
IJMMS 2004:17, 881–899
PII. S0161171204211218

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

AN EFFICIENT APPROACH FOR SOLVING A CLASS
OF NONLINEAR 2D PARABOLIC PDEs

DONGJIN KIM and WLODEK PROSKUROWSKI

Received 15 November 2002

We consider a class of nonlinear 2D parabolic equations that allow for an efficient application
of an operator splitting technique and a suitable linearization of the discretized problem.
We apply our scheme to study the finite extinction phenomenon for the porous-medium
equation with strong absorption. A comparison of accuracy and computational efficiency of
the resulting algorithms for several test problems is presented.

2000 Mathematics Subject Classification: 35K55, 65M06.

1. Introduction. We study a class of nonlinear 2D parabolic PDEs where the non-

linearity is a power of the solution. We apply a linearization and an operator splitting

technique. We use our algorithm for computing to high accuracy the extinction time

for the porous-medium equation with strong absorption.

We use a finite-difference method and an implicit scheme of the Crank-Nicolson type

in view of its superior stability properties. Then we are led to systems of nonlinear

algebraic equations. These can be solved using Newton’s type methods, which is costly.

Instead, we choose to use a linearization approach that eliminates the need for itera-

tions at each temporal step. Solving the arising large linear system of algebraic equa-

tions straightforwardly using direct methods would be extremely inefficient. Thus, the

linearization by itself does not solve the main difficulty, the high computational cost,

in dealing efficiently with 2D problems. To remedy this, to the linearized equations we

apply the operator splitting technique that allows for computationally more efficient

solution processes.

The nonlinearity in the considered PDEs has the form of powers of the solution func-

tion. This is a quite common situation in many applications, especially, in the porous-

medium type equations, see [1, 4], for which various numerical schemes have been

introduced, see, for example, [4, 6, 7]. We apply our scheme in the porous-medium equa-

tion, and we use it to study the finite-extinction phenomenon for the porous-medium

equation with strong absorption.

Throughout the paper, we use the following finite-difference operator notation. A

continuous function u = u(x,y,t) is discretized on an equidistant spatio-temporal

grid (xi,yj,tn) = (ih,jh,nk), 1 ≤ i, j ≤M , 0 ≤ n ≤N, where h = ∆x = ∆y and k = ∆t
are step sizes in spatial and temporal directions and n = 0 is for an initial function.

The discrete function at the point (xi,yj,tn) is denoted by ui,j,n. We define Un as a

discrete column vector of order M2 at the time level n:

Un =
(
u1,1,n,u2,1,n, . . . ,uM,M,n

)T . (1.1)

http://dx.doi.org/10.1155/S0161171204211218
http://dx.doi.org/10.1155/S0161171204211218
http://dx.doi.org/10.1155/ijmms
http://www.hindawi.com


882 D. KIM AND W. PROSKUROWSKI

The forward difference operators of each direction are defined as

D+t :D+tun = un+1−un
k

,

D+x :D+xui = ui+1−ui
h

,

D+y :D+yuj = uj+1−uj
h

.

(1.2)

To simplify the notation, indices over variables that do not change under the particular

operator (i.e., temporarily frozen) are suppressed. The backward difference operator is

defined analogously as

D−x :D−xui = ui−ui−1

h
. (1.3)

These one-sided operators are first-order accurate approximations of the derivatives,

that is, (D+x−D)ui = �(h), and so forth. Additionally, we use the second-order operator

D+xD−xui =D−xD+xui = ui+1−2ui+ui−1

h2
, (1.4)

which is second-order accurate, that is, (D+xD−x−D2)ui = �(h2). Note that the result

of these operators is a column vector or a matrix depending on contexts when the

operators are applied to column vectors.

This paper is arranged as follows. In Section 2, we present our model problem.

Section 3 is devoted to the analysis of computational efficiency of the different algo-

rithms for porous-medium equation. Numerical experiments for several problems with

various conditions are reported in Section 4, while Section 5 contains the concluding

remarks.

2. Model problem: porous-medium equation. We consider the following initial-

boundary value problem:

ut =∆
(
um

)−cup in Ω× I, (2.1a)

u|∂Ω×I = g, (2.1b)

u(x,y,0)=u0(x,y), (2.1c)

where∆ denotes the Laplace operator,m≥ 2, p > 0, c is a constant, the bounded spatial

region Ω is a rectangle, [α1,β1]× [α2,β2], and I = (0,T), T <∞, is a time interval. We

let g and u0 be given smooth data. We will use problem (2.1) as a model apt to describe

our method.

If m ≥ 2 and c = 0, (2.1a) is a well-known porous-medium equation which governs

the density of an ideal gas [1]. If m ≥ 2, c > 0, and 0 < p < 1, (2.1a) is called the

porous-medium equation with strong absorption. It appears in various applications,

most frequently to describe a phenomenon of thermal propagation in an absorptive



AN EFFICIENT APPROACH FOR SOLVING A CLASS . . . 883

medium, where the solution u stands for temperature. In other applications, u is a

concentration and the process is described as diffusion with absorption. The solution

u is required to be nonnegative, and thus we consider nonnegative and bounded ini-

tial condition u0(x,y). Furthermore, in the case of zero boundary conditions, that is,

g(x)= 0, it is known (see [2]) that the solution u vanishes identically as time t goes on

and extinction in finite time arises, that is, there exists a time T∗ > 0 such that u(·, t)
is not identically zero for 0 < t < T∗ but u(·,T∗) ≡ 0. Here, T∗ is called an extinction

time of a solution u and the behavior is known as finite-extinction phenomenon.

