4.10 approach the respective values 1 and 0 as o — 0. Thus, from letting 6o — 0
and letting € — 0, we obtain Theorem 4.12 after a possible renormalization which makes
infaou <0 or supzou > 0.

We emphasize again that Theorems 4.12 and 2.6 yield the Hoélder continuity with
exponent 1/2 up to the boundary locally in 0Q N Bg (xo), under the assumptions on cos 0,
0Q N Br(xp) indicated in Theorem 4.12, the assumption that infzgu < 0 or supzqu = 0,
and the assumption that H is nonnegative and bounded above.
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4.5. Proof of Theorem 4.10. We set n to be a smooth function such that

0<n<1, nlonz=1, (4.67)
suppn c (QNA)\0*A. (4.68)

Let k be a number greater than max(infnzu,to,0). We set
ug = (1-n)u+min(nu, k). (4.69)
Then, uy belongs to BV (Q2), and using the notation
A(k,n) ={xeQ:nu>k}, (4.70)
we obtain from the minimizing property of u,
Je(u) < Jie(ux), (4.71)

where

Jk(v) = J A 1+|D'U‘2dX+I BA(k,n)v d%n—l- 4.72)
A(k,n) 0A(k,n)

Assume for a moment that u is smooth. We obtain from this

u
J \l1+|Du|2dx+J H(x,t)dtdx—J
A(k,n) QJuy

0QNA(KD)

B (nu—k)ddt, 1

Bona - (nu—k)ddt, 1 (4.73)

SI \/1+|D[(1—n)u]2|dx+J
Alk,) ** ANA(k,n)

sj \/1+(1—n)2|Du|2dx+J v 1+u2|Dn|%2dx,
Alk,n) Alk,n)

where we set
0**A=(QnNnA)\d*A 4.74)

and where the last inequality is obtained from (4.56) and the inequality 1+ |a+b|? <
1+ |al|?++/1+|b|2. Taking into account the inequality

VI+t2—y1+(1-n2t2=t—[1+(1-nt]=nt-1, (4.75)

we obtain from (4.73)

J |D(nu)|dx+f Ju H(x,t)dt dx
A(k,n) Q Juy

(4.76)
(nu—k)d¥, .

s2\A(k,n)|+2<sup|Dr]|>-J udx+(1-a)-
Q A(k,n) 0QNA(k,n)
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We set w = max(nu —k,0). The monotonicity condition (1.5) on H(x, -) yields

! H(x,t)dt = H(x,ty) - (u—ux) = H,w. (4.77)

Uk

Inserting this into (4.76), we obtain

J |Dw|dx+J Hywdx
k
A(k,n) A(k,n) (4.78)

sZ{A(k,n)|+2(sup|Dn\)-J udx+(1-a)- wd, 1,
Q Alk,n) 20N ATT)

which will also be valid for u € BV (Q) using an approximation argument.
By the modified Sobolev inequality (4.49) with constants concerned in (4.51), we have

”w”] * k,n
Mk (A

SJ \ledx+J wdH,_1+
A(k,n) 0

(4.79)
QAAKN) L**AmA(k,n)

wd¥y_1,

in which, from (4.68), Lemmas 4.2 and 4.5, we obtain

J Wdny <A1+ (Lex)’ f |Dw|dx, (4.80)
0 A(k,n)

**AnA(k,n)

wd%n,lsu-J |Dw|dx+éaQM-J wdx, (4.81)
A(k,n) A(

JanA(k,n) k,n)

where the constant C,q,, ; takes the value indicated immediately below (4.58) in Section
4.3. Inserting (4.80) and (4.81) into (4.79), we obtain

— W llLnx (A(k,n
Wn (Ak.m)

< <1+u+v1+(L**)2> J

Alk,n)

(4.82)

|Dw|dx+CaQﬁA-J wdx,
A(k,n)

from which and from Hoélder inequality, we obtain

(n/wn) = Connil Alk,n) |

1/n
J |IDw|dx = ( ) Nwllpns (aon)) - (4.83)
Alkm L+p+y1+ (Lay)’

Assuming that (3.27) holds, we can derive, by the reasoning leading to (3.30),

L(k Higw dx‘ < llwllzns (agen - [[Heoll, - [AG,m) | P70, (4.84)
n
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Inserting (4.81), (4.83), and (4.84) into (4.79), we obtain

