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Continuing our recent research on embedding properties of generalized soluble and gener-
alized nilpotent groups, we study some embedding properties of SD-groups. We show that
every countable SD-group G can be subnormally embedded into a two-generator SD-group
H. This embedding can have additional properties: if the group G is fully ordered, then the
group H can be chosen to be also fully ordered. For any nontrivial word set V, this em-
bedding can be constructed so that the image of G under the embedding lies in the verbal
subgroup V (H) of H. The main argument of the proof is used to build continuum examples
of SD-groups which are not locally soluble.
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1. Results and background information

1.1. Background information and the main result. In [7] Kovacs and Neumann con-
sidered some embedding properties of SN*- and SI*-groups (see definitions and ref-
erences below). They, in particular, showed that every countable SN*- or ST*-group is
embeddable into a two-generator SN*- or SIT*-group, respectively. The consideration
of such embeddings of generalized soluble and generalized nilpotent groups was very
natural after a series of results on embeddings into two-generator groups for soluble
and nilpotent groups (see [1, 18, 19, 20, 23] and the references therein). And, in gen-
eral, interest in embeddings of countable groups into two-generator groups (with some
additional properties or conditions) is explained by the famous theorem of Higman, B.
H. Neumann, and H. Neumann about the embeddability of an arbitrary countable group
into a two-generator group [5].

In [13, 15] we considered the embedding properties of a few other classes of gen-
eralized soluble and generalized nilpotent groups. In particular, we saw that (a) every
countable SN-, ST-, SN, or SI*group is embeddable into a two-generator SN-, SI-, SNz,
or SI:group, respectively; but (b) not every countable ZA- or N-group is embeddable
into a two-generator ZA- or N-group, respectively.

The first aim of the present paper is to consider similar problems for another popular
class of generalized soluble groups: for SD-groups; that is, for groups in which the
series of commutator subgroups,

G=GV>GV>GP>...2G0) ..., (1.1)
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reaches unity: G = {1} for some finite or infinite ordinal p. As we will see, for any
countable SD-group, such an embedding into a two-generator SD-group is possible.

Moreover—and this is the second aim of this paper—the mentioned embedding can
satisfy a few additional properties: the embedding can be subnormal, verbal, and fully
ordered. To have our statements in a precise form, we first state our main theorem, and
then turn to the background information about each of these three properties.

THEOREM 1.1. (A) Every countable SD-group G is subnormally embeddable into a
two-generator SD-group H: there exists y : G — H such that G = y(G), y(G)<<H.

(B) For every nontrivial word set V < F, the two-generator SD-group H and the em-
bedding y can be chosen so that y(G) lies in the verbal subgroup V (H) of the group H.

(C) Moreover, if the group G is fully ordered, then the group H can be chosen to be
also fully ordered such that G is order-isomorphic to its image y(G). Also, if the group
G is torsion-free, the group H can be chosen to be torsion-free.

1.2. The additional properties for embeddings. That the embedding of a general
countable group into a two-generator group can be subnormal is proved by Dark in [1]
(see also the paper of Hall [4]). In [14, 15, 16] we combined the subnormality of the
embeddings of countable groups with other properties (see below).

The consideration of the verbality of embeddings (of countable groups into two-
generator groups) was initiated by B. H. Neumann and H. Neumann in [20], where they
proved that every countable group G can be embedded not only into a two-generator
group H but also into the second commutator subgroup H®> = H” of the latter (the
commutator subgroups are simply the special cases for verbal subgroups). In fact, here
the second commutator subgroup can be replaced by any verbal subgroup V(H) [14].
If the group G is an SN-, SI-, SN3, or SI:group, then the group H can be constructed
to belong to the same class as G [15]. And as Theorem 1.1 shows now, the analog of
this fact is also true for the class of SD-groups. Moreover, all these embeddings can be
subnormal.