3. Linearization approach. Consider the model porous-medium equation (without

absorption)

ut =∆
(
um

)
, m≥ 2. (3.1)

Applying the standard Crank-Nicolson scheme (which is �(k2+h2)-accurate), one ob-

tains

D+tUn = 1
2

((
D+xD−x+D+yD−y

)
Umn +

(
D+xD−x+D+yD−y

)
Umn+1

)
, (3.2)

where the power m to discrete vector U is done element by element. Rearranging the

Un and Un+1 terms gives

Un+1− k
2

(
D+xD−x+D+yD−y

)
Umn+1 =Un+

k
2

(
D+xD−x+D+yD−y

)
Umn . (3.3)

This yields a system of nonlinear algebraic equations that can be solved using Newton’s

iterative method at each temporal step.

At (n+1)th temporal step, this system of nonlinear equations is

F(U)=U− k
2

(
D+xD−x+D+yD−y

)
Um−bn = 0, (3.4)

where U = Un+1, bn = Un + (k/2)(D+xD−x +D+yD−y)Umn , and Un is the computed

solution vector at the previous time level, a known vector. Then Newton’s iterative

method is given by

J
(
U(l)

)
W(l+1) =−F(U(l)), l≥ 0, (3.5)

where (l) is an iterative index,W(l+1) =U(l+1)−U(l), J(U(l)) is theM2×M2 Jacobi matrix

given by

J
(
U(l)

)= I−mk
2

(
D+xD−x+D+yD−y

)(
U(l)

)m−1, (3.6)

and I is the M2×M2 identity matrix.



884 D. KIM AND W. PROSKUROWSKI

The feature of the Crank-Nicolson scheme is its unconditional stability, see the ap-

pendix. For all values of λ = k/h2, in practice, however, one uses moderate values of

λ to avoid slowly decaying oscillations. The main problem one needs to deal with in

solving (3.3) is its computational cost. Although one might improve the efficiency of the

procedure by exploiting sparsity (see [10]), the Jacobian matrices involved here typically

are very large, thus the computational cost is large.

3.1. Standard linearization method. Here, we follow the idea of Richtmyer and

Mortan [8] who applied it to 1D problems ut = (um)xx (some call it Richtmyer’s lin-

earization method, see [9]). Recently, this idea was also applied to Korteweg-de Vries

equation, see [5].

For m≥ 2,

Umn+1 =Umn +mUm−1
n

(
Un+1−Un

)+�
(
k2) (3.7)

or

Umn+1 =Umn +mUm−1
n ωn+1, (3.8)

where ωn+1 ≈Un+1−Un.

Substituting (3.8) into (3.3) and rearranging, we obtain

(
I−mk

2

(
D+xD−x+D+yD−y

)
Um−1
n

)
ωn+1 = k

(
D+xD−x+D+yD−y

)
Umn . (3.9)

Equation (3.9) needs to be solved at each time level n = 1,2, . . . ,N. In matrix form, it

can be written as a linear system in the unknown ωn+1:

Aωn+1 = b, (3.10)

where A is M2×M2 block tridiagonal matrix:

A=




T1 D2

D1 T2 D3

. . .
. . .

. . .

DM−2 TM−1 DM
DM−1 TM



, (3.11)

each of the blocks Tj ’s and Dj ’s are M×M tridiagonal and diagonal matrices, respec-

tively. They are not constant diagonal (Toeplitz) but depend on the solution u at the

previous time level n:

Tj = I+mλ
2
T̂j , (3.12)



AN EFFICIENT APPROACH FOR SOLVING A CLASS . . . 885

where

T̂j =




4um−1
1,j,n −um−1

2,j,n

−um−1
1,j,n 4um−1

2,j,n −um−1
3,j,n

. . .
. . .

. . .

−um−1
M−2,j,n 4um−1

M−1,j,n −um−1
M,j,n

−um−1
M−1,j,n 4um−1

M,j,n



,

Dj =−mλ
2




um−1
1,j,n

um−1
2,j,n

. . .
um−1
M−1,j,n

um−1
M,j,n



,

(3.13)

for 1≤ j ≤M and λ= k/h2.

The M2 vector b with the contribution from the boundary in (3.10) has the form

b = BUmn −
λ
2
Umn

∣∣∣∣
∂Ω
− λ

2
Umn+1

∣∣∣∣
∂Ω
. (3.14)

Here, Uml |∂Ω is an M2 vector for l=n,n+1. Since Ω is the rectangle [α1,β1]×[α2,β2],
we can separate the boundary of Ω, ∂Ω, into two parts as follows:

∂Ω= ∂Ωx∪∂Ωy,
∂Ωx =

{
(x,y)∈Ω |α1 <x < β1, y =α2,β2

}
,

∂Ωy =
{
(x,y)∈Ω | x =α1,β1, α2 <y < β2

}
.

