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We show that the set of all finitary consequence operators defined on any nonempty lan-
guage is a join-complete lattice. This result is applied to various collections of physical the-
ories to obtain an unrestricted standard supremum unification. An unrestricted hyperfinite
ultralogic unification for sets of physical theories is also obtained.
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1. Introduction. A restricted hyperfinite ultralogic unification is constructed in [5].
The restrictions placed upon this construction were necessary in order to relate the con-
structed ultralogic directly to the types of ultralogics used to model probability models
[6]. In particular, the standard collections of consequence operators are restricted to a
very special set of operators Hy, where X is itself restricted to the set of all significant
members of a language A. In this paper, all such restrictions are removed. For read-
ers convincement, some of the introductory remarks that appear in [5] are repeated.
Over seventy years ago, Tarski [8, pages 60-109] introduced consequence operators as
models for various aspects of human thought. There are two such mathematical the-
ories investigated, the general and the finitary consequence operators [2]. Let L be a
nonempty language, ? the power set operator, and % the finite power set operator.
There are three cardinality-independent axioms.

DEFINITION 1.1. A mapping C: % (L) — ?(L) is a general consequence operator (or
closure operator) if for each X,Y € (L),

(1) XcCX)=C(C(X))CL;

(2) if X CY, then C(X) Cc C(Y).
A consequence operator C defined on L is said to be finitary (finite) if it satisfies

(3) C(X)=UlCA) |AeF(X)}.

REMARK 1.2. The above axioms (1), (2), and (3) are not independent. Indeed, (1) and
(3) imply (2). Clearly, the set of all finitary consequence operators defined on a specific
language is a subset of the set of all general operators. The phrase “defined on L” means
formally defined on % (L).

All known scientific logic systems use finitely many rules of inference and finitely
many steps in the construction of a deduction from these rules. Hence, as shown in
[5], the consequence operator that models such theory-generating thought processes
is a finitary consequence operator. Although many of the results in this paper hold for
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the general consequence operator, we are only interested in collections of finitary con-
sequence operators. Dziobiak [1, page 180] states Theorem 2.10 below. However, the
statement is made without a formal proof and is relative to a special propositional lan-
guage. Theorem 2.10 is obtained by using only basic set-theoretic notions and Tarski’s
basic results for any language. Further, the proof reveals some interesting facts not pre-
viously known. Unless noted, all utilized Tarski results [8, pages 60-91] are cardinality
independent.

2. The lattice of finitary operators

DEFINITION 2.1. In all that follows, any set of consequence operators will be non-
empty and each is defined on a nonempty language. Define the relation < on the set 6
of all general consequence operators defined on L by stipulating that for any C;,C» € 6,
C1 <G if for every X € P(L), C1(X) C Ca(X).

Obviously, the relation < is a partial order contained in %6 x €. Our standard result
will show that for the entire set of finitary consequence operators € C 6 defined on L,
the structure (65, <) is a lattice.

DEFINITION 2.2. Define I : (L) — %(L) and U : (L) — P (L) as follows: for each
XcLletI(X)=Xandlet U(X) =L.

Notice that I is the lower unit (the least element) and U the upper unit (the greatest
element) for (67, <) and (6, <).

DEFINITION 2.3. Let C € 6. A set X C L is a C-system or simply a system if C(X) c X
and, hence, if C(X) = X.Foreach C€%,let ¥(C) ={X | (X CL)A(C(X) =X)}.

Since C(L) = L for each C € ¢, then each ¥(C) # @.
LEMMA 2.4. For each C,,Cr €6, C; < Cy if and only if $(C2) C F(Cy).

PROOF. lLet any C1,C> € € and C; < C,. Consider any Y € ¥(C2). Then C(Y) C
C>(Y) =Y. Thus, C; € $(Cy) implies that ¥(Cp) C L (Cy).

Conversely, suppose that ¥(C>) € (Cy).Let X C L. Then, since, by axiom (1), C> (X) €
F(C»), it follows, from the requirement that C>(X) € ¥(Cy), that C; (C2(X)) = Co (X).
But X C (> (X) implies that C;(X) € C1(C2 (X)) = C2(X), from axiom (2). Hence, C; < (>
and the proof is complete. |

DEFINITION 2.5. For each C;,(C, € %, define the following binary relations in % (L) x
P(L). For each X Cc L, let (C1 A(C2)(X) = C1(X)NCa(X) and (Cy vy C2) =Y C L |
(X CY =C1(Y) =C2(Y))}. For finitely many members of ¢, the operators A, v, are
obviously commutative and associative. These two relations are extended to arbitrary
s C 6 by defining (A s4) (X) = Asd(X) = {C(X) | C € 4} and (V,, 1) (X) =V, A(X) =
({YCL|XcCY=C(Y) forall C €} [1, page 178]. Notice that \/,, 4(X) ={Y C L |
XCTYVAY eN{FO) | Cedb)}.

