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We show that the set of all finitary consequence operators defined on any nonempty lan-
guage is a join-complete lattice. This result is applied to various collections of physical the-
ories to obtain an unrestricted standard supremum unification. An unrestricted hyperfinite
ultralogic unification for sets of physical theories is also obtained.
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1. Introduction. A restricted hyperfinite ultralogic unification is constructed in [5].

The restrictions placed upon this construction were necessary in order to relate the con-

structed ultralogic directly to the types of ultralogics used to model probability models

[6]. In particular, the standard collections of consequence operators are restricted to a

very special set of operators HX , where X is itself restricted to the set of all significant

members of a language Λ. In this paper, all such restrictions are removed. For read-

ers convincement, some of the introductory remarks that appear in [5] are repeated.

Over seventy years ago, Tarski [8, pages 60–109] introduced consequence operators as

models for various aspects of human thought. There are two such mathematical the-

ories investigated, the general and the finitary consequence operators [2]. Let L be a

nonempty language, � the power set operator, and � the finite power set operator.

There are three cardinality-independent axioms.

Definition 1.1. A mapping C : �(L)→�(L) is a general consequence operator (or

closure operator) if for each X,Y ∈�(L),
(1) X ⊂ C(X)= C(C(X))⊂ L;

(2) if X ⊂ Y , then C(X)⊂ C(Y).
A consequence operator C defined on L is said to be finitary (finite) if it satisfies

(3) C(X)=⋃{C(A) |A∈�(X)}.
Remark 1.2. The above axioms (1), (2), and (3) are not independent. Indeed, (1) and

(3) imply (2). Clearly, the set of all finitary consequence operators defined on a specific

language is a subset of the set of all general operators. The phrase “defined on L” means

formally defined on �(L).

All known scientific logic systems use finitely many rules of inference and finitely

many steps in the construction of a deduction from these rules. Hence, as shown in

[5], the consequence operator that models such theory-generating thought processes

is a finitary consequence operator. Although many of the results in this paper hold for
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the general consequence operator, we are only interested in collections of finitary con-

sequence operators. Dziobiak [1, page 180] states Theorem 2.10 below. However, the

statement is made without a formal proof and is relative to a special propositional lan-

guage. Theorem 2.10 is obtained by using only basic set-theoretic notions and Tarski’s

basic results for any language. Further, the proof reveals some interesting facts not pre-

viously known. Unless noted, all utilized Tarski results [8, pages 60–91] are cardinality

independent.

2. The lattice of finitary operators

Definition 2.1. In all that follows, any set of consequence operators will be non-

empty and each is defined on a nonempty language. Define the relation ≤ on the set �

of all general consequence operators defined on L by stipulating that for any C1,C2 ∈�,

C1 ≤ C2 if for every X ∈�(L), C1(X)⊂ C2(X).
Obviously, the relation ≤ is a partial order contained in �×�. Our standard result

will show that for the entire set of finitary consequence operators �f ⊂� defined on L,

the structure 〈�f ,≤〉 is a lattice.

Definition 2.2. Define I : �(L) → �(L) and U : �(L) → �(L) as follows: for each

X ⊂ L, let I(X)=X and let U(X)= L.

Notice that I is the lower unit (the least element) and U the upper unit (the greatest

element) for 〈�f ,≤〉 and 〈�,≤〉.

Definition 2.3. Let C ∈�. A set X ⊂ L is a C-system or simply a system if C(X)⊂X
and, hence, if C(X)=X. For each C ∈�, let �(C)= {X | (X ⊂ L)∧(C(X)=X)}.

Since C(L)= L for each C ∈�, then each �(C) �= ∅.

Lemma 2.4. For each C1,C2 ∈�, C1 ≤ C2 if and only if �(C2)⊂�(C1).

Proof. Let any C1,C2 ∈ � and C1 ≤ C2. Consider any Y ∈ �(C2). Then C1(Y) ⊂
C2(Y)= Y . Thus, C1 ∈�(C1) implies that �(C2)⊂�(C1).

Conversely, suppose that �(C2)⊂�(C1). LetX ⊂ L. Then, since, by axiom (1),C2(X)∈
�(C2), it follows, from the requirement that C2(X) ∈ �(C1), that C1(C2(X)) = C2(X).
But X ⊂ C2(X) implies that C1(X)⊂ C1(C2(X))= C2(X), from axiom (2). Hence, C1 ≤ C2

and the proof is complete.