(3.15)

So we can write Uml |∂Ω, for l=n,n+1, the contribution from the boundary:

Uml
∣∣
∂Ω =Uml

∣∣
∂Ωx +Uml

∣∣
∂Ωy =




um1,0,l
um2,0,l

...
umM−1,0,l

umM,0,l

0
0
...
...
0
0

um1,M+1,l

um2,M+1,l
...

umM−1,M+1,l

umM,M+1,l




+




um0,1,l
0
...
0

umM+1,1,l

um0,2,l
0
...
...
0

umM+1,M−1,l

um0,M,l
0
...
0

umM+1,M,l




, (3.16)



886 D. KIM AND W. PROSKUROWSKI

where indices 0 and M +1 denote the boundary values. The matrix B is an M2×M2

block tridiagonal matrix, I is the M×M identity matrix, and T is an M×M tridiagonal

matrix:

B = λ




T I
I T I

. . .
. . .

. . .

I T I
I T



, T =




−4 1

1 −4 1
. . .

. . .
. . .

1 −4 1

1 −4



. (3.17)

It should be noted that the linearized equation (3.9) is identical to those obtained

by using only one iteration of Newton’s method with the initial guess U(0)n+1 = Un, the

computed solution vector at the previous time level. This can be verified simply by

inspection. The cited papers failed to make this observation.

Again, the straightforward attempt to solve system (3.10) is unacceptably costly. The

half bandwidth of A is M , and thus applying a band matrix solver would cost �(M2)
flops per unknown, which is far from optimal.

3.2. Operator splitting method. In order to solve system (3.10), we propose an

operator splitting technique.

We add a benign (because it does not affect the �(k2+h2)-accuracy of the Crank-

Nicolson scheme) term with a truncation error �(k2):

m2k2

4

(
D+xD−xD+yD−y

)(
Um−1
n ωn+1

)
, (3.18)

to the only left-hand side of (3.9). As a result we can factorize the left-hand side of (3.9)

as follows:

(
I−mk

2
D+xD−xUm−1

n

)(
I−mk

2
D+yD−yUm−1

n

)
ωn+1 = b̃, (3.19)

where b̃ is k(D+xD−x+D+yD−y)Umn with the suitable boundary contribution. By split-

ting (3.19) into two simpler systems, we have

(
I−mk

2
D+xD−xUm−1

n

)
ωn+1/2 = b̃, (3.20)

(
I−mk

2
D+yD−yUm−1

n

)
ωn+1 =ωn+1/2, (3.21)

where Un+1 = Un +ωn+1 and ωn+1/2 is an intermediate value. Since Ω = [α1,β1]
×[α2,β2], the intermediate boundary values can be given from (3.21) by

ωn+1/2
∣∣
∂Ωy =

(
I−mk

2
D+yD−yGm−1

n

)(
Gn+1−Gn

)
, (3.22)



AN EFFICIENT APPROACH FOR SOLVING A CLASS . . . 887

where

∂Ωy =
{
(x,y)∈Ω | x =α1,β1, α2 <y < β2

}
,

u(x,y,t)= g(x,y,t) for (x,y,t)∈ ∂Ω× I,

Gl =
(
g
(
x1,y1, tl

)
,g
(
x2,y1, tl

)
, . . . ,g

(
xM,yM,tl

))T , l=n,n+1.

(3.23)

The structures of the matrices in (3.20) and (3.21) are identical. They differ in the

ordering of variables, horizontal (along x-axis) in (3.20) and vertical (along y-axis) in

(3.21). The matrices in (3.20) and (3.21) are block diagonal with tridiagonal blocks: for

(3.20),

A=




T1

T2

. . .

TM−1

TM



, Tj = I+mλ

2
T̂j , (3.24)

where

T̂j =




2um−1
1,j,n −um−1

2,j,n

−um−1
1,j,n 2um−1

2,j,n −um−1
3,j,n

. . .
. . .

. . .

−um−1
M−2,j,n 2um−1

M−1,j,n −um−1
M,j,n

−um−1
M−1,j,n 2um−1

M,j,n



, (3.25)

for 1 ≤ j ≤ M . For (3.21) the indices in Tj are transposed: um−1
j,i,n instead of um−1

i,j,n , for

1 ≤ i, j ≤ M . Since the entries depend on the solution u, the matrices in (3.20) and

(3.21) are identical only if the solution is symmetric in x and y .

Each tridiagonal block can be solved independently of other blocks at the cost pro-

portional to its size, that is, �(M). Since there are 2M blocks to be solved, the total cost

is �(M2) or �(1) flops per unknown, which is optimal.

Now we study the finite-extinction phenomenon for (2.1a) withm≥ 2, 0<p < 1, and

c > 0. Applying the operator splitting technique, we obtain a system of two equations

which is similar to the system in (3.20) and (3.21) except b̃ in (3.20):

b̃ = k(D+xD−x+D+yD−y)Umn − kc2
(
Upn +Upn+1

)
. (3.26)

Here, however, in the presence of the additional nonlinear zero-order term cup , (3.20)

becomes nonlinear (because of the termUpn+1 in b̃). To solve it, we use Newton’s method,

again with the Jacobian matrix that is block diagonal, and thus each tridiagonal block

can be solved independently. As a consequence, the computational cost can signifi-

cantly be reduced as in the case of the porous-medium equation (without absorption).

4. Numerical experiments. In this section, we consider two different numerical ex-

periments. First, we investigate the efficiency of our linearization with splitting method



888 D. KIM AND W. PROSKUROWSKI

Table 4.1. Comparison of the accuracy.