The problem whether a fully ordered countable group can be embedded into a fully
ordered two-generator group was posed by Neumann, and he solved it in [18]. In [16]
this property was combined with subnormality and verbality of embeddings. Moreover,
if the fully ordered countable group G is an SN-, SI-, SN*, or SI:group, then the fully
ordered group H can be chosen in the same class [15]. Again, Theorem 1.1 shows that
the analog of this is true for the class of SD-groups.

1.3. An application of the argument. In [13] we used the embedding construction
of [15] to build sets consisting of continuum of not locally soluble SI*-groups. The
reason why we devoted a paper to that topic was that so far in the literature there
was only one example of the mentioned type. To be exact, there were two examples
(independently built by Hall [3] and by Kovacs and Neumann [7]) presenting the same
group. The examples built in [13] were not only pairwise distinct groups but, moreover,
groups generating pairwise distinct varieties of groups.

Turning back to SD-groups, there is no lack of examples of SD-groups and, in partic-
ular, of not locally soluble SD-groups (consider, e.g., any absolutely free group of rank
greater than 1). However, we include here a scaled-down version of the construction of
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[13] as an illustration of what can be obtained by means of the verbal embeddings of
groups.

THEOREM 1.2. There exists a continuum of torsion-free, not locally soluble two-gene-
rator SD-groups which generate pairwise different varieties of groups.

1.4. References to the basic literature. An SN*-group or an ST*-group is a group
possessing a soluble ascending subnormal or normal series, respectively. In analogy
with this, an SN* or SI:group is a group possessing a soluble descending subnormal or
normal series respectively [12]. More generally, an SN- or SI-group is a group possess-
ing a soluble subnormal or normal (not necessarily well ordered) system, respectively.
A ZA-group is a group with central ascending series. Finally, an N-group is a group in
which every subgroup can be included in an ascending subnormal series. For informa-
tion on the theory of generalized soluble and generalized nilpotent groups, we refer to
the original articles of Kurosh and Chernikov [9] and of Plotkin [24, 25], as well as to
the books of Robinson [26, 27] and of Kurosh [8]. For general information on varieties
of groups, we refer to the basic book of Neumann [21]. Information on linearly (or fully)
ordered groups can be found in the book of Fuchs [2] or in the papers of Levi [10, 11]
and of Neumann [17, 18].

2. The main embedding constructions

2.1. The subnormal embedding into a two-generator group. We begin with a simple
but still very useful construction (see, e.g., [3, 20]). Assume the given group G to be
countable and its elements to be indexed by the set of nonnegative integers:

G=1{90,91,--,9n,---}. (2.1)

Then consider in the Cartesian wreath product GWr(f) of the group G and of the
infinite cyclic group generated by the element f the following element w of the base
subgroup G/:

(F) gk, ifi=2%k=0,1,2,..., 2.2)
w = .
1, ifiez\{2¥1k=0,1,2,...}.

Clearly, the element f acts on the base subgroup as a “right-shift” operator. In par-
ticular, for arbitrary g,, we have w/ - (1) = gn. Thus, for each pair g,,gm € G, we
have

[0 ™" |(1) = [gn,gm]. (2.3)
Furthermore, for arbitrary j # 0,

[0/ "] () = 1. (2.4)

Define H = H(G) = {(w, f). Using this construction, we can prove the following lemma.



68 VAHAGN H. MIKAELIAN

LEMMA 2.1. Let H = H(G) be the above-constructed two-generator group. Then there
is an isomorphic embedding «: G' — H of the commutator subgroup G’ into H such that
x(G") is subnormal in H. Moreover, if the group G has any one of the properties

(1) G is an SD-group,

(2) G is a fully ordered group,

(3) G is a torsion-free group,
then the group H also has the same properties (and if the group G is fully ordered, then
G' is order-isomorphic to x(G")).