Definition 2.5. For each C1,C2 ∈�, define the following binary relations in �(L)×
�(L). For each X ⊂ L, let (C1 ∧C2)(X) = C1(X)∩C2(X) and (C1 ∨w C2) =

⋂{Y ⊂ L |
(X ⊂ Y = C1(Y) = C2(Y))}. For finitely many members of �, the operators ∧, ∨w are

obviously commutative and associative. These two relations are extended to arbitrary

�⊂ � by defining (
∧

�)(X)=∧�(X)=⋂{C(X) | C ∈�} and (
∨
w �)(X)=∨w �(X)=⋂{Y ⊂ L | X ⊂ Y = C(Y) for all C ∈�} [1, page 178]. Notice that
∨
w �(X) =⋂{Y ⊂ L |

(X ⊂ Y)∧(Y ∈⋂{�(C) | C ∈�})}.
Lemma 2.6. Let � ⊂ � (resp., �f ) and �′ = {X | (X ⊂ L)∧ (X = ∨w �(X))}. Then

�′ =⋂{�(C) | C ∈�}.
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Proof. By Tarski’s [8, Theorem 11(b), page 71], which holds for finitary and general

consequence operators, for each X ⊂ L and C ∈ �, X ⊂ ∨w �(X) = Y ′ ∈ �(C). Hence,

if Y ′ ∈ �′, then
∨
w �(Y ′) = Y ′ ∈ �(C) for each C ∈ �. Thus �′ ⊂ ⋂{�(C) | C ∈ �}.

Conversely, let Y ∈ ⋂{�(C) | (C ∈ �)}. From the definition of
∨
w,
∨
w �(Y) = Y and,

hence, Y ∈�′ and this completes the proof.

Lemma 2.7. Let the nonempty � ⊂ L have the property that for each X ⊂ L, there

exists some Y ∈ � such that X ⊂ Y . Then the operator C� defined for each X ⊂ L by

C�(X)=
⋂{Y |X ⊂ Y ∈�} is a general consequence operator defined on L.

Proof. Assuming the hypothesis of the Lemma, it is obvious that C� : �(L)→�(L)
and X ⊂ C�(X). Clearly, if Z ⊂ X ⊂ L, then C�(Z)⊂ C�(X); and, for each Y ∈�, X ⊂ Y
if and only if C�(X) ⊂ Y . Hence, C�(C�(X)) =

⋂{Y | C�(X) ⊂ Y ∈ �} = C�(X). This

completes the proof.

Remark 2.8. The hypothesis of Lemma 2.7 can be weakened. However, our applica-

tion does not require such a weakening.

Theorem 2.9. With respect to the partial order relation ≤ defined on L, the structure

〈�,∨w,∧, I,U〉 is a complete lattice with upper and lower units.

Proof. Let � ⊂ � and � = ⋂{�(C) | C ∈ �}. Since L ∈ �, then by Lemma 2.7,∨
w � = C� ∈ �. Moreover, by Lemmas 2.4 and 2.6, C� is the least upper bound for �

with respect to ≤.

Next, let �=⋃{�(C) | C ∈�}. For X ⊂ L, X ⊂ C(X) for each C ∈�. For each C ∈�,

there does not exist a YC such that YC ∈ �(C), X �= YC , YC �= C(X), and X ⊂ YC ⊂ C(X).
Hence, C�(X)=

⋂{Y | X ⊂ Y ∈�} =⋂{C(X) | C ∈�} =∧�(X). Hence,
∧

�∈ � and it

is obvious that
∧

� is the greatest lower bound for � with respect to ≤. This completes

the proof.

Although the proof appears in error, Wójcicki [9] stated Theorem 2.9 for a propo-

sitional language. In what follows, we only investigate the basic lattice structure for

〈�f ,≤〉.
Theorem 2.10. With respect to the partial order relation ≤ defined on �f , the struc-

ture 〈�f ,∨w,∧, I,U〉 is a lattice with upper and lower units.

Proof. It is only necessary to consider two distinct C1,C2 ∈ �f . As mentioned, the

commutative and associative laws hold for ∧ and ∨w , and by definition, each maps

�(L) into �(L). In 〈�,≤〉, using Theorem 2.9, axioms (1) and (2) hold for the greatest

lower bound C1∧C2 and for the least upper bound C1∨w C2. Next, we have

(
C1∧C2

)
(X)=

(⋃{
C1(Y) | Y ∈�(X)

})∩
(⋃{

C2(Y) | Y ∈�(X)
})

=
⋃{

C1(Y)∩C2(Y) | Y ∈�(X)
}

=
⋃{(

C1∧C2
)
(Y) | Y ∈�(X)

}
(2.1)

and axiom (3) holds and, hence, C1∧C2 ∈�f . Therefore, 〈�f ,∧, I,U〉 is, at least, a meet

semilattice.
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Next, we show by direct means that for each C1,C2 ∈ �f , C1 ∨w C2 ∈ �f . Let (the

cardinality of L) |L| = ∆. For each Xi ⊂ L, i ∈ ∆, let �′(Xi) = {Y | (Xi ⊂ Y ∈ �(C1)∩
�(C2))∧(Y ⊂ L)}. Let

⋂{Y | Y ∈�′(Xi)} = Yi. By Tarski’s [8, Theorem 11, page 71],Xi ⊂
Yi ∈�(C1)∩�(C2), and by definition, Yi = (C1∨wC2)(Xi). Hence, Yi ∈�′(Xi) and is the

least (⊂) element. For Xi ⊂ L, let �′′(Xi)= {Y | (C1(Xi)⊂ Y ∈�(C1)∩�(C2))∧(Y ⊂ L)}.
Since Xi ⊂ Ck(Xi), k = 1,2, then �′′ ⊂ �′. Since L ∈ �′(Xi), �′(Xi) �= ∅. Indeed, let