[(1— (1-a)-u)- <(n/w") = Coana- IA(k,”)|1/n>

1+pu++1+ (L**)2

—(1-a)Caoni | Alk,m | " - [[H [, - AR, 1) | (p_n)/(np)} Mwllzns adkon))

s2|A(k,n)|+2(sup|Dn|)-J udx.
Q A(k,n)

From (4.58) and (4.85), we obtain

(=2 -[1=(=a)- 1] (Coana)  Iwllpe

32|A(k,r/)|+2(sup|Dn|>-I udx,
Q A(k,n)

945

(4.85)

(4.86)

with C:‘am 4 being given in the statement of Theorem 4.10. This and Holder’s inequality

then yield
(h—k)- A, | <2(1-1)" 1= -a)-u] " Conna

-[lA(k,m|“””+(sup|Dn|)-IA(k,ml””-J udx]
Q A(k,n)

for each h > k > max(inf;q~ 5 u, to,0).
We have

J udx < (supu) | Ak, n)
A(k,n) QNA

since B(x) > 0 for all x € 9Q N A, we have

supu = sup u,
QnA 00NA

and hence, by the identity in (4.67), we have

supu = sup nu.
QnA 2QNA

Inserting this into (4.88), we obtain

J udx < (sup nu) <Ak, |.
QNA A

0QNA

From (4.87), (4.91), and (3.14) in Lemma 3.2, we obtain

supnu < max( inf u,t0,0> +CF* . (sup\Dnl) . ( sup nu) SlQnAllm
QNA 0QNA Q 2QNA

(4.87)

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)
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with Ci* being given by (4.64), which yields (4.59) with
-1
Ct < [pc;;*-(supu)m)-\QmAH/"] , (4.93)
Q

which is less than the right-hand side of (4.63) by (4.55) and (4.57).
Analogously, we can obtain (4.60) in case that f(x) < 0 for all x € 9QNA.

4.6. The capillarity problem possibly with cos6 being 0 or 7. Cases where H (x,t)
satisfies the growth conditions (3.10) and (3.11). For the capillarity problem with
boundary contact angle not bounded away from 0 and/or 7T, we will treat only the
cases where H(x,t) satisfies the growth conditions (3.10) and (3.11). We will prove the
following.

THEOREM 4.13. Let u be a variational solution to (3.3) for which H(x,t) satisfies the
growth conditions (3.10) and (3.11). Suppose 02 is piecewise Lipschitz continuous without
gutward cusps. Then, with the constant Cq given in (4.5), there exist two numbers to and
to satisfying the respective conditions

inf H(x, &) > —Ca, (4.94)
xeQ
supH (x, to) < Co, (4.95)
xeQ
for which there hold
A i -1
supusmax(infu,to) 4 2n+lL, (inf H(X,t())*CQ) S Qm, (4.96)
Q Q xeQ
N a -1
infuzmin(supu,to)fZ"+1 . (Cg+supH(x,to)> S QIm, (4.97)
Q Q xeQ

PROOF OF THEOREM 4.13. Assume that H(x,t) satisfies the growth conditions
(3.10) and (3.11). Then, assuming that 0Q is of class C2?, we have u = 1 in (4.4). Al-
lowing a = 0 in (4.1), we obtain from (4.16)

J Ht"LUdX*CQ'J wdx < |A(k) |, (4.98)
Q A(k)
where

w =max(u—k,0), Ak) ={x:1x€Q, u(x) =k}, (4.99)

for k > max(infq u, t). Under the assumption of (3.10), there exists a number f, such
that (4.59) holds. We obtain

(mf H(x,fo)—CQ> -Lwdx < |A(K)| (4.100)

xeQ

for k > max(infq u, fy). This and Lemma 3.2 yield (4.96).
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Analogously, the growth condition (3.11) gives us a number EO satisfying (4.95), which
yields analogously

(—CQ—supH(x,Eo)> J (u+k)dx < [{x:x €Q, u(x) < —k}| (4.101)
xeQ Q
for k > min(-supg u, —EO), and hence (4.97) follows from Lemma 3.2. a
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