LEMMA 2.6. Let sl C € (resp., €y) and &' = {X | (X € L) A (X =V, A(X))}. Then
¥ =N{F(C) | C e d}.
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PROOF. By Tarski’s [8, Theorem 11(b), page 71], which holds for finitary and general
consequence operators, for each X c Land C € &, X c \/,, A(X) =Y’ € ¥(C). Hence,
if Y €9, then V,A(Y') =Y € F(C) for each C € «. Thus ¥ c N{F(C) | C € #A}.
Conversely, let Y € N{F(C) | (C € #)}. From the definition of \/,,, \/,, #(Y) =Y and,
hence, Y € ¥’ and this completes the proof. |

LEMMA 2.7. Let the nonempty B C L have the property that for each X C L, there
exists some Y € B such that X C Y. Then the operator Cg defined for each X C L by
Ca(X) =Y | X CY € B} is a general consequence operator defined on L.

PROOF. Assuming the hypothesis of the Lemma, it is obvious that Cy : P (L) — P (L)
and X € Cy(X). Clearly, if Z c X C L, then C3(Z) € C5(X); and, foreach Y € B, X C Y
if and only if C5(X) C Y. Hence, C3(Cy (X)) = N{Y | Ca(X) C Y € B} = Cy(X). This
completes the proof. |

REMARK 2.8. The hypothesis of Lemma 2.7 can be weakened. However, our applica-
tion does not require such a weakening.

THEOREM 2.9. With respect to the partial order relation < defined on L, the structure
(6,Vw,A,IU) is a complete lattice with upper and lower units.

PROOF. let ol C 6 and B = {F(C) | C € «}. Since L € B, then by Lemma 2.7,
Vo = Cg € 6. Moreover, by Lemmas 2.4 and 2.6, Cg is the least upper bound for s
with respect to <.

Next, let B = J{¥(C) | C € d}. For X C L, X € C(X) for each C € «. For each C € 4,
there does not exist a Y¢ such that Yc € $(C), X # Y¢, Yec # C(X), and X C Y € C(X).
Hence, C(X) =({Y | XCcY eBR}=N{C(X) | Ced} = \d(X). Hence, A\ € 6 and it
is obvious that A « is the greatest lower bound for ¢ with respect to <. This completes
the proof. O

Although the proof appears in error, Wojcicki [9] stated Theorem 2.9 for a propo-
sitional language. In what follows, we only investigate the basic lattice structure for
(€r,<).

THEOREM 2.10. With respect to the partial order relation < defined on 6y, the struc-
ture (65,Vw,A,I,U) is a lattice with upper and lower units.

PROOF. It is only necessary to consider two distinct C;,C> € €. As mentioned, the
commutative and associative laws hold for A and v, and by definition, each maps
P(L) into ?(L). In (¢, <), using Theorem 2.9, axioms (1) and (2) hold for the greatest
lower bound C; A C, and for the least upper bound C; v, Co. Next, we have

(CAC)0 = (Ul 1Y eF00}) n (UL 1Y € F(0})
- nG(Y) 1Y e F(X)} 2.1)
=UJlG ) () 1Y eF(x)}