Y ∈ �′(Xi). Then Xi ⊂ Ck(Y) = Y , k = 1,2. Additionally, Xi ⊂ C1(Y) = Y implies that

Xi ⊂ C1(Xi) = C1(C1(Xi)) ⊂ C1(C1(Y)) = C1(Y) = Y . Hence, it follows that for any

Xi ⊂ L, �′′(Xi) = �′(Xi). For fixed Xi ⊂ L, let Xj ∈ �(Xi). Let Yj be defined as above

and, hence, Yj is the least element in �′(Xj)=�′′(Xj). Consider �= {Yj |Xj ∈�(Xi)},
and, for j = 1, . . . ,n, consider Yj ∈� and the corresponding Xj ⊂ L. Let Xk =

⋃{Xj | j =
1, . . . ,n} ∈�(Xi). Then Yk =

⋂{Y | Y ∈�′(Xk)} ∈�. If Y ∈�′(Xk), then Y ∈�′(Xj), j =
1, . . . ,n. Hence, Yj ⊂ Yk, j = 1, . . . ,n, implies that Y1∪···∪Yn ⊂ Yk. Tarski’s theorem

[8, Theorem 12, page 71] implies that Y∗ =⋃{Yj | Xj ∈ �(Xi)} ∈ �(C1)∩�(C2). Also,

by definition, for all Xj ⊂ L, Yj ∈ �′′(Xj) implies that C1(Xj) ⊂ Yj . The fact that C1 is

finitary yields C1(Xi) ⊂ Y∗. Hence, Y∗ ∈ �′′(Xi). Since C1(Xj) ⊂ C1(Xi), Xj ∈�(Xi),
then �′′(Xi)⊂�′′(Xj). Thus Yj ⊂ Yi, Xj ∈�(Xi). Therefore, Y∗ ⊂ Yi. But, Y∗ ∈�′′(Xi)
implies that Y∗ = Yi. Restating this last result,

⋃{(C1∨wC2)(Xj) |Xj ∈�(Xi)} = (C1∨w
C2)(Xi) and, therefore, axiom (3) holds for the binary relation ∨w , and 〈�f ,∨w,∧, I,U〉
is a lattice. This completes the proof.

Corollary 2.11. Let �⊂�, �f ⊂�, and �∩�f �= ∅. Then
∨
w �∈�f . The structure

〈�f ,∨w,∧, I,U〉 is a join-complete lattice.

Proof. Simply modify the second part of the proof of Theorem 2.10 by substituting⋂{�(C) | C ∈�} for �(C1)∩�(C2) and letting C1 ∈�∩�f . This completes the proof.

Remark 2.12. It is known, since I is a lower bound for any �⊂�f , that 〈�f ,∨w,I,U〉
is actually a complete lattice with a meet operator generated by the ∨w operator. It

appears that the meet operator ∧ for infinite � need not correspond, in general, to

the ∨w -defined meet operator. Wójcicki [10] has constructed, for a set of consequence

operators �′, an infinite �⊂ �′ of finitary consequence operators with some very spe-

cial properties. However, the general consequence operator defined for each X ⊂ L by⋂{C(X) | C ∈�} is not a finitary operator. Thus, in general, 〈�f ,∨w,∧, I,U〉 need not

be a meet complete lattice. This behavior is not unusual. For example, let infinite X
have an infinite topology �. Then 〈�,∪,∩,∅,X〉 is a join-complete sublattice of the

lattice 〈�(X),∪,∩,∅,X〉. The structure 〈�,∪,∅,X〉 is actually complete, but it is not a

meet-complete sublattice of complete 〈�(X),∪,∩,∅,X〉.

3. System-consistent logic systems. Let Σ be a nonempty set of science-community

logic systems and let | · | denote cardinality. In practice, |Σ| ≤ ℵ0. Each logic system

Si ∈ Σ, i∈ |Σ|, is defined on a countable language Li and each Si determines a specific

finitary consequence operator Ci defined on a language Li. At least, by application of

the insertion of hypotheses rule [5] for nonempty cardinal ∆ ≤ |Σ|, each member of

{Ci | i∈∆} is defined on the language
⋃{Li | i∈∆}.
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In all that follows, a specific set of logic-system-generated consequence operators {Ci |
i ∈ ∆} defined on a specific set of languages {Li | i ∈ ∆} will always be considered

as trivially extended and, hence, defined by the insertion of hypotheses rule on the set⋃{Li | i ∈ ∆}. In general, such a specific set of consequence operators is contained in

the lattice of all finitary operators defined on
⋃{Li | i∈∆}.

