IJMMS 2004:16, 827-832
PIL S0161171204205191
http://ijmms.hindawi.com
© Hindawi Publishing Corp.

SUPPORT FUNCTIONALS AND THEIR RELATION
TO THE RADON-NIKODYM PROPERTY

I. SADEQI

Received 26 May 2002

In this paper, we examine the Radon-Nikodym property and its relation to the Bishop-Phelps
theorem for complex Banach spaces. We also show that the Radon-Nikodym property implies
the Bishop-Phelps property in the complex case.
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1. Introduction. Let X be a complex Banach space and let C be a closed convex
subset of X. The set of support points of C, written as suppC, is the collection of all
points z € C for which there exists nontrivial f € X* such that sup,cc|f(x)| =|f(2)].
Such an f is called support functional. The point z € supp C is called a strongly exposed
point of C if for all sequences {z,} C C, limy,_(Re f(z,)) = sup-Re(f) implies that
zn — z, where Re denotes the real part.

In this paper, we will show that the unit ball of an infinite-dimensional function
algebra has no strongly exposed points. Lomonosov [4] constructed a closed, bounded,
and convex subset C of a complex Banach space such that the set of support points
of C is empty. This means that the Bishop-Phelps theorem fails to hold in the complex
case. We show below that for Hardy spaces, the Bishop-Phelps theorem does hold.

Bourgain [1] proved that if X is a real Banach space, then the Radon-Nikodym property
(RNP) and the Bishop-Phelps property (BPP) are equivalent. The precise definitions are
given below.

It is natural to ask whether this equivalence remains true in the complex case. In this
paper, we show that, appropriately defined, it does indeed hold for complex Banach
spaces. Recall that a Banach space X is said to have the RNP, provided that for every
measure space (Q,3,u) with pu(Q) < o, and every u-continuous measure T :X — X of
finite variation, there exists a Bochner integrable function f : Q — X such that T(E) =
Jp fdu for every E € 3.

Let X and Y be Banach spaces and let L(X,Y) be the Banach space of all bounded
linear operators from X into Y. Suppose that T € L(X,Y) and C is a nonempty and
bounded subset of X, then we define ||T||(C) := sup{||Tx]|| : x € C}. A Banach space
X is said to have the BPP if for any nonempty, bounded, and closed subset C of X,
any Banach space Y, and any T € L(X,Y), there is an approximating sequence (T,) in
L(X,Y) for which each (T,,) achieves its max norm ||(T;,)||(C) on C.

A subset C of aBanach space is called dentable if for every € > 0, there existsan x € C
such that x ¢ co(C —N(x,€)), where co denotes “closed convex hull” and N(x,€) is the
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open e-neighborhood of x. In the final part of this paper, we discuss uncountability of
the set of normalized support functionals, a question posed by L. Zajicek in 1999.

2. The RNP for complex Banach spaces. Bourgain proved in [1] that if the real Ba-
nach space X has the RNP and if C is a closed, convex, and bounded subset of X, then
the set of support functionals that strongly expose some point of C is dense in X*.
Suppose that the complex Banach space X has the RNP and that C is a bounded, closed,
and convex subset of X. Put

H:={e?x:0<0<2m, xeC}. (2.1)

Let B denote the closed convex hull of H. Then, as cited above, the set of real parts
of linear functionals which strongly expose some point of B forms a dense subset of
X;*. Here X, is the underlying real Banach space. By the standard isometry f — Re f
between X* and X, these are the real parts of a dense subset of X*. The strongly
exposed points of B are contained in H since H is closed, so by the theorem of Phelps,

sup | f[(C) = supRe f(H) (2.2)

and the support functionals are dense in the complex case. Therefore, using the two
theorems of Phelps and Bourgain, the RNP implies the Bishop-Phelps theorem in the
complex case. If we show that the RNP implies the BPP in the complex case, the Bishop-
Phelps theorem clearly holds for complex Banach spaces with the RNP without recourse
to the theorems of Bourgain [1] and Phelps [6].

DEFINITION 2.1. Let B be a nonempty, bounded, closed, and convex subset of the
complex Banach space X. Let Y be a Banach space and T € L(X,Y). Say that T is an
F-strongly exposing operator for the set B if there exists some point x € B depending
on T such that every sequence (x,) C B satisfying

sup | TII(B) = lim [|T (x)]| (2.3)

has a subsequence converging to «x for some complex number « with x| = 1.

If X is a real Banach space, then the definition of an F-strongly exposing operator
becomes Bourgain’s definition of an R-strongly exposing operator, as follows.

Let B be a nonempty, bounded, closed, and convex subset of the complex Banach
space X. Let Y be a Banach space and T € L(X,Y). T is called an R-strongly exposing
operator for the set B if there exists some point x € B depending on T such that every
sequence (x;,) C B satisfying (2.3) has a subsequence converging to x or —x [1].