and axiom (3) holds and, hence, C; A C> € 6. Therefore, (€, A,I,U) is, at least, a meet
semilattice.
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Next, we show by direct means that for each C;,C, € 65, Cy vy Co € €5. Let (the
cardinality of L) |[L| = A. Foreach X; c L,i € A, let A’ (X;) ={Y | (X; CY € P(C1) N
F(C)IAN(Y CL)}.LetO{Y | Y € A’ (X;)} = Y;. By Tarski’s [8, Theorem 11, page 71], X; C
Yi € P(C1)NF(Cr), and by definition, Y; = (C; vy C2) (X;). Hence, Y; € o' (X;) and is the
least (C) element. For X; C L,let A" (X;) = {Y | (C1(X;) CY € P(C1)NF(C2)) A (Y CL)}.
Since X; € Cr(X;), k = 1,2, then s¢”’ c o’. Since L € ' (X;), A’ (X;) # @. Indeed, let
Y € A4 (X;). Then X; C Cx(Y) =Y, k =1,2. Additionally, X; € C;(Y) = Y implies that
Xi € Ci1(X;) = C1(C1 (X)) € C1(C1(Y)) = C,(Y) =Y. Hence, it follows that for any
Xi CL, 4”7 (X;) = A’ (X;). For fixed X; C L, let X; € #(X;). Let Y; be defined as above
and, hence, Y; is the least element in &’ (X;) = s4”" (X;). Consider @ = {Y; | Xj € F(X;)},
and, for j =1,...,n, consider Y; € @ and the corresponding X; c L. Let X; = U{X; | j =
1,....,.n} €eF(X;). ThenY, = ({Y | Yed (X))} €D.If Y € A" (Xg),thenY € A(Xj), j=
1,...,n. Hence, Y; C Yi, j = 1,...,n, implies that Y, U---UY}, C Yi. Tarski’s theorem
[8, Theorem 12, page 71] implies that Y* = U{Y; | Xj € F(X;)} € $(C1) nF(C>). Also,
by definition, for all X; C L, Y; € s0” (X;) implies that C;(X;) C Y;. The fact that C; is
finitary yields C;(X;) C Y*. Hence, Y* € «” (X;). Since C1(X;) C C1(X;), Xj € F(X;),
then o1 (X;) C o4 (X;). Thus Y; C Y;, X; € F(X;). Therefore, Y* C Y;. But, Y* € o (X;)
implies that Y* = Y;. Restating this last result, U{(C; V4 C2) (Xj) | Xj € F(Xi)} = (C1 Vu
C>)(X;) and, therefore, axiom (3) holds for the binary relation v, and (€¢, vy, A,I,U)
is a lattice. This completes the proof. a

COROLLARY 2.11. Letsd C 6,6y C 6, andsdn6y + &. Then\/,, s € €. The structure
(6r,Vw, A1, U) s a join-complete lattice.

PROOF. Simply modify the second part of the proof of Theorem 2.10 by substituting
(P (C) | C € sd} for F(C1) NF(C>) and letting C; € st N€y. This completes the proof.
O

REMARK 2.12. Itis known, since I is alower bound for any ¢ C 6, that (€, Vv,I,U)
is actually a complete lattice with a meet operator generated by the v, operator. It
appears that the meet operator A for infinite & need not correspond, in general, to
the v,,-defined meet operator. Wojcicki [10] has constructed, for a set of consequence
operators 4’, an infinite ¢ C ¢’ of finitary consequence operators with some very spe-
cial properties. However, the general consequence operator defined for each X C L by
({C(X) | C € s} is not a finitary operator. Thus, in general, (€7, V., A,I,U) need not
be a meet complete lattice. This behavior is not unusual. For example, let infinite X
have an infinite topology J. Then (J,uU,Nn,d,X) is a join-complete sublattice of the
lattice (P(X),uU,Nn,d,X). The structure (J, U, d, X) is actually complete, but it is not a
meet-complete sublattice of complete (%?(X),u,n,d,X).

3. System-consistent logic systems. Let 3 be a nonempty set of science-community
logic systems and let | - | denote cardinality. In practice, |3| < X¢. Each logic system
Si €3, i € ||, is defined on a countable language L; and each S; determines a specific
finitary consequence operator C; defined on a language L;. At least, by application of
the insertion of hypotheses rule [5] for nonempty cardinal A < |X|, each member of
{Ci | i € A} is defined on the language J{L; | i € A}.
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In all that follows, a specific set of logic-system-generated consequence operators {C; |
i € A} defined on a specific set of languages {L; | i € A} will always be considered
as trivially extended and, hence, defined by the insertion of hypotheses rule on the set
U{L; | i € A}. In general, such a specific set of consequence operators is contained in
the lattice of all finitary operators defined on (J{L; | i € A}.

Alogic system S’ and its corresponding consequence operator is a trivial extension of
alogic system S defined on L where, for alanguage L’ D L, S’ is the same as S except that
the insertion rule now applies to L’. The system S’ and its corresponding consequence
operator C’ is a nontrivial extension if it is extended to L’ by insertion and some other
n-ary relations that contain members of L' — L are adjoined to those in S, or various
original n-ary relations in S are extended by adding » tuples that contain members from
L’ — L. For both the trivial and nontrivial cases and with respect to the language L', it
follows that C < C’. In the trivial case,if X c L', then C(X) = C'(X) = C(XNL)uU(X—L).