A logic system S′ and its corresponding consequence operator is a trivial extension of

a logic system S defined on Lwhere, for a language L′ ⊃ L, S′ is the same as S except that

the insertion rule now applies to L′. The system S′ and its corresponding consequence

operator C′ is a nontrivial extension if it is extended to L′ by insertion and some other

n-ary relations that contain members of L′ −L are adjoined to those in S, or various

originaln-ary relations in S are extended by addingn tuples that contain members from

L′ −L. For both the trivial and nontrivial cases and with respect to the language L′, it

follows that C ≤ C′. In the trivial case, if X ⊂ L′, then C(X)= C′(X)= C(X∩L)∪(X−L).
In practice, a practical logic system is a logic system defined for the subsets of a finite

language Lf . When a specific deduction is made from a set of hypotheses X, the set X is

finite. If the logic system also includes 1-ary sets, such as the logical or physical axioms,

the actual set of axioms that might be used for a deduction is also finite. Indeed, the

actual set of all deductions obtained at any moment in human history and used by a

science community form a finite set of statements that are contained in a finite language

Lf . (Finite languages, the associated consequence operators, and the like will usually

be denoted by a superscript f .) The finitely many n-ary relations that model the rules

of inference for a practical logic system are finite sets.

Practical logic systems generate practical consequence operators, and practical con-

sequence operators generate effectively practical logic systems in many ways. For ex-

ample, the method found in [7], when applied to a Cf , will effectively generate a finite

set of rules of inference. The practical logic system obtained from such rules generates

the original practical consequence operator. Hence, a consequence operator Cf defined

on Lf is considered a practical consequence operator although it may not correspond to

a previously defined scientific practical logic system; nevertheless, it does correspond

to an equivalent practical logic system.

Our definition of a physical theory is a refinement of the usual definition. Given a

set of physical hypotheses, general scientific statements are deduced. If accepted by

a science community, these statements become natural laws. These natural laws then

become part of a science-community logic system.

In [5], a consequence operator generated by such a logic system is denoted by SN .

From collections of such logic systems, the SN they generate are then applied to specific

natural-system descriptions X. For scientific practical logic systems, the language and

rules of inference need not be completely determinate in that, in practice, the language

and rules of inference are extended.

The complete Tarski definition for a consequence operator includes finite languages

[8, page 63] and all Tarski results used in this paper apply to such finite languages.

Theorem 2.10 holds for any language, finite or not. In the lattice of finitary consequence

operators defined on Lf ,∨w determines the least upper bound for a finite set of such op-

erators. However, it is certainly possible that this least upper bound is the upper unit U .
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Definition 3.1. Let C be a general consequence operator defined in L. Let X ⊂ L.

(i) The set X is C-consistent if C(X) �= L.

(ii) The set X is C-complete if for each x ∈ L, either x ∈X or C(X∪{x})= L.

(iii) A set X ⊂ L is maximally C-consistent if X is C-consistent and whenever a set

Y �=X and X ⊂ Y ⊂ L, then C(Y)= L.

Notice that if X ⊂ L is C-consistent, then C(X) is a C-consistent extension of X which

is also a C-system. Further, C-consistent W is C-consistent with respect to any trivial

extension of C to a language L′ ⊃ L.

Theorem 3.2. Let the general consequence operator C be defined on L.

(i) The set X ⊂ L is C-complete and C-consistent if and only if X is maximally C-

consistent.

(ii) If X is maximally C-consistent, then X is a C-system.

Proof. (i) Let X be maximally C-consistent. Then X is C-consistent and, hence,

C(X) �= L. Hence, let x ∈ L and x ∉ X. Then X ⊂ X∪{x} implies that X∪{x} is not

C-consistent. Thus C(X∪{x}) = L. Hence, X is C-complete. Conversely, assume that

X is C-consistent and C-complete. Then X �= L. Let X ⊂ Y ⊂ L and X �= Y . Hence, there

is some y ∈ Y −X and from C-completeness, L = C(X∪{y}) ⊂ C(Y). Thus, Y is not

C-consistent. Hence, X is maximally C-consistent and the result follows.

(ii) From C-consistency, C(X) �= L. If x ∈ C(X)−X, then maximal C-consistency im-

plies that L = C(X ∪ {x}) ⊂ C(C(X)) = C(X). This contradiction yields that X is a

C-system.

The following easily obtained result holds for many types of languages [8, page 98],

but these “Lindenbaum” constructions, for infinite languages, are not considered effec-

tive. For finite languages, such constructions are obviously effective.

Theorem 3.3. Let the practical consequence operator Cf be defined on arbitrary Lf .

If X ⊂ Lf is Cf -consistent, then there exists an effectively constructed Y ⊂ Lf such that

Cf (X)⊂ Y and Y is Cf -consistent and Cf -complete.