PROOF. For understandable reasons, we can omit the case when G is a trivial group.
For any pair g,,gm € G, the embedding « can be defined as

«([gngm]) = [0 0" | e . 2.5)

Equalities (2.3) and (2.4) show that this can be continued to an injection.

(1) Assume that G is an SD-group: G'® = {1}. Evidently, H' lies in the normal closure
T = (w)" of (w) in H. As it is known (and can be calculated based on equalities (2.3)
and (2.4)), the commutator T’ is equal to the direct power F(f > of the commutator
G’'. The direct power T’ is an SD-group of length 6 — 1. Thus (taking into account the
fact that the subgroups of SD-groups are SD-groups) we get that H is an SD-group of
length2+6-1=6+1.

(2) Assume that the full-order relation “<” is defined on G, and “lift” it to the group
H. It is easy to see that for any element fiT € H, where fi € (f) and T € Hn G/,
there necessarily exists a corresponding maximal index zo(T) € Z such that T(f%) =1
for any i < zo(T). Thus we can compare any two distinct elements of H,

fiTy < fl21o, (2.6)

if and only if i; < i», or if i1 = i» and T, (f?0*1) < T2 (f?0*1), where z( is the minimum
of zo(T1) and zo(T2).
(3) If the group G is torsion-free, then the group H is also torsion-free. O

2.2. The verbal subnormal embedding. Let A be the variety of all abelian groups
and let ¥ be any variety different from the variety of all groups ©® (for now the properties
of this variety are immaterial, but later it will be replaced by special varieties).

LEMMA 2.2. For any variety0 + ©, there exists a group N with the following properties:

(1) N is a torsion-free SD-group;

(2) N generates a product variety 014, where 0, # © and 0, is not properly contained
in0 (in particular, N ¢ 0X);

(3) N can be fully ordered.

PROOF. There are many methods to construct such a group. We outline one of them.
Consider the relatively free nilpotent group S = Fx Q1) of some rank k and class ¢ <k,
such that S ¢ 0 (we are always able to find such a group because the set of all nilpotent
groups, and even the set of all finite p-groups, generates ®). The group N we need can
be constructed for S in a way rather similar to the construction of the group H(G)
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for the group G in Section 2.1. Consider in the infinite Cartesian power S‘@, that is, in
the base subgroup of the Cartesian wreath product SWr(z) (of the group S and of the
infinite cyclic group (z)) an element A, for each s € S:

; s, ifi=0,
M@= <o &7

and define N = (A;,z | s € S). The group N contains the first copy Sy of S in $‘@. In
the sequel, we identify S with Sy and use the same notations for their elements if no
misunderstanding arises.

(1) The group N is clearly a torsion-free soluble group.

(2) The group N belongs to 014 = M.A, and N contains a subgroup isomorphic to
the direct wreath product Swr(z). Thus, var(N) =0;24 =1 X.

(3) Since the verbal subgroup V (S) is not trivial (V is the word set corresponding to
the variety ), we can choose an element a € V(S) of infinite order. On the free nilpotent
group S, a full-order relation “<” can be defined as in [10, 11, 17]. Moreover, since in
any group the full order can be replaced by its converse full order “<~” (x <~! y if and
only if y < x), we can, without loss of generality, assume that the element a is positive:
1 < a. Then, according to the definition of full order, all the powers a?,a?,...,a",...
will also be positive elements. (This element a will be used later.) We “lift” the full-order
relation “<” of S to the group N. As in the proof of Lemma 2.1, for any element ziT € N,
where z' € (z) and T € NnS‘?, there necessarily exists a maximal index zo (T) € Z such
that T(z!) = 1 for any i < zo(T). Thus, for any two distinct elements of N, we can put

zhr <zl (2.8)
if and only if iy < i» or if i; = i» and T;(z%0*!) < T2(z%0*1), where z( is the minimum
of zo(T1) and zo(T2). O

Now take a group G, a nontrivial word set V, and the group N constructed as above
for the given V. Consider the Cartesian wreath product GWrN and select the following
elements, xg4, in the base group G" of this wreath product:

g, if n=al, for some positive integer i € N,
Xg(n) = (2.9)

1, ifneg{a'lieN},

where a is the element chosen above. Denote by K = K(G,V) the following subgroup
of GWrN:

K={xs,N|geG). (2.10)

Denote by U the word set corresponding to the variety 0X. In these notations, the
following lemma holds.