In practice, a practical logic system is a logic system defined for the subsets of a finite
language L. When a specific deduction is made from a set of hypotheses X, the set X is
finite. If the logic system also includes 1-ary sets, such as the logical or physical axioms,
the actual set of axioms that might be used for a deduction is also finite. Indeed, the
actual set of all deductions obtained at any moment in human history and used by a
science community form a finite set of statements that are contained in a finite language
L. (Finite languages, the associated consequence operators, and the like will usually
be denoted by a superscript f.) The finitely many n-ary relations that model the rules
of inference for a practical logic system are finite sets.

Practical logic systems generate practical consequence operators, and practical con-
sequence operators generate effectively practical logic systems in many ways. For ex-
ample, the method found in [7], when applied to a C/, will effectively generate a finite
set of rules of inference. The practical logic system obtained from such rules generates
the original practical consequence operator. Hence, a consequence operator C/ defined
on L' is considered a practical consequence operator although it may not correspond to
a previously defined scientific practical logic system; nevertheless, it does correspond
to an equivalent practical logic system.

Our definition of a physical theory is a refinement of the usual definition. Given a
set of physical hypotheses, general scientific statements are deduced. If accepted by
a science community, these statements become natural laws. These natural laws then
become part of a science-community logic system.

In [5], a consequence operator generated by such a logic system is denoted by Sy.
From collections of such logic systems, the Sy they generate are then applied to specific
natural-system descriptions X. For scientific practical logic systems, the language and
rules of inference need not be completely determinate in that, in practice, the language
and rules of inference are extended.

The complete Tarski definition for a consequence operator includes finite languages
[8, page 63] and all Tarski results used in this paper apply to such finite languages.
Theorem 2.10 holds for any language, finite or not. In the lattice of finitary consequence
operators defined on L', v, determines the least upper bound for a finite set of such op-
erators. However, it is certainly possible that this least upper bound is the upper unit U.
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DEFINITION 3.1. Let C be a general consequence operator defined in L. Let X C L.
(i) The set X is C-consistent if C(X) # L.
(i) The set X is C-complete if for each x € L, either x € X or C(XU {x}) = L.
(iii) A set X C L is maximally C-consistent if X is C-consistent and whenever a set
Y#Xand XCYCL,then C(Y) =L.

Notice that if X c L is C-consistent, then C(X) is a C-consistent extension of X which
is also a C-system. Further, C-consistent W is C-consistent with respect to any trivial
extension of C to a language L' D L.

THEOREM 3.2. Let the general consequence operator C be defined on L.

(i) The set X C L is C-complete and C-consistent if and only if X is maximally C-
consistent.

(ii) If X is maximally C-consistent, then X is a C-system.

PROOF. (i) Let X be maximally C-consistent. Then X is C-consistent and, hence,
C(X) # L. Hence, let x € L and x ¢ X. Then X C X U {x} implies that X U {x} is not
C-consistent. Thus C(X U {x}) = L. Hence, X is C-complete. Conversely, assume that
X is C-consistent and C-complete. Then X # L. Let X C Y C L and X # Y. Hence, there
is some y € Y — X and from C-completeness, L = C(XU {y}) c C(Y). Thus, Y is not
C-consistent. Hence, X is maximally C-consistent and the result follows.

(ii) From C-consistency, C(X) # L. If x € C(X) — X, then maximal C-consistency im-
plies that L = C(X U {x}) ¢ C(C(X)) = C(X). This contradiction yields that X is a
C-system.

The following easily obtained result holds for many types of languages [8, page 98],
but these “Lindenbaum” constructions, for infinite languages, are not considered effec-
tive. For finite languages, such constructions are obviously effective. |

THEOREM 3.3. Let the practical consequence operator C/ be defined on arbitrary LY .
If X c Lf is C/ -consistent, then there exists an effectively constructed Y c Lf such that
Cf(X)cY andY is Cf-consistent and C/-complete.