Example 4.1 Example 4.2

M λ= 1 λ= 10 λ= 1

N L S N L S N L S

20 2.3e-8 2.1e-7 2.1e-8 2.0e-7 5.9e-4 1.5e-7 5.0e-6 5.1e-6 4.9e-6

40 5.9e-9 1.9e-8 5.8e-9 7.4e-9 1.3e-6 6.3e-9 1.8e-6 1.8e-6 1.8e-6

80 1.5e-9 2.3e-9 1.5e-9 1.6e-9 8.8e-8 7.0e-10 6.5e-7 6.5e-7 6.5e-7

for solving 2D problems. We compare three different methods: two iterations of New-

ton’s method (denoted by N in tables and figures), and the linearization method, first

in its standard form (denoted by L), then combined with the operator splitting (de-

noted by S), in terms of the computational efficiency (cost). We also comment on the

accuracy of the schemes. Second, we study the finite-extinction phenomenon for the

porous-medium equation with strong absorption employing our scheme. We present

the experimental results of the numerical extinction time values for various spatial and

temporal step sizes. All our programs, written in Matlab, are implemented on a PC with

Pentium III processor at 933 MHz.

4.1. Efficiency of the splitting method. We consider problems defined in a unit

square spatial domain divided equidistantly into M grid points in the x- and y-direc-

tions. Thus, the spatial step size of the uniform grid becomes h= 1/(M+1). To study

the computational efficiency (cost) of the schemes (per temporal step), we compare

the CPU time and the number of Mflops for M = 20,40, and 80 with a fixed value of

λ= k/h2 = 1, where k is the temporal step size. We report on the cost reduction factor

as well as the power, p, of the cost’s growth model: cost = �(Mp) (computed as the

slope of the least-squares linear polynomial of logarithmically scaled points). The total

cost is then increasing linearly with the number of temporal steps, that is, proportional

to the value of 1/λ. It should be noted that the Crank-Nicolson scheme allows for the

use of higher values of λ than of the order of 1, see Table 4.1.

The normalized L2-norm of the error is defined as

‖error‖ = 1
M

√√√√√ M∑
i,j=1

(
ui,j,n−u(ih,jh,T)

)2, (4.1)

where ui,j,n is the numerical solution and u(ih,jh,T) is the analytical solution at the

time t =nk= T , and h and k are the spatial and temporal step sizes, respectively.

We investigate two numerical examples which are different initial-boundary value

problems of the same porous-medium equation ut =∆(u5).

Example 4.1. We choose initial and boundary conditions corresponding to the exact

solution of ut =∆(u5) which is defined as (see [10])

u(x,y,t)= 4

√
4
5
(2t+x+y), (4.2)

for 0≤ x, y ≤ 1, and 0≤ t ≤ 1.



AN EFFICIENT APPROACH FOR SOLVING A CLASS . . . 889

Example 4.2. Similarly, we consider the initial-boundary value problem correspond-

ing to the exact solution

u(x,y,t)= 1√
5

4

√
x2+y2

1−t , (4.3)

for 0≤ x, y ≤ 1, and 0≤ t ≤ 0.5.

The exact solution of Example 4.2 (given analytically by Barenblatt, and thus called

the Barenblatt solution) is a radially symmetric self-solutionu≥ 0, defined on {(x, t)|x∈
RN, 0< t < T} (see [1, 3]). It is of the general form

u(x, t)= (T −t)−K/(m−1)

(
ATK+ BT‖x‖2

(T −t)1−K
)1/(m−1)

, (4.4)

whereK =N(m−1)/(N(m−1)+2), C =K/2mN, T = C/B, andA≥ 0. For Example 4.2,

we choose N = 2, T = 1, m= 5, and A= 0, thus obtaining (4.3).

The computational cost per temporal step of solving the linear system represented

by system (3.10) is the critical component of the total computational expenses. A brute

force band Gaussian elimination of the M2×M2 system with the half-band width M
would cost �(M4) flops, a prohibitively high expense.

The pentadiagonal (or block-tridiagonal) matrices (3.11) have the same structure as

the discrete Laplacian, although they are not constant diagonal (Toeplitz) and thus do

not allow for the use of FFT-based fast solvers. One possibility of reducing the cost is

to apply nearly optimal reordering before the elimination. Such a tool is provided in

Matlab (as a default option) using the backslash (\) operation in the sparse mode; it

employs the minimum degree ordering algorithm. Because of this, the flop count for

solving (3.10) decreases to about O(M3.6), see Figure 4.1. At the same time, for the

splitting method, see Figure 4.1, the computational cost for solving (3.20) and (3.21) is

of about �(M2) flops, or O(1) per unknown, which is optimal. Thus, our analysis from

Section 3.2 is confirmed by the experiments.

One should point out that the CPU growth factors are significantly closer, of about

�(M3) and �(M2.5), respectively. This measure of efficiency is much more computer-

and language-dependent. In this implementation, the difference in CPU time between

the two methods is less pronounced than the flop count. Nevertheless, for M = 80, the

actual cost (in CPU) reduction ratio from Newton’s method to our operator splitting

method is about 8 times (see Table 4.2). The computational cost for both Examples 4.1

and 4.2 is almost identical, therefore we provide the data only for one of them.