Proof. This is rather trivial for a practical consequence operator, and all of the

construction processes are effective. Consider an enumeration for Lf such that Lf =
{x1,x2, . . . ,xk}. LetX ⊂ Lf beCf -consistent and defineX =X0. We now simply construct

in a completely effective manner a partial sequence of subsets of Lf . Simply consider

X0∪{x1}. Since X0 is Cf -consistent, we have two possibilities. Effectively determine

whether Cf (X0∪{x1})= Lf . If so, let X1 =X0. On the other hand, if Cf (X0∪{x1}) �= Lf ,

then define X1 = X0∪{x1}. Repeat this construction finitely many times. (Usually, if

the language is denumerable, this is expressed in an induction format.) Let Y = Xk.
By definition, Y is Cf -consistent. Suppose that x ∈ Lf . Then there is some Xi such

that either (a) x ∈ Xi or (b) Cf (Xi ∪{x}) = Lf . For (a), since Xi ⊂ Y , x ∈ Y . For (b),

Xi ⊂ Y implies that L= Cf (Xi∪{x})⊂ Cf (Y ∪{x})= Lf . Hence, Y is Cf -complete and

Xi ⊂ Y , for each i= 1, . . . ,k. By Theorem 3.2, Y is a Cf -system. Thus X0 ⊂ Y implies that

Cf (X0)⊂ Cf (Y)= Y , and this completes the proof.

Corollary 3.4. Let a practical consequence operator Cf be defined on Lf and let

X ⊂ Lf be Cf -consistent. Then there exists an effectively constructed Y ⊂ Lf that is an
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extension of Cf (X) and, hence, also an extension of X, where Y is a maximally Cf -

consistent Cf -system.

Let the set Σp ⊂ Σ consist of all of the science-community practical logic systems

defined on languages Lfi . Each member of Σp corresponds to i∈ |Σp| and to a practical

consequence operator Cfi defined on Lfi . In general, the members of a set of science-

community logic systems are related by a consistency notion relative to an extended

language.

Definition 3.5. A set of consequence operators � defined on L is system consistent

if there exists Y ⊂ L, Y �= L, and Y is a C-system for each C ∈�.

Example 3.6. Let � be a set of axiomless consequence operators where each C ∈�

is defined on L. In [5], the set of science-community consequence operators is redefined

by relativization to produce a set of axiomless consequence operators, SVN , each defined

on the same language. Any such collection � is system consistent since for each C ∈
�, C(∅)=∅ �= L.

Example 3.7. One of the major goals of certain science communities is to find what

is called a “grand unification theory.” This is actually a theory that will unify only the

four fundamental interactions (forces). It is then claimed that this will somehow lead

to a unification of all physical theories. Undoubtedly, if this type of grand unification is

achieved, all other physical science theories will require some type of restructuring. The

simplest way this can be done is to use informally the logic-system expansion technique.

This will lead to associated consequence operators defined on “larger” language sets.

Let a practical logic system S0 be defined on Lf0 , L=⋃{Lfi | i∈N}, with N the set of

natural numbers. Let L0 ⊂ L1, L0 �= L1. (Note that the remaining members of {Lfi | i∈N}
need not be distinct.) Expand S0 to S1 �= S0 defined on L by adjoining to the logic system

S0 finitely many practical logic-system n-ary relations or finitely many additional n
tuples to the original S0, but where all of these additions only contain members from

nonempty L−Lf0 . Although S1 should only be considered as nontrivially defined on Lf1 ,

if L �= L1, then the S1 so obtained corresponds to C1, a consequence operator trivially

extended to L. This process can be repeated in order to produce, at least, finitely many

distinct logic systems Si, i > 1, that extend S0 and a set �1 of distinct corresponding

consequence operators Ci.
Since these are science-community logic systems, there is an X0 ⊂ Lf0 that is Cf0 -

consistent. By Corollary 3.4, there is an effectively defined set Y ⊂ Lf0 such that X0 ⊂ Y
and Y is maximally Cf0 -consistent with respect to the language Lf0 . Hence, Cf0 (Y) =
Y ⊂ Lf0 and Cf0 (Y) �= Lf0 . Further, Cf0 is considered trivially extended to L. Let Y ′ =
Y∪(L−Lf0 ). It follows that for each Ci, L−Lf0 ⊂ Ci(L−Lf0 )⊂ L−Lf0 �= L. By construction,

for each Ci, Ci(Y) = Y ; and for each X ⊂ L, Ci(X) = C0(X∩Lf0 )∪Ci(X∩ (L−Lf0 )). So,

let X = Y ′. Then for each Ci, Ci(Y ′) = C0(Y)∪(L−Lf0 ) = Y ∪(L−Lf0 ) = Y ′ �= L. Hence,

the set of all Ci is system consistent.

Example 3.8. Consider a denumerable language L and [2, Example 3.2]. (Note that

there is a typographical error in this example. The expression x ∉	 should read x ∉U .)
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Let 	 be a free ultrafilter on L and let x ∈ L. Then there exists some U ∈	 such that x ∉
U since

⋂
	=∅ and∅ ∉	. Let B = {x} and �= {P(U,B) |U ∈	}, where P(U,B) is the

finitary consequence operator defined by P(U,B)(X)=U∪X if x ∈X and P(U,B)(X)=
X ifx ∉X. (Note that this is the same operator P that appears in the proof of [5, Theorem

6.4].) There exists, at least, a sequence S = {Ui | i ∈ N} such that U0 = U and Ui+1 ⊂
Ui, Ui+1 �=Ui. It follows immediately from the definition that P(Ui+1,B)≤ P(Ui,B) and

P(Ui+1,B)(B)=Ui+1∪B ⊂Ui∪B for each i∈N. Hence, in general, P(Ui+1,B) < P(Ui,B)
for each i ∈ N. Let Y = L−{x}. Then P(Ui,B)(Y) = Ui∪(L−{x}) = L−{x} = Y , i∈N.
Thus, the collection {P(Ui,B) | i∈N} is system consistent.