PROOF. This is rather trivial for a practical consequence operator, and all of the
construction processes are effective. Consider an enumeration for Lf such that Lf =
{X1,X2,...,x¢}.Let X c Lf be C/-consistent and define X = X,. We now simply construct
in a completely effective manner a partial sequence of subsets of Lf. Simply consider
Xo U {x1}. Since X, is Cf-consistent, we have two possibilities. Effectively determine
whether Cf (XU {x1}) = L'.If so, let X; = X,. On the other hand, if C/ (XouU {x1}) # L,
then define X; = Xy U {x1}. Repeat this construction finitely many times. (Usually, if
the language is denumerable, this is expressed in an induction format.) Let Y = X.
By definition, Y is C/-consistent. Suppose that x € Lf. Then there is some X; such
that either (a) x € X; or (b) Cf(X; U {x}) = L. For (a), since X; C Y, x € Y. For (b),
X; C Y implies that L = C/(X; U {x}) c Cf (YU {x}) = Lf. Hence, Y is Cf-complete and
X;cY,foreachi=1,...,k. By Theorem 3.2, Y is a C/-system. Thus X, C Y implies that
Cf(Xo) c Cf(Y) =Y, and this completes the proof. O

COROLLARY 3.4. Let a practical consequence operator Cf be defined on LY and let
X c LY be Cf-consistent. Then there exists an effectively constructed Y c LY that is an
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extension of Cf(X) and, hence, also an extension of X, where Y is a maximally C/-
consistent C/ -system.

Let the set 37 C X consist of all of the science-community practical logic systems
defined on languages L{ . Each member of X7 corresponds to i € |2 | and to a practical
consequence operator le defined on L{ . In general, the members of a set of science-
community logic systems are related by a consistency notion relative to an extended
language.

DEFINITION 3.5. A set of consequence operators 6 defined on L is system consistent
if there exists Y C L, Y # L, and Y is a C-system for each C € 6.

EXAMPLE 3.6. Let %6 be a set of axiomless consequence operators where each C € 6
is defined on L. In [5], the set of science-community consequence operators is redefined
by relativization to produce a set of axiomless consequence operators, Sy, each defined
on the same language. Any such collection € is system consistent since for each C €
€, C(D) =D +L.

EXAMPLE 3.7. One of the major goals of certain science communities is to find what
is called a “grand unification theory.” This is actually a theory that will unify only the
four fundamental interactions (forces). It is then claimed that this will somehow lead
to a unification of all physical theories. Undoubtedly, if this type of grand unification is
achieved, all other physical science theories will require some type of restructuring. The
simplest way this can be done is to use informally the logic-system expansion technique.
This will lead to associated consequence operators defined on “larger” language sets.

Let a practical logic system S, be defined on Lf, L= U{L{ | i € N}, with N the set of
natural numbers. Let Lo C L1, Lo # L1. (Note that the remaining members of {L{ |ie N}
need not be distinct.) Expand Sy to S; # Sp defined on L by adjoining to the logic system
So finitely many practical logic-system n-ary relations or finitely many additional n
tuples to the original Sy, but where all of these additions only contain members from
nonempty L —L{ . Although S; should only be considered as nontrivially defined on Lt ,
if L # Ly, then the S; so obtained corresponds to C;, a consequence operator trivially
extended to L. This process can be repeated in order to produce, at least, finitely many
distinct logic systems S;, i > 1, that extend Sy and a set 6, of distinct corresponding
consequence operators C;.

Since these are science-community logic systems, there is an Xo C L{; that is C(’; -
consistent. By Corollary 3.4, there is an effectively defined set Y C Lg such that Xo C Y
and Y is maximally q{ -consistent with respect to the language Lg . Hence, Cg (Y) =
Y C Lf; and C{; (Y) # L{; . Further, C{; is considered trivially extended to L. Let Y’ =
Yu(L —L{;). It follows that for each C;, L —L{; c Gi(L —L{;) cL —Lg # L. By construction,
for each C;, C;(Y) = Y; and for each X C L, C;(X) = Co(XNL}) UC;(X N (L-L})). So,
let X = Y’. Then for each C;, C;(Y') = Co(Y)U(L—L}) =Y U (L—L}) = Y’ # L. Hence,
the set of all C; is system consistent.

ExAMPLE 3.8. Consider a denumerable language L and [2, Example 3.2]. (Note that
there is a typographical error in this example. The expression x ¢ AU should read x ¢ U.)
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Let A be a free ultrafilter on L and let x € L. Then there exists some U € 9 such that x ¢
Usince U =g and @ ¢ . Let B = {x} and ¢ = {P(U,B) | U € U}, where P(U,B) is the
finitary consequence operator defined by P(U,B)(X) =UuXif x € X and P(U,B)(X) =
Xif x ¢ X.(Note that this is the same operator P that appears in the proof of [5, Theorem
6.4].) There exists, at least, a sequence S = {U; | i € N} such that Uy = U and U;;; C
Ui, Uiy1 # U;. It follows immediately from the definition that P(U;,1,B) < P(U;,B) and
P(U;4+1,B)(B) = U;jy1 UB C U; UB for each i € N. Hence, in general, P(U;;1,B) < P(U;,B)
foreachieN.LetY =L—-{x}. Then P(U;,B)(Y)=U;u(L—{x})=L—-{x}=Y,ieN.
Thus, the collection {P(U;,B) | i € N} is system consistent.