LEMMA 2.3. Let K = K(G,V) be the above-constructed group for the group G and
for the nontrivial word set V. Then there is an isomorphic embedding B : G — K of the
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group G into K such that B(G) is subnormal in K and lies in the verbal subgroup U (K).
Moreover, if the group G has any one of the properties

(1) G is an SD-group,

(2) G is a fully ordered group,

(3) G is a torsion-free group,
then the group K also has the same properties (and if the group G is fully ordered, then
it is order-isomorphic to B(G)).

PROOE. Let 1, be the element of the first copy of G in GV corresponding to g € G:

) g, ifn=1, ©.11)
TTa(n) = .
g 1, ifneN\{1}.

The embedding S can be defined as
B(g) =1y, Vgeoi. (2.12)
Then (x, Lyax, = 1, because it is easy to calculate that

1, ifneN\{a'|li=0,1,2,...},
[(xg’l)“xg](n) =4g, ifn=1=ad, (2.13)
1, ifn=a,a?as,....

Since
acV(S)cU(N)<cU(K), (2.14)

we have 1, = a~'aXs € U(K). Thus the mapping g — 1, defines an isomorphic embed-
ding of G onto the first copy B(G) of G in GN and in U (K). Clearly, B(G) is subnormal
in K (and, in fact, even in GWrN).

(1) If G is an SD-group: G) = {1}, then K*¢*1) = {1}, where c is the nilpotency
class of S (in fact, ¢ could be replaced by a smaller integer, but it is immaterial for our
purposes) for, clearly, K’ < (GN,S$), K+ ¢ GN and (GN)™) < (G™)N = {1}. Notice
that we could use this argument in the proof of Lemma 2.1(1). However, there we used
a somewhat different argument to stress that in that case we deal with a direct (not
Cartesian) product.

(2) Assume that a full-order relation “<” is defined on G. From the definition of the
elements x, (and of the operation of elements of N on x,), it is clear that for any
nontrivial element n6 € K, where n € N and 0 € K n GV, there necessarily exists an
element ny(0) € N with the following property:

O0(n)=1, VYn<mng(0), 0(ne(0)) + 1. (2.15)

Now the full orders available on the groups G and N can be “continued” to the group
K. Let n1 0, and n, 6, be any two distinct elements of K. Then

n101 < 26> (2.16)
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if and only if n; < n, or if n; = n, and 61 (ny) < 62(ny), where ng is the minimum of
Nno(01) and no(02).

(3) It is easy to see that if the group G is torsion-free, then the group GWrN and its
subgroup K also are torsion-free. |

2.3. Proof of Theorem 1.1. Lemmas 2.1 and 2.3 already allow us to prove the state-
ments of Theorem 1.1.

PROOF OF STATEMENT (A). Assume that G = G is a countable SD-group and ¥ =
€ is the trivial variety consisting of the group {1} only. By Lemma 2.3, the group G
can be subnormally embedded into an SD-group G; such that (G) = U(Gy) = G},
where this time the word set U corresponds to the variety of the abelian groups U =
VA = A, It is easy to see that the group G, is also countable. Thus, by Lemma 2.1,
the commutator subgroup G; can be subnormally embedded into a two-generator SD-
group Gz = H(G1), «: G} — G». The subnormal embedding we are looking for can be
defined as the composition S - «. |

PROOF OF STATEMENT (B). Assume that V ¢ F, is any nontrivial word set corre-
sponding to the variety 0. Again, by Lemma 2.3, the group G can be subnormally em-
bedded into an SD-group G; = K(G,V) such that B(G) < U(Gy), where U corresponds
to OA. By Lemma 2.1, the commutator subgroup G; can be subnormally embedded into
some two-generator SD-group G, = H(G1), «: G| — Ga.