Theorem 3.9. Consider � ⊂ �f defined on L and the (≤) least upper bound
∨
w �.

Then
∨
w� ∈ �f , and if � is system consistent, then there exists some Y ⊂ L such that

Y = ∨w �(Y) = C(Y) �= L for each C ∈ � and
∨
w� �= U . Further, if X ⊂ L, X �= L, is a

C-system for each C ∈�, then X =∨w �(X)= C(X) �= L for each C ∈�.

Proof. Corollary 2.11 yields the first conclusion. From the definition of system

consistent, there exists some Y ⊂ L such that C(Y) = Y �= L for each C ∈ �. From

Lemma 2.6, for each C ∈ �,
∨
w �(Y) = C(Y) �= L. Hence,

∨
w� �= U . The last part of

this theorem follows from Lemma 2.6 and the fact that X is also a
∨
w �-system. This

completes the proof.

4. An ultralogic unification. Assume for nonempty Σ that |Σ| ≤ ℵ0. Let � denote a

set of (logic-system) corresponding finitary consequence operators, each considered as

defined on the language L. There exists a surjection f :N→ � such that f(i) is one of

the members of �, and for each C ∈�, there is some j ∈N such that f(j)= C . For each

i∈N, let f(i)= Ci denote the consequence operators in �. As usual, for the following

theorem, we use the boldface type convention [4, page 21], and for the case �, � will

denote boldface type.

Theorem 4.1. Let L and {Ci | i ∈ N} = � be defined as above. Suppose that every

(nonempty) finite subset of � is system consistent.

(i) Then there exists a hyperfinite ultralogic 	∈ ∗�f defined on the set of all internal

subsets of ∗L such that 	 �= ∗U, and an internal W ⊂ ∗L such that, for each Ci ∈ �,
∗Ci(W)=	(W)=W �= ∗L, where 	(W)⊂ ∗L.

(ii) For each internal Y ⊂ ∗L,
⋃{∗Ci(Y) | i∈N} ⊂	(Y)⊂ ∗L.

(iii) If finite X ⊂ L, then
⋃{∗Ci(X) | i ∈ N} ⊂ 	(X), and if each member of � is a

practical consequence operator, then
⋃{Ci(X) | i∈N} ⊂	(X).

(iv) Let X ⊂ L, X �= L, be a C-system for each C ∈�. Then ∗X= ∗Ci(∗X)=	(∗X) �= ∗L

for each i ∈ N. If X is finite, X = ∗Ci(X) = 	(X) for each i ∈ N. If for j ∈ N, Cj is a

practical consequence operator, then X= Cj(X)=	(X)=	(X).

Proof. Let 〈�f ,∨w,∧, I,U〉 be the lattice of all finitary consequence operators de-

fined on L. Consider this lattice, all of our intuitive consequence operators, our L, and all

other defined objects to be embedded into the Grundlagen structure 
 [4]. Hence, they

are embedded, in the usual manner, into the superstructure model � = 〈�,∈,=〉 for

all bounded formal expressions and this is further embedded into the superstructure
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 that contains a nonstandard elementary extension ∗� = 〈∗�,∈,=〉 of the embed-

ded �. Notice that from our identifications, any standard X ⊂ L has the property that
σX= X, and if X is finite, then ∗X = X. Under our basic embedding, let g : N → � be

a surjection in � that corresponds to f . Now consider the surjection ∗g : ∗N → ∗�.

Let constant a ∈ N. Under our special Grundlagen embedding procedures, ∗(g(a)) =
∗g(∗a)= ∗g(a)= ∗Ca. Since ∗g is a surjection, an a∈N corresponds to a member of
σ� and vice versa. Thus, ∗g restricted to members of σN=N yields the entire set σ�.

Let nonempty K ⊂�(L) be the set of all X �= L that if X ∈K, then X is a C-system for

each C ∈ �. By Theorem 3.9, the definitions and the properties of the lattice structure

on �f , for clarity, the unsimplified and redundantly expressed sentences

∀x((x �= ∅)∧(x ∈�(N)
)
�→∃y∃w1

((
y ∈�f

)∧(y �=U)∧(w1 ∈�(L)
)∧

(∀z1∀v1∀v2
((
v1 ∈ x

)∧(v2 ∈K
)∧(v1 ∈N

)∧(z1 ∈ x
)∧(z1 ∈N

)
�→ (g(z1

)(
v2
)=

y
(
v2
)= v2 ⊂ L

)∧(y(v2
) �= L

)))∧(∀v((v ∈ x)∧(v ∈N) �→
g(v)

(
w1
)=y(w1

)=w1 �= L
))∧∀z((z ∈ x)∧(z ∈N) �→ ((g(z)≤y)∧

∀w((w ∈�f
)∧∀z1

((
z1 ∈ x

)∧(z1 ∈N
)∧(g(z1

)≤w)) �→ (y ≤w)))))),
∀x∀y((x ∈�f

)∧(y ∈�f
)
�→ ((y ≤ x)←→

∀w((w ∈�
(
L
))
�→ (y(w)⊂ x(w))))),

(4.1)

hold in �. Hence, they hold under ∗-transfer in ∗� for objects in ∗�. (Note that it

is usually assumed that formal statements such as (4.1) can be made within a formal

first-order language rather than expressing them explicitly.)