THEOREM 2.2 (Bourgain). Let B be a nonempty, bounded, closed, and convex subset
of the real Banach space X. Assume that every nonempty subset of B is dentable. Then
for any Banach space Y, the set of all R-strongly exposing operators T € L(X,Y) for the
set B is a dense subset of L(X,Y).

In the following discussion, we show why we need the definition of an F-strongly
exposing operator to prove Bourgain’s theorem in the complex case. Let X be a complex
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Banach space and let C be a circled, bounded, closed, and convex subset of X (i.e.,
xC < C if |x| = 1). Suppose that T achieves its max norm ||T||(C) on C. Then there
exists xg in C such that

sup [ TII(C) =||T (x0)||- (2.4)
Choose «;, = i; it is clear that
lim [|T (etnx0) || = sup I TI1(C), (2.5)

and (x,Xxo) has no subsequence converging to xo or —xg. So the circled subsets of X
have no R-strongly exposing operator. Also let X, and Y, be the underlying real part
of the complex Banach spaces X and Y, respectively. Since L(X,,Y,) is not isomorphic
to L(X,Y) in general, we cannot directly use Bourgain’s definition in the complex case.

THEOREM 2.3. Let X be a complex Banach space with the RNP. Then X possesses the
BPP.

PROOF. Let C be a nonempty, closed, convex, and bounded subset of X. Let Y be a
complex Banach space. We must show that for T € L(X,Y), there is an approximating
sequence (T,,) for which each (T},) achieves its max norm on C. For n € N, define

Kn:= {:r €L(X,Y):3£>0,3t € X,S(T,%) ¢ | N((xt,n’l)}, (2.6)

x|=1

where S(T,&) := {x € C:||Tx| = |IT||(C)—&}. Since X has the RNP, every nonempty
and bounded subset of X is dentable, so K,, is dense in L(x,y) (see [1]). If T € K,, for
each n € N, then there exists a sequence (x;) in C such that lim,,— |Tx,| = | T||(C).
There exists also t € X such that (x,) is contained in F := {«t : |x| = 1}. It follows
that x,, = x, t, and there is a subsequence of (x;,) converging to ot for some y with
|xg| = 1. Therefore, T is an F-strongly exposing operator and achieves its max norm
on C at xot. It follows that T is an F-strongly exposing operator if and only if T € K,
for every n € N. Put K := (0,,_; Ky,. Since any K,, is dense in L(X,Y) if we show that
any K, is open, we conclude that K is dense in L(X,Y). Let T € K;, and suppose that
F e L(X,Y) with ||[F-T| < &/3. It is easy to see that S(F,&/3) < S(T,&/3),s0 F € K,
and K,, is open in L(X,Y). The fact that each T € K is an F-strongly exposing operator
and achieves its max norm on C completes the proof. |

COROLLARY 2.4. The RNP implies the Bishop-Phelps theorem in the complex case.
PROOF. Since the RNP implies the BPP in the complex case, the proof is clear. |

That the BPP implies the RNP can be easily checked through Bourgain’s proof in [1],
so we have the following result.

THEOREM 2.5. The RNP and the BPP are equivalent for complex Banach spaces.

We are ready to examine the RNP for some complex Banach spaces. Let T := {e?? :
0< 0 <}andL'(T) denote the summable complex functions on T. The following dis-
cussion shows that some subspaces of L' (T) have the RNP so that the Bishop-Phelps
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theorem is true for them. The complex Bishop-Phelps theorem is still open for L'; how-
ever, we can verify this theorem for some subspaces of L'. Let C(T) be the set of all
continuous functions on T and let C° denote the functions in C(T) which are analytic
with mean value zero. It is well known that

(C(T)/C%)* ~ H'(T). 2.7)

Since H! (1) is a separable space with a predual, it has the RNP and, hence, the Bishop-
Phelps theorem is true for H!(t) ¢ L' (T). Also, all H? (1 < p < «) are separable and
have a predual. The following theorem is an immediate consequence of this discussion.

THEOREM 2.6. The Bishop-Phelps theorem is satisfied for the Hardy spaces H? (1 <
p < o) in the complex case.

As mentioned above, a separable dual Banach space has the RNP. Since H® is not
separable, it is still unknown whether the Bishop-Phelps theorem is true for H*. Hens-
gen (see [3]) proved that the unit ball of H* has no strongly exposed points. Therefore,
H* is guaranteed to lack both the RNP and the BPP. In the following, we will show
that the unit ball of an infinite-dimensional uniform algebra has no strongly exposed
point. As a result, such spaces do not have the RNP. So it is natural to ask whether the
Bishop-Phelps theorem holds for infinite-dimensional uniform algebras.