THEOREM 3.9. Consider s C 6y defined on L and the (<) least upper bound \/,, .
Then \/ , 1 € €5, and if sl is system consistent, then there exists some Y C L such that
Y =V,d(Y)=C(Y) # L for each C € s and \/,,A # U. Further, if X CL, X # L, is a
C-system for each C € s, then X =\/,, 4(X) = C(X) # L for each C € .

PROOF. Corollary 2.11 yields the first conclusion. From the definition of system
consistent, there exists some Y C L such that C(Y) =Y # L for each C € «. From
Lemma 2.6, for each C € o, \/,, #(Y) = C(Y) # L. Hence, \/,, & # U. The last part of
this theorem follows from Lemma 2.6 and the fact that X is also a \/,, &f-system. This
completes the proof. |

4. An ultralogic unification. Assume for nonempty 3 that |3| < 8(. Let € denote a
set of (logic-system) corresponding finitary consequence operators, each considered as
defined on the language L. There exists a surjection f : N — € such that f(i) is one of
the members of %6, and for each C € €, there is some j € N such that f(j) = C. For each
i e N, let f(i) = C; denote the consequence operators in . As usual, for the following
theorem, we use the boldface type convention [4, page 21], and for the case 6, € will
denote boldface type.

THEOREM 4.1. Let L and {C; | i € N} = 6 be defined as above. Suppose that every
(nonempty) finite subset of 6 is system consistent.

(i) Then there exists a hyperfinite ultralogic U € *6s defined on the set of all internal
subsets of *L such that U # *U, and an internal W C *L such that, for each C; € 6,
*Ci(W) =U(W) =W # *L, where W(W) C *L.

(ii) For each internal Y c *L, J{*C;(Y) | i e N} cu(Y) c *L.

(iii) If finite X C L, then U{*C;(X) | i € N} C WU(X), and if each member of ¢ is a
practical consequence operator, then | J{C;(X) | i € N} CcauU(X).

(iv) Let X C L, X # L, be a C-system for each C € 6. Then *X = *C;(*X) = U(*X) # *L
for each i € N. If X is finite, X = *C;(X) = W(X) for eachi e N. If for j e N, Cj is a
practical consequence operator, then X = C;(X) = U(X) = U(X).

PROOF. Let (€y,Vy,A,I,U) be the lattice of all finitary consequence operators de-
fined on L. Consider this lattice, all of our intuitive consequence operators, our L, and all
other defined objects to be embedded into the Grundlagen structure % [4]. Hence, they
are embedded, in the usual manner, into the superstructure model Al = (N, €, =) for
all bounded formal expressions and this is further embedded into the superstructure
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Y that contains a nonstandard elementary extension *.l = (*N,&,=) of the embed-
ded .. Notice that from our identifications, any standard X c L has the property that
X =X, and if X is finite, then *X = X. Under our basic embedding, let g : N — % be
a surjection in N that corresponds to f. Now consider the surjection *g : *N — *%.
Let constant a € N. Under our special Grundlagen embedding procedures, *(g(a)) =
*g(*a) = *g(a) = *C,. Since *g is a surjection, an a € N corresponds to a member of
7% and vice versa. Thus, *g restricted to members of N = N yields the entire set 7.

Let nonempty K € %(L) be the set of all X # L thatif X € K, then X is a C-system for
each C € %6. By Theorem 3.9, the definitions and the properties of the lattice structure
on €y, for clarity, the unsimplified and redundantly expressed sentences

Vx((x # D)A(x € F(N)) — FyvIwi ((y €6s) Ay #U) A (w1 € P(L))A
(Vzivui Vo ((viex) A (v €K)A(v1 eN)A(z1 €x)A(z1 EN) — (g(z1) (v2) =
y(w2)=v2CL)A(y(v2) #L))) A (Vv ((vEX)A(VEN) —
gw)(wr) =y(wi) =w1 #L))AVz((zex)A(zEN) — ((g(2) < ¥)A
Vw((weC)AVzi((z1ex)a(zieN)A(g(z1) =w)) — (¥ =w)))))),
VxVy((x €e6) A(y €eb) — (v <x) —

Vw((w e ?(L)) — (y(w) cx(w))))),
(4.1)

hold in Jt. Hence, they hold under *-transfer in *. for objects in *N. (Note that it
is usually assumed that formal statements such as (4.1) can be made within a formal
first-order language rather than expressing them explicitly.)