The set ∗�f is a collection of hyperfinite consequence operators, each defined on

the internal subsets of ∗L. Let infinite λ ∈ ∗N−N. Then ∗g[[0,λ]] is a hyperfinite

subset of ∗� ⊂ ∗�f . Hence, from ∗-transformed sentences (4.1), there exists some hy-

perfinite 	 ∈ ∗�f defined on the set of all internal Y ⊂ ∗L with the properties that
∗g(i)(Y) ⊂ 	(Y) for each i ∈ [0,λ] and, in particular for i ∈ N. Hence,

⋃{∗Ci(Y) |
i ∈ N} ⊂ 	(Y). Further, there exists an internal W ⊂ ∗L such that, for each i ∈ [0,λ],
∗g(i)(W) =	(W) =W �= ∗L. In particular, ∗g(i)(W) = ∗Ci(W) =	(W) for each i ∈N.

Since 	(W) �= ∗L, then 	 �= ∗U. Let finite X ⊂ L. Then, due to our embedding proce-

dures, ∗(Ci(X)) = ∗Ci(∗X) = ∗Ci(X) ⊂ 	(X) �= ∗L. Hence,
⋃{∗Ci(X) | i ∈ N} ⊂ 	(X).

(Note that in proofs such as this and to avoid confusion, we often, at first, use the nota-

tion ∗(Ci(X)) to indicate the value (or name) of the result of applying∗ to an object in �

which is a set such as Ci(X) that contains additional operator notation. From a technical

viewpoint, ∗(Ci(X))= ∗{Ci(X)} = {∗Ci(X)} and ∗Ci(X) is the “name” for the set under

the mapping ∗. But using this procedure, there is confusion as to whether ∗(Ci(X))
denotes the entire set or denotes the operator ∗Ci applied to X. In these proofs, ∗Ci
always denotes the operator ∗Ci applied to internal subsets of ∗L.) If Ci is a practical

consequence operator, then Ci(X) is a finite set. Hence, ∗Ci(X)= Ci(X). (iv) follows by

∗-transfer and this completes the proof.
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In [5], the set �= {SVNj | j ∈N} is the refined set of all relativized axiomless science-

community consequence operators defined on a language Λ and they are used to unify,

in a restricted manner, physical theory behavior. Moreover, for sequentially presented

{SVNj | j ∈N}, 1≤ |{SVNj | j ∈N}| ≤ ℵ0.

Corollary 4.2. Let Λ denote the language L and �= {SVNj | j ∈N}.
(i) There exists a hyperfinite ultralogic 	∈ ∗�f that is defined on all internal Y ⊂ ∗Λ

such that 	 �= ∗U, and, for each SVNi ∈�, ∗SV
Ni(∅)=	(∅)=∅.

(ii) For each internal Y ⊂ ∗Λ,
⋃{∗SV

Ni(Y) | i∈N} ⊂	(Y)⊂ ∗Λ.

(iii) If finite X ⊂Λ, then
⋃{∗SV

Ni(X) | i∈N} ⊂	(X), and if each member of {SVNi | i∈
N} is a practical consequence operator, then

⋃{SV
Ni(X) | i∈N} ⊂	(X).

(iv) Let X ⊂ Λ, X �= Λ, be a C-system for each C ∈ {SVNi(X) | i ∈ N}. Then ∗X =
∗SV

Ni(∗X)=	(∗X) �= ∗Λ, for each i∈N. If X is finite, then ∗SV
Ni(X)= X=	(X) for each

i∈N. If for i∈N, SVNi is a practical consequence operator, then SV
Ni(X)= X=	(X).

5. Further applications. If the � in the hypotheses of Theorem 4.1 is restricted to

a set of practical consequence operators, each defined on a finite language Lf , then

it follows that the hyperfinite 	 corresponds to a hyperfinite logic system � that is

∗-effectively ∗-generated. If the effective notion is not required, then, in general, the

ultralogic 	 corresponds to a ∗-logic system. Although Theorem 4.1 and Corollary 4.2

are mainly concerned with the original set of consequence operators � and {SVNi(X) |
i∈N}, when |{SVNi(X) | i∈N}| = ℵ0, it is also significant for applications that 	 unifies

each “ultranatural relativized theory” ∗g(j), j ∈ [0,λ]−N. It follows that for each

j ∈ [0,λ]−N, ∗g(j)(∅)=	(∅)=∅, and for internal Y ⊂ ∗Λ, ∗g(j)(Y)⊂	(W). This

also applies to the unrelativized case with the modifications that ∅ is replaced with

W and each relativized consequence operator SVNi is replaced with the physical theory

consequence operator SNi . Also note that SNi and SVNi are usually considered practical

consequence operators.