If we now show that

B(G) = V(G)), (2.17)

the statement will be proved because
(@) ¢(B(G)) is subnormal in G, (for B(G) is subnormal in G}, and the latter is sub-
normal in G»);
(b) x(B(G)) lies in V(G2) (for x(B(G)) =€ x(V(G])) = V(G2)).
To prove (2.17), we first notice that

So=N'(cGy), (2.18)

where under Sy, we understand the first copy of S in $‘2). Indeed, we should simply
apply the argument of the proof of Lemma 2.3 to see that Sy lies in N’. We have

aeV(Sy) cV(Gy). (2.19)
Therefore, for any g € G,
My = B(g) =a 'aXs € V(G}), (2.20)

and we can again take y = f. |
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PROOF OF STATEMENT (C). This statement follows directly from Lemmas 2.1 and
2.3 and from the fact that a subgroup—in this case the commutator subgroup G;—of
an SD-group (of a fully ordered group) is an SD-group (a fully ordered group). Also, if
G is torsion-free, evidently, the groups G, and G» also have that property. Theorem 1.1
is then proved. |

3. Continuum two-generator SD-groups

3.1. Bisections. We need a special set of groups constructed by Ol’shanskii in [22].
Namely, let {L,, | n € N} be a countable set of finite groups with the following proper-
ties:

(1) L, € £, where £ # O is a soluble variety of finite exponent;

(2) L, ¢ var(Ly,...,Ly_1,Ly+1,...) for an arbitrary n € N.

In fact, as variety £, one can take the variety 65 N»%g,, n = 1,2,..., where 65 is the
variety of soluble groups of length at most 5; q,7 are distinct primes; and Bg,, is the
Burnside variety of groups of exponents dividing 8qr [22].

We define a bisection (B) as follows. The set N of positive integers can be split as

(B) NUN"” =N, where N'NN" =@ and N',N" # &.

Then denote the group L) to be the direct product of the groups Ly, n € N’, the variety
V) to be the variety generated by the groups L,, n € N = N\N’, and the word set V3,
to be that corresponding to 0.

3.2. Construction of SD-groups with bisections (B). Take any torsion-free insoluble
SD-group G not generating the variety © and put

G@) = Fx (var(G)var (Lg))). (3.1)

It is easy to see that G is an SD-group. Also, it is a torsion-free group by the theorem
of Kovacs about torsion-free relatively free groups of product varieties [6]. Since V(g is
clearly a nontrivial word set, we are in a position to apply Theorem 1.1 to subnormally
embed Gg) into an appropriate two-generator SD-group

Hp) = H(Gg), V). (3.2)

Since the set of all the bisections (B) is of continuum cardinality, to prove Theorem 1.2, it
is sufficient to find many continuum bisections which determine groups H) generating
pairwise distinct varieties of groups.

Consider another bisection,

(B) NUN" =N, where N'nN" =@ and N',N"” # @,
different from (B) and consider the groups G and H = H(G ), V) corresponding to
this bisection (B). Here the inequality (B) # (B), of course, simply means that N’ # N’ (or,
equivalently, N” # N”). Clearly, var(Lg)) # var(Lg). Moreover, we have the following
lemma.