We also provide the comparison of the accuracy of the considered methods. One

should remark that the accuracy is heavily problem-dependent as the discretization

error depends not only on the numerical scheme and the parameters of discretization

but also on the smoothness of the solution. Because of this, we provide the two ex-

amples. The computed solution in Example 4.1, Figure 4.2(a), is much more accurate,

in the range of 10−7 to 10−8 (except for the standard linearization method), than in

Example 4.2, Figure 4.2(b) (10−5 to 10−6) for the given range of grid sizes, M . Here, p is



890 D. KIM AND W. PROSKUROWSKI

N, p = 3.60
L, p = 3.60
S, p = 1.96

10−2

10−1

100

101

102

101 102

Number of grid points (M)

N
u

m
b

er
o
f

M
fl

o
p

s

(a)

N, p = 3.06
L, p = 3.06
S, p = 2.58

Number of grid points (M)

101

102

103

104

101 102

C
P
U

ti
m

e
(m

s)

(b)

Figure 4.1. Comparison of the efficiency (measured in Mflops and CPU time
(ms)) for the Newton (N) method (two iterations), standard linearization (L)
method, and our splitting (S) method as a function of the number of grid
points, M , for Example 4.1. Here, p is the power of the cost’s growth model:
cost = �(Mp).

Table 4.2. Comparison of the efficiency (average cost per temporal step) for Example 4.1.

Grid size Number of Mflops CPU time (ms)

M h N L S N L S

20 0.0476 0.53 0.26 0.03 48 24 12

40 0.0244 5.13 2.56 0.10 281 138 65

80 0.0123 78.13 39.06 0.41 3362 1669 442

the power of the discretization error model: error = �(Mp) with the theoretical value

for smooth enough functions of p=−2. The experiments indicate that the accuracy of

our method is almost the same as the one after two iterations of Newton’s method, see



AN EFFICIENT APPROACH FOR SOLVING A CLASS . . . 891

L, p = −3.27
N, p = −1.98
S, p = −1.92

10−9

10−8

10−7

10−6

101 102

L 2
-e

rr
o
r

Number of grid points (M)

(a)

L, p = −1.48
N, p = −1.47
S, p = −1.46

Number of grid points (M)

10−7

10−6

10−5

101 102

L 2
-e

rr
o
r

(b)

Figure 4.2. Comparison of the accuracy for the Newton (N) method (two it-
erations), standard linearization (L) method, and our splitting (S) method as
a function of the number of grid points, M , for λ= 1. Here, p is the power of
the error’s growth model: error = �(Mp); (a) shows the computed solution in
Example 4.1 while (b) shows that in Example 4.2.

Table 4.1. We also verified the influence of larger values of λ on accuracy, see Table 4.1.

Only for the coarse grids, the slowly decaying oscillations affect the error.

To bring yet another perspective, we plot the comparison of the accuracy versus

efficiency of the considered algorithms, see Figure 4.3. It clearly shows the superiority

of the splitting method. As a consequence, the results presented in the next section

were obtained only by the latter.

4.2. Finite-extinction phenomenon. To study the finite-extinction phenomenon nu-

merically, we consider the initial-boundary value problem (2.1) with m = 2, p = 0.5,

c = 5, and zero boundary condition (g = 0). The presented results were obtained by the

splitting method.



892 D. KIM AND W. PROSKUROWSKI

L, p = −1.05
N, p = −0.64
S, p = −0.74

10−9

10−8

10−7

10−6

101 102 103 104

CPU time (ms)

L 2
-e

rr
o
r

(a)

N, p = −0.48
L, p = −0.48
S, p = −0.57

CPU time (ms)

10−7

10−6

10−5

100 101 102 103 104

L 2
-e

rr
o
r

(b)

Figure 4.3. Comparison of the accuracy (L2-error), Example 4.1, versus effi-
ciency (CPU time), Example 4.2, for the Newton (N) method (two iterations),
standard linearization (L) method, and our splitting (S) method.

Example 4.3. We choose the initial function u0(x,y) given as (see [7])

u0(x,y)=




1 if (x,y)= (0,0),
1−

(
x2+y2

)2√
x6+y6



+

if (x,y)≠ (0,0),
(4.5)

where Ω = [−1.2,1.2]×[−1.2,1.2].

We denote M to be the number of spatial steps in the x- and y-directions, that is,

(M−1) is the number of grid points in each direction. Thus the step size of the uniform

grid is h= 2.4/M .

The second equation of our system, (3.21), is linear. We solve it just as described in

Section 4.1. On the other hand, the first equation, (3.20), becomes nonlinear. To solve it

we use Newton’s iterative method: at the (n+1)th temporal step, the system of (M−1)



AN EFFICIENT APPROACH FOR SOLVING A CLASS . . . 893

decoupled nonlinear equations in the x-direction is

F(U)=U−kD+xD−xUnU+2.5k
√
U− b̃ = 0, (4.6)

where for i= 1,2, . . . ,M−1,

U = (ui,1,n+1,ui,2,n+1, . . . ,ui,M−1,n+1
)T ,

Un =
(
ui,1,n,ui,2,n, . . . ,ui,M−1,n

)T ,
b̃ =Un+kD+yD−yU2

n−2.5k
√
Un,

(4.7)

with the known vector of Un and element-by-element operations.