Depending upon the set � of consequence operators employed, there are usually

many X ⊂ L, X �= L, such that X is a C-system for each C ∈�. For example, we assumed

in [5] that there are two 1-ary relations for the science-community logic systems. One of

these contains the logical axioms and the other contains a set of physical axioms; a set

of natural laws. Let {S′Ni | i∈N} be the set of science-community corresponding conse-

quence operators relativized so as to remove the set of logical theorems. Each member

of a properly stated set of natural laws Nj used to generate the consequence operators

{S′Ni | i ∈ N} should be a C-system for each member of {S′Ni | i ∈ N}. As mentioned,

the physical theories being considered here are not theories that produce new “natural

laws.” The argument that the Einstein-Hilbert equations characterize gravitation fields,

in general, leads to the acceptance by many science communities of these equations

as a “natural law” that is then applied to actual physical objects. Newton’s Second Law

of Motion is a statement about the notion of inertia within our universe. It can now

be derived from basic laboratory observation and has been shown to hold for other

physical models distinct from its standard usage [3]. The logic systems that generate

the members of {S′Ni | i ∈ N} have, as a 1-ary relation, a set of natural laws. Then one

takes a set of specific physical hypotheses X that describes the behavior of a natural
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system and applies the logic system to X. This gives a statement on how these natural

laws affect, if at all, the behavior being described by X. It is this approach that implies

that each properly described Nj �= L is a C-system for each C ∈ {SNi | i∈N}. Applying

Theorem 4.1 to � = {S′Ni | i ∈ N}, where
⋃{Ni | i ∈ N} ⊂ K, leads to a result exactly

like Corollary 4.2, where results (i), (iii), and (iv) applied to members of {Ni | i∈N} are

particularly significant.

At any moment in human history, one can assume, due to the parameters present,

that there is, at least, a denumerable set of science-community logic systems or that

there exists only a finite collection of practical logic systems defined on finite Lf .

The corresponding set �f = {Cfi | i = 1, . . . ,n} ⊂ �
f
f of practical consequence opera-

tors would tend to vary in cardinality at different moments in human history. For the

corresponding finite set of practical consequence operators, by Theorem 2.10, there

is a standard (least upper bound) practical consequence operator 	, and hence,

“the best” practical logic system, that unifies such a finite set. The following result is

the interpretation of Theorem 4.1 for such a finite set of practical consequence

operators.

Theorem 5.1. Let Lf and �f be defined as above. Suppose that �f is system consis-

tent.

(i) Then there exists a practical consequence operator 	1 ∈ �
f
f defined on the set

of all subsets of Lf such that 	1 �= U , and W ⊂ L such that, for each Ci ∈ �f , Ci(W) =
	1(W)=W �= Lf , where 	1(W)⊂ Lf .

(ii) For each X ⊂ Lf , ⋃{Ci(X) | i∈N} ⊂	1(X)⊂ Lf and 	1 is the least upper bound

in 〈�ff ,∨w,∧, I,U〉 for �f .

(iii) Let X ⊂ Lf , X �= Lf , be a C-system for each C ∈�f . Then X = Ci(X)=	1(X) �= Lf
for each i∈N.

Letting finite �f contain practical consequence operators of the type SNi , S
V
Ni , or S′Ni ,

exclusively, then 	1 would have the appropriate additional properties and would gen-

erate a practical logic system. Corollary 2.11 and Theorem 3.9 yield a more general

unification
∨
w �, �⊂�f , as represented by a least upper bound in 〈�f ,∨w,I,U〉, with

the same properties as stated in Theorem 5.1. Thus, depending upon how physical

theories are presented and assuming system consistency, there are nontrivial stan-

dard unifications for such physical theories. Assuming that |�| = ℵ0 and that � is

system consistent, then the Corollary 2.11 unification
∨
w � corresponds to a (nontriv-

ial) nonstandard ultralogic unification ∗∨
w� with all of the same stated properties as

those of the 	. It is obvious how these two ultralogic unifications model a higher in-

telligence relative to general intelligent design theory. However, ∗
∨
w � and 	 have one

significant difference. The ultralogic 	 is, with respect to internal subsets of ∗L, a “least

upper bound” of a hyperfinite collection, whereas ∗
∨
w � need not have this additional

hyperfinite property. Further, system consistency is used only so that one statement in

Theorem 4.1, Corollary 4.2, Theorem 5.1, and this paragraph will hold. This one fact is

that each of these standard unifications of a collection � ⊂ �f is not the same as the

upper unit if and only if � is system consistent. Further, if an X ⊂ Lf (resp., X ⊂ L) is

	1-consistent (resp.,
∨
w �-consistent), X is C-consistent for each C ∈�f (resp., C ∈�).
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Remark 5.2. I mentioned that the nonstandard results obtained in Section 4 are

established by means of the most trivial methods used in Robinson-styled nonstandard

analysis.
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