The set *%¢ is a collection of hyperfinite consequence operators, each defined on
the internal subsets of *L. Let infinite A € *N — N. Then *g[[0,A]] is a hyperfinite
subset of *€ C *%;. Hence, from *-transformed sentences (4.1), there exists some hy-
perfinite U € *%¢ defined on the set of all internal Y c *L with the properties that
*g(i)(Y) c U(Y) for each i € [0,A] and, in particular for i € N. Hence, J{*C;(Y) |
i€ N} CcU(Y). Further, there exists an internal W c *L such that, for each i € [0,A],
*g(i)(W) =U(W) =W # *L. In particular, *g(i) (W) = *C;(W) = U(W) for each i € N.
Since U(W) # *L, then U # *U. Let finite X C L. Then, due to our embedding proce-
dures, *(C; (X)) = *C;(*X) = *C;(X) Cc U(X) # *L. Hence, J{*C;(X) | i € N} C AU(X).
(Note that in proofs such as this and to avoid confusion, we often, at first, use the nota-
tion * (C; (X)) to indicate the value (or name) of the result of applying * to an objectin N
which is a set such as C; (X) that contains additional operator notation. From a technical
viewpoint, *(C;(X)) = *{C;(X)} = {*C;(X)} and *C;(X) is the “name” for the set under
the mapping . But using this procedure, there is confusion as to whether *(C;(X))
denotes the entire set or denotes the operator *C; applied to X. In these proofs, *C;
always denotes the operator *C; applied to internal subsets of *L.) If C; is a practical
consequence operator, then C;(X) is a finite set. Hence, *C;(X) = C;(X). (iv) follows by
kx-transfer and this completes the proof. |
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In [5], the set & = {S}GJ_ | j € N} is the refined set of all relativized axiomless science-
community consequence operators defined on a language A and they are used to unify,
in a restricted manner, physical theory behavior. Moreover, for sequentially presented
{SX, 1J €N}, 1< |{SK, | j € N}| < Ro.

COROLLARY 4.2. Let A denote the language L and & = {SXJ, | j €N}
(i) There exists a hyperfinite ultralogic U € *€; that is defined on all internal Y C *A
such that U + *U, and, for each S, € #, *SY; (D) = W(D) = .
(ii) For each internal Y C *A, U{*Sxi(Y) lie N} cauy) c *A.
(iii) If finite X C A, then U{*SY;(X) | i € N} CU(X), and if each member of (S, | i€
N} is a practical consequence operator, then U{Sxi(X) |ie N} cuX.
(iv) Let X C A, X # A, be a C-system for each C € {S}\,/i(X) | i € N}. Then *X =
*SN; (*X) = W(*X) # *A, for each i € N. If X is finite, then *SY,;(X) = X = W(X) for each
ieN.IfforieN, S%L_ is a practical consequence operator, then S?\]’i(X) =X =U(X).

5. Further applications. If the ¢ in the hypotheses of Theorem 4.1 is restricted to
a set of practical consequence operators, each defined on a finite language L/, then
it follows that the hyperfinite U corresponds to a hyperfinite logic system & that is
kx-effectively *-generated. If the effective notion is not required, then, in general, the
ultralogic AU corresponds to a *-logic system. Although Theorem 4.1 and Corollary 4.2
are mainly concerned with the original set of consequence operators % and {S}\,/l, (X) |
i€ N}, when |{51‘§i (X) | i e N}| = Ry, it is also significant for applications that Al unifies
each “ultranatural relativized theory” *g(j), j € [0,A] — N. It follows that for each
Jel[0,A]=N, *g(j)(D) =U(D) = &, and for internal Y € *A, *g(j)(Y) Cc U(W). This
also applies to the unrelativized case with the modifications that & is replaced with
W and each relativized consequence operator S%i is replaced with the physical theory
consequence operator Sy;. Also note that Sy, and S}\/,i are usually considered practical
consequence operators.