The Jacobian matrix J(U) is

J(U)= I−kD+xD−xUn+ 1.25k√
U
, (4.8)

where I is the (M−1)×(M−1) identity matrix. The Newton iterations are performed

until the stopping criterion ‖U(l+1)
n+1 −U(l)n+1‖< τ , l= 0,1, . . ., is satisfied. Here, the initial

guess is U(0)n+1 = Un for n = 0,1, . . . , and τ is the given tolerance. To prevent the sin-

gularity of the Jacobian matrix, we use regularization, that is, Jnew = J+εI, using the

machine precision ε� 2.2e−16. Moreover, we force its solution to remain nonnegative

at each temporal step.

On the average, the algorithm uses only about two Newton’s iterations to solve the

nonlinear equation (3.20). As a consequence, the computational cost per temporal step

is only about twice that of the cost discussed in Section 4.1 (without the absorption

term), see Figure 4.4 and Table 4.3. Here, we denote by P the porous-medium equation,

Example 4.2, and byA the porous-medium equation with absorption, Example 4.3. Note

that in order to make the comparison, we modify Example 4.2 and run it with the same

number of the spatial steps, M = 20,40,80, and equal exponents, m= 2.

In Figure 4.5 we plot the time evolution of the maximum height, H, of the computed

solution, u, of (4.5) in standard and log-log scales. Note that the log of the solution is

decreasing rapidly in the vicinity of the extinction time, T∗. Additionally, in Figure 4.6

we plot traces of the computed solution, u, on the xy-plane at four different points in

its time evolution.

The goal here is to accurately compute the extinction time, T∗, the time at which the

solution becomes identically zero, u(x,y,T∗)= 0. Thus, one must accurately compute

both the solution, u, and the time, T∗. The latter task imposes additional restriction:

the temporal step k must be smaller or equal to the required precision in determining

the value of T∗. This point is well illustrated by Table 4.4.

It is clear that the number of significant digits in the computed value of T∗ is limited

by the − logk. It does not mean though that it is sufficient to take small values of k (the

temporal step size) as of course the spatial discretization error also plays an important

role, see Table 4.5.

In these experiments with k = 1e−5, we limited the refining of the spatial grid be-

cause of large computational costs. To remedy this, we designed a modified algorithm.

From the point of view of accuracy, one could conduct the experiments with much



894 D. KIM AND W. PROSKUROWSKI

A, p = 2.04

P, p = 2.03

101

102

103

104

101 102

Number of spatial steps (M)

N
u

m
b

er
o
f

K
fl

o
p

s

(a)

A, p = 2.43

P, p = 2.40

Number of spatial steps (M)

101

102

103

101 102

C
P
U

ti
m

e
(m

s)

(b)

Figure 4.4. Comparison between the porous-medium equation with strong
absorption (A) and the porous-medium equation (P) in terms of (a) the number
of Kflops and (b) CPU time (bottom), as a function of the number of spatial
steps, M , for λ = 1. Here, p is the power of the cost’s growth model: error

= �(Mp).

Table 4.3. Comparison of computational costs (per temporal step) for mod-
ified Examples 4.2 and 4.3.

M
Number of Kflops CPU time (ms)

P A P A

20 23.5 68.3 12.9 25.4

40 96.6 284.5 58.3 128.0

80 391.5 1 147.8 362.1 735.1

larger values of λ (see Table 4.1) than those in Table 4.5 if it was not for the resolution

requirement that k be sufficiently small at the extinction time T∗. The time evolution (in

the log-log scale) of the maximum height H of the computed solution u, see Figure 4.5,



AN EFFICIENT APPROACH FOR SOLVING A CLASS . . . 895

0

0.2

0.4
0.6

0.8
1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Time t

M
ax

im
u

m
h

ei
g
h

t
H

(a)

10−4

10−3

10−2

10−1

100

10−3 10−2 10−1 100

log t

lo
g

H

(b)

Figure 4.5. Time evolution of the maximum height, H, of the numerical solu-
tion, u, with the spatial step size h= 0.04 and temporal step size k= 0.0001.
Plot (b) is the log-log plot of (a).

Table 4.4. The extinction time T∗ for fixed h= 0.04.

k 0.01 0.001 0.0001 0.00001

λ 6.25 0.625 0.0625 0.00625

T∗ 0.26 0.263 0.2634 0.26343

Table 4.5. T∗ for fixed k= 1e-5.

h 0.08 0.04

λ 0.0015625 0.00625

T∗ 0.26360 0.26343

shows an abrupt downward turn at some point To in the vicinity of the extinction time

T∗. The modified algorithm employs a much larger time step, ko for t ≤ To, and a small

k, corresponding to the required resolution, afterwards.

In the experiments reported below, see Table 4.6, we have chosen an ad hoc value

ko = 100k, and the program was adaptively changing the temporal step size at a point

when the slope, p, of the maximum height of u becomes p ≤ po. Again, we have, ad

hoc, chosen po =−20. The reported λ in Table 4.6 is that of λo = ko/h2, that is, that for

t ≤ To.