Let X be anonempty set and let K be a normed linear algebra. We denote by £ (X,K)
the normed linear algebra of all bounded mappings of X into K with pointwise addition
and scalar multiplication and with the uniform norm. For a bounded mapping f, the
uniform norm is defined by

I £l = sup{||f(x)|: x € X}. (2.8)

A uniform algebra of functions on X is a subalgebra of the Banach algebra £ (X,F),
where F is either the real or complex numbers. Given a nonempty topological space
X,C(X,K) denotes the linear space of all continuous mappings of X into K with point-
wise addition and scalar multiplication. When X is compact, C(X,K) is a closed linear
subspace of £*(X,K), and in particular, C(X,F) is a uniform algebra of functions. The
notation C(X,F) is abbreviated to C(X).

LEMMA 2.7. Let X be a compact Hausdorff space such that C(X) is infinite-dimen-
sional. Then the unit ball of C(X) has no strongly exposed point.

PROOF. If X admits no Baire diffuse measure (a nonnegative measure u on X is said
to be diffuse if u(V) > 0 for every nonempty open subset V of X), then the unit ball of
C(X) contains no exposed point (see [5]). So the proof is clear in this case. Let X admit a
diffuse measure and suppose that A € C(X)* exposes f € U, where U is the unit ball of
C(X). Then | f(t)| =1 (t € X). Since X admits a diffuse measure and | f|| = 1, a result
of Eberlein’s guarantees that accumulation points can be approximated by sequences
(see [7]). We can assume that there exists a sequence (t,,) C X such that f(t,) — 1.
Choose pairwise disjoint open sets U, in X such that t,, € U,. Also choose h,, € C(X)
with 0 < h, <1, h,(ty) =1, and h,, = 0 on K\ Uy,. Put g, = 1 — hy; clearly |lgnll <1
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and g, (t) — 1 for each t € X. Hence g, f(t) — f(t), t € X. Also by the Hahn-Banach
theorem, it is easy to see that A must be of the form

Ag) = Lgfdu. 2.9)

It is clear that A(gnf) — A(f), but |gnf — fIl = lhnfll = 1. So f cannot be a strongly
exposed point. Also since any uniform algebra is a commutative B*-algebra, by the
Gelfand-Naimark theorem, A is an isometric isomorphism of C(A4), where A, is the
maximal ideal space of A. Therefore, as cited above, A has no strongly exposed point,
and we have the following result. |

THEOREM 2.8. The unit ball of an infinite-dimensional C*-algebra has no strongly
exposed point.

It is well known that if X is a complex Banach space with the RNP, then the set of
support functionals that expose some points of the unit ball of X is norm dense in
X* [1].

COROLLARY 2.9. An infinite-dimensonal separable C*-algebra possesses neither the
RNP nor the BPP; hence it has no predual.

3. The set of normalized support functionals

PROBLEM 3.1. Suppose that X is a real Banach space with dimX >1and C < X isa
bounded, closed, and convex subset of X. Is the set of normalized support functionals
3(C) an uncountable subset of Sx=? (Due to L. Zajicek).

Phelps has made the following observations. Suppose that 3(C) is countable; then it
has no interior point, so Sx+ \ X(C) is a dense Gy set in Sx«. Since X(C) is dense in Sx*,
from the Bishop-Phelps theorem, we conclude that X* is separable. If X is reflexive,
then any linear functional of Sx+ supports C, which is a contradiction. Since 2(C) is
countable, X must be a nonreflexive space with a separable dual space. Also C must
have an empty interior because otherwise we may assume that 0 € intC, and since
dim X > 1, it is possible to have a two-dimensional subspace M of X. So if f € Sy+, then
it supports M n C. By the Hahn-Banach theorem, there is an extention f” of f in X(C).
That is, there is one-to-one map from the uncountable set X(M N C) into X(C), which is
impossible.

THEOREM 3.2. Let X be a weakly sequentially complete (w.s.c.) Banach space and let
C be a closed, convex, and bounded subset of X. Then X(C) is uncountable.

PROOF. If X(C) is countable, since X(C) is dense in Sx*, Sx+ is separable. By
Dounford-Pettis theorem (see [2]), X* possesses the RNP. Let (x;,) be a bounded se-
quence in X. Then Y, the closed linear span of (x, ), is a separable subspace of X. Since
X* has the RNP, Y* is separable. By a classical result of Banach, (x, ) has a weak Cauchy
subsequence in Y (again denoted by (x;)), which is also a weak Cauchy sequence in X.
Since X is w.s.c., then (x,) is a weakly convergent sequence, therefore, any bounded
sequence (x;) is a weakly convergent sequence in X, and so X is a reflexive space. Thus
> (C) = Sx+, an uncountable set. O
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REMARK 3.3. If any nonempty subset of a closed, convex, and bounded set C is
dentable, then by a result of Bourgain (see [6]), for such a set C, the set of support
functionals is G, dense in X*. And by a classical theorem that the Banach space X has
no countable G, dense subset, we conclude that 3(C) is uncountable.
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