Depending upon the set 6 of consequence operators employed, there are usually
many X C L, X # L, such that X is a C-system for each C € . For example, we assumed
in [5] that there are two 1-ary relations for the science-community logic systems. One of
these contains the logical axioms and the other contains a set of physical axioms; a set
of natural laws. Let {S 1'\71- | i € N} be the set of science-community corresponding conse-
quence operators relativized so as to remove the set of logical theorems. Each member
of a properly stated set of natural laws N; used to generate the consequence operators
{S]’\,i | i € N} should be a C-system for each member of {Sl'\,i | i € N}. As mentioned,
the physical theories being considered here are not theories that produce new “natural
laws.” The argument that the Einstein-Hilbert equations characterize gravitation fields,
in general, leads to the acceptance by many science communities of these equations
as a “natural law” that is then applied to actual physical objects. Newton’s Second Law
of Motion is a statement about the notion of inertia within our universe. It can now
be derived from basic laboratory observation and has been shown to hold for other
physical models distinct from its standard usage [3]. The logic systems that generate
the members of {S[\,i | i € N} have, as a 1-ary relation, a set of natural laws. Then one
takes a set of specific physical hypotheses X that describes the behavior of a natural
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system and applies the logic system to X. This gives a statement on how these natural
laws affect, if at all, the behavior being described by X. It is this approach that implies
that each properly described N; # L is a C-system for each C € {Sy; | i € N}. Applying
Theorem 4.1 to € = {S,’\,i | i € N}, where J{N; | i € N} C K, leads to a result exactly
like Corollary 4.2, where results (i), (iii), and (iv) applied to members of {N; | i € N} are
particularly significant.

At any moment in human history, one can assume, due to the parameters present,
that there is, at least, a denumerable set of science-community logic systems or that
there exists only a finite collection of practical logic systems defined on finite Lf.
The corresponding set @/ = {le |i=1,...,n} C C@; of practical consequence opera-
tors would tend to vary in cardinality at different moments in human history. For the
corresponding finite set of practical consequence operators, by Theorem 2.10, there
is a standard (least upper bound) practical consequence operator U, and hence,
“the best” practical logic system, that unifies such a finite set. The following result is
the interpretation of Theorem 4.1 for such a finite set of practical consequence
operators.

THEOREM 5.1. Let L/ and €/ be defined as above. Suppose that €/ is system consis-
tent.

(i) Then there exists a practical consequence operator U, € %ch defined on the set
of all subsets of Lf such that W, + U, and W c L such that, for each C; € €/, C;(W) =
WUy (W) =W £ LS, whereu; (W) c LS.

(i) ForeachX c LY, U{Ci(X) |ie N} cU, (X) c LS anda; is the least upper bound
in (€%, v, A,LU) fore/.

(iii) Let X c Lf, X # LS, be a C-system for each C € ¢/. Then X = C;(X) =W (X) # L/
for each i € N.

Letting finite ¢/ contain practical consequence operators of the type SN;» SXII,, orS ]’\,i,
exclusively, then U; would have the appropriate additional properties and would gen-
erate a practical logic system. Corollary 2.11 and Theorem 3.9 yield a more general
unification V,, o1, s C 6y, as represented by a least upper bound in (€, Vv,,I,U), with
the same properties as stated in Theorem 5.1. Thus, depending upon how physical
theories are presented and assuming system consistency, there are nontrivial stan-
dard unifications for such physical theories. Assuming that || = 8¢ and that « is
system consistent, then the Corollary 2.11 unification \/,, & corresponds to a (nontriv-
ial) nonstandard ultralogic unification *\/,, s with all of the same stated properties as
those of the . It is obvious how these two ultralogic unifications model a higher in-
telligence relative to general intelligent design theory. However, *\/,, #¢ and U have one
significant difference. The ultralogic U is, with respect to internal subsets of *L, a “least
upper bound” of a hyperfinite collection, whereas *\/,, ¢ need not have this additional
hyperfinite property. Further, system consistency is used only so that one statement in
Theorem 4.1, Corollary 4.2, Theorem 5.1, and this paragraph will hold. This one fact is
that each of these standard unifications of a collection s¢ C 6f is not the same as the
upper unit if and only if « is system consistent. Further, if an X ¢ L/ (resp., X c L) is
A -consistent (resp., \/,, si-consistent), X is C-consistent for each C € ¢/ (resp., C € ).
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REMARK 5.2. I mentioned that the nonstandard results obtained in Section 4 are
established by means of the most trivial methods used in Robinson-styled nonstandard
analysis.
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