896 D. KIM AND W. PROSKUROWSKI

1

0.5

0
1

0

−1

y

−1 −0.5
x
0 0.5 1

t = 0, H = 1

u

(a)

1

0.5

0
1

0

−1

y

−1 −0.5
x
0 0.5 1

t = 0, H = 0.18805

u

(b)

1

0.5

0
1

0

−1

y

−1 −0.5
x
0 0.5 1

t = 0.2, H = 0.025547

u

(c)

1

0.5

0
1

0

−1

y

−1 −0.5
x
0 0.5 1

t = 0.25, H = 0.0011355

u

(d)

Figure 4.6. Finite-extinction phenomenon of the numerical solution for
Example 4.3 with the spatial step size h = 0.04 and temporal step size
k = 0.0001. Here, H is the maximum height of the numerical solution at the
time t.

Table 4.6. Modified algorithm: T∗ for fixed k= 1e-5 after To.

M 30 60 120 240

h 0.08 0.04 0.02 0.01

λo 0.15625 0.625 2.5 10

T∗ 0.26360 0.26343 0.26337 0.26336

For a fixed spatial step size, h, the total computational cost is proportional to the

number of temporal steps, T∗/k for the original algorithm and To/ko+(T∗−To)/k for

the modified one. For example, for h = 0.04, the computed value of To turned out to



AN EFFICIENT APPROACH FOR SOLVING A CLASS . . . 897

be To = 0.241. In this case, the reduction of the number of temporal steps was from

26 343 to 2 484, or more than tenfold. We have not made an attempt to optimize the

speedup.

Although we do not know the exact value of the extinction time, we can obtain a very

rough estimate of the power, p, of the asymptotic error model using the Richardson

extrapolation method on the values in Table 4.6. We obtain 2p = (0.26360−0.26343)/
(0.26343−0.26337) = 17/6. We can thus conclude that the accuracy of this computa-

tion is of about �(h1.5), which is consistent with the experiments in Section 4.1.

5. Concluding remarks. For a class of nonlinear parabolic PDEs in 2D rectangular

domains, we have constructed an operator splitting algorithm of optimal efficiency. We

have verified experimentally for the porous-medium equation that the computational

cost of our scheme is O(1) flops per unknown per temporal step while the accuracy

remains the same as for two Newton’s iterations.

In the presence of an additional zero-order term (strong absorption term), the as-

ymptotic efficiency remains unchanged, O(1), with the leading constant only twice

larger. We have modified the algorithm to adaptively change the temporal step size.

This allows computing the extinction times extremely accurately and with significant

computational savings.

Appendix

Linear stability analysis. Strictly speaking, the linear Fourier analysis applied to

nonlinear equations to show the stability of the scheme cannot be rigorously justified.

Nevertheless, it has been found to be effective in practice. For an example of such

analysis applied to Korteweg-de Vries equation, see [5].

We assume that the solution function u is bounded in the given spatio-temporal

region and so let

v =max
∣∣Um−1

∣∣. (A.1)

Substituting it in (3.3), the corresponding linear equation to which we apply the von

Neumann analysis becomes

(
I−mk

2
v
(
D+xD−x+D+yD−y

))
ωn+1 = kv

(
D+xD−x+D+yD−y

)
Un, (A.2)

that is,

wp,q,n+1−mλ
2
v
(
wp−1,q,n+1+wp+1,q,n+1+wp,q−1,n+1+wp,q+1,n+1−4wp,q,n+1

)
= λv(up−1,q,n+1+up+1,q,n+1+up,q−1,n+1+up,q+1,n+1−4up,q,n+1

)
.

(A.3)

Let

up,q,n = ξneiβpeiγq, (A.4)

where β= κxh, γ = κyh, and β,γ ∈ [−π,π].



898 D. KIM AND W. PROSKUROWSKI

Substituting (A.4) into (A.3) and then dividing by ξneiβpeiγq, we obtain

(ξ−1)−mλ
2
v
(
e−iβ+eiβ+e−iγ+eiγ−4

)
(ξ−1)

= λv(e−iβ+eiβ+e−iγ+eiγ−4
)
,

(A.5)

which can be written as

(
1−mλ

2
v
(
2cosβ+2cosγ−4

))
(ξ−1)= λv(2cosβ+2cosγ−4). (A.6)

Hence,

ξ−1= −4λv
(
sin2(β/2)+sin2(γ/2)

)
1+2mλv

(
sin2(β/2)+sin2(γ/2)

) . (A.7)

Therefore, the amplification factor ξ is

ξ = 1+2(m−2)λv
(
sin2(β/2)+sin2(γ/2)

)
1+2mλv

(
sin2(β/2)+sin2(γ/2)

) . (A.8)

Since m ≥ 2, it is clear that 0 < ξ ≤ 1 for all positive λ and all β, γ. Thus the Crank-

Nicolson method for the porous-medium equations is unconditionally linearly stable.

References

[1] D. G. Aronson, The porous medium equation, Nonlinear Diffusion Problems (A. Fasano and
M. Primicerio, eds.), Lecture Notes in Mathematics, vol. 1224, Springer, Berlin, 1986.

[2] C. Bandle, T. Nanbu, and I. Stakgold, Porous medium equation with absorption, SIAM J.
Math. Anal. 29 (1998), no. 5, 1268–1278.

[3] P. Bénilan, M. Chipot, L. C. Evans, and M. Pierre (eds.), Recent Advances in Nonlinear Ellip-
tic and Parabolic Problems, Pitman Research Notes in Mathematics Series, vol. 208,
Longman Scientific & Technical, Harlow, 1989.

[4] S. I. Betelú, D. G. Aronson, and S. B. Angenent, Renormalization study of two-dimensional
convergent solutions of the porous medium equation, Phys. D 138 (2000), no. 3-4,
344–359.

[5] B.-F. Feng and T. Mitsui, A finite difference method for the Korteweg-de Vries and the
Kadomtsev-Petviashvili equations, J. Comput. Appl. Math. 90 (1998), no. 1, 95–116.

[6] W. Jäger and J. Kačur, Solution of porous medium type systems by linear approximation
schemes, Numer. Math. 60 (1991), no. 3, 407–427.

[7] K. Mikula, Numerical solution of nonlinear diffusion with finite extinction phenomenon, Acta
Math. Univ. Comenian. (N.S.) 64 (1995), no. 2, 173–184.

[8] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems, Inter-
science Tracts in Pure and Applied Mathematics, no. 4, Interscience Publishers, New
York, 1967.

[9] G. D. Smith, Numerical Solution of Partial Differential Equations. Finite Difference Methods,
3rd ed., Oxford Applied Mathematics and Computing Science Series, The Clarendon
Press, Oxford University Press, New York, 1985.



AN EFFICIENT APPROACH FOR SOLVING A CLASS . . . 899

[10] B. P. Sommeijer and P. J. van der Houwen, Algorithm 621. Software with low storage require-
ments for two-dimensional nonlinear, parabolic differential equations, ACM Trans.
Math. Software 10 (1984), no. 4, 378–396.

Dongjin Kim: Department of Mathematics, University of Southern California, Los Angeles, CA
90089-1113, USA

Current address: Department of Mathematics, University of Wyoming, Laramie, WY 82071, USA
E-mail address: dongkim@uwyo.edu

Wlodek Proskurowski: Department of Mathematics, University of Southern California, Los An-
geles, CA 90089-1113, USA

E-mail address: proskuro@math.usc.edu

mailto:dongkim@uwyo.edu
mailto:proskuro@math.usc.edu


Journal of Applied Mathematics and Decision Sciences

Special Issue on

Intelligent Computational Methods for
Financial Engineering

Call for Papers

As a multidisciplinary field, financial engineering is becom-
ing increasingly important in today’s economic and financial
world, especially in areas such as portfolio management, as-
set valuation and prediction, fraud detection, and credit risk
management. For example, in a credit risk context, the re-
cently approved Basel II guidelines advise financial institu-
tions to build comprehensible credit risk models in order
to optimize their capital allocation policy. Computational
methods are being intensively studied and applied to im-
prove the quality of the financial decisions that need to be
made. Until now, computational methods and models are
central to the analysis of economic and financial decisions.

However, more and more researchers have found that the
financial environment is not ruled by mathematical distribu-
tions or statistical models. In such situations, some attempts
have also been made to develop financial engineering mod-
els using intelligent computing approaches. For example, an
artificial neural network (ANN) is a nonparametric estima-
tion technique which does not make any distributional as-
sumptions regarding the underlying asset. Instead, ANN ap-
proach develops a model using sets of unknown parameters
and lets the optimization routine seek the best fitting pa-
rameters to obtain the desired results. The main aim of this
special issue is not to merely illustrate the superior perfor-
mance of a new intelligent computational method, but also
to demonstrate how it can be used effectively in a financial
engineering environment to improve and facilitate financial
decision making. In this sense, the submissions should es-
pecially address how the results of estimated computational
models (e.g., ANN, support vector machines, evolutionary
algorithm, and fuzzy models) can be used to develop intelli-
gent, easy-to-use, and/or comprehensible computational sys-
tems (e.g., decision support systems, agent-based system, and
web-based systems)

This special issue will include (but not be limited to) the
following topics:

• Computational methods: artificial intelligence, neu-
ral networks, evolutionary algorithms, fuzzy inference,
hybrid learning, ensemble learning, cooperative learn-
ing, multiagent learning

• Application fields: asset valuation and prediction, as-
set allocation and portfolio selection, bankruptcy pre-
diction, fraud detection, credit risk management

• Implementation aspects: decision support systems,
expert systems, information systems, intelligent
agents, web service, monitoring, deployment, imple-
mentation

Authors should follow the Journal of Applied Mathemat-
ics and Decision Sciences manuscript format described at
the journal site http://www.hindawi.com/journals/jamds/.
Prospective authors should submit an electronic copy of their
complete manuscript through the journal Manuscript Track-
ing System at http://mts.hindawi.com/, according to the fol-
lowing timetable:

Manuscript Due December 1, 2008

First Round of Reviews March 1, 2009

Publication Date June 1, 2009

Guest Editors

Lean Yu, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, China;
Department of Management Sciences, City University of
Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;
yulean@amss.ac.cn

Shouyang Wang, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, Beijing 100190,
China; sywang@amss.ac.cn

K. K. Lai, Department of Management Sciences, City
University of Hong Kong, Tat Chee Avenue, Kowloon,
Hong Kong; mskklai@cityu.edu.hk

Hindawi Publishing Corporation
http://www.hindawi.com

http://www.hindawi.com/journals/jamds/
http://mts.hindawi.com/

	1Call for Papers
	Guest Editors