LEMMA 3.1. If (B) # (B), thenvar(G) # var(Gg).
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PROOF. We have

var (G@)) = var(G) var (L)),

var (Gg)) = var(G) var (L ). (3:3)

Then, by [21, Theorem 23.23], if var(G)) = var(Gg), we have var(L)) = var(Lg). This
contradicts the fact that (B) # (B) and the selection of the group set {L,, | n € N}. O

The next step of our construction is the group Kg) = K(Gg), Vi) that we built for
the group G@) and the word set Vig). The set of all possible word sets (as well as the
set of all varieties of groups) is of continuum cardinality. In fact, the continuum of
distinct bisections (B) already provide us with continuum of distinct word sets V(g). This,
however, does not mean that building the groups K for continuum distinct word sets
Vi), we will get continuum examples of distinct SD-groups H). The point is that the
role of the word set V in K (and, thus, in H) is in the determination of the class ¢ and
of the rank k of the free nilpotent group S = F,(21.), which we are using to build the
appropriate group N. The set of such integers is countable. This means that there exist
many (in fact, continuum) word sets Vg for which the same nilpotent group Sg) should
be chosen. This also means that the construction, that we have at our disposal at the
current moment, does not yet allow us to build a continuum of SD-groups using the
fact about continuum set of words V) only.

But this observation also allows us to modify and shorten one of the segments of
our proof. Namely, we restrict ourselves to such a set (of continuum cardinality) of
word sets V() which correspond to a fixed pair of integers ¢ and k. It will be sufficient
to prove that this set can already give rise to continuum two-generator (torsion-free)
SD-groups.

LEMMA 3.2. Assume that (B) and (B) are two distinct bisections of the type mentioned:
Sw) = S@)- If var(G ) # var(G ), then var(K ) # var(Kg).

PROOF. As we saw in the proof of Lemma 2.3, for the given bisection (B), the group
K@) contains the first copy of G@). That copy, together with N), generates the direct
wreath product Gy wr N). Since the group N discriminates the variety 1.2, the group
Gy Wr N generates var (Geg)) var(Neg)) = var(Ge)) .24 = var(K)). Thus, taking another
bisection (B), we would get var(K) = var(Gg )22 (recall that according to the remark
proceeding this lemma, we can use the same variety . for both bisections). The latter
is distinct from var(Gg))21. 4 whenever the bisections are distinct. |

The final step of our argument is the construction of the two-generator group Hg) =
H(Kg).

LEMMA 3.3. Ifvar(Kp) # var(K ), then var(Hp) # var(H g).

PROOF. The proof immediately follows from the fact that

var (Hg)) = var (Kgywr(f)) = var (Kg)) 2. (3.4)
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We take any nonidentity w = w(xy,...,x,) for the variety var(K))% and show that w
can be falsified on some elements of H), as well. This will prove the point because H g,
evidently belongs to var(Kg))%. Take cy,...,cn € Kgywr(f) such that w(cy,...,cn) = 1.
Clearly, c; = f™ip;, where p; belongs to the base subgroup K(g); i=1,...,n. Finitely
many elements p; in this direct wreath product have only finitely many nontrivial “co-
ordinates” p;(f7), i = 1,...,n, j € Z. This means that there is a big enough positive
integer n* such that if we replace (trivial) “coordinates” p;(f7), |j| > n* of each p;,
by arbitrarily chosen values from the group K, and denote these new strings by p;
correspondingly, then we will still have

w(f™pl,...,.fMp,,) #+ 1. (3.5)

Since all the powers f™1,..., f™n already belong to H(K)), the proof will be completed
if we show the following rather more general fact: for arbitrary positive integer ny and
arbitrary pregiven values d; € K@), j = —ho,..., "o, the group H (K@) contains such an
element p”’ € H(K)) mK((g? for which p” (f7) = dj, j = —ny,...,No.

Taking into account the “shifting” effect of the element f, it will be sufficient to show

that for any pregiven d € K), there is an element p);" € H(K)) mK((B’? such that

) d, ifj=0,
oy (f7) = (3.6)
1, if—27’LQSjS2‘VLQ,j:)é0.

rrr

(Notice that we did not put any requirements on p’”’ (f/) for j > 2ny or for j < —2ny.)

The elements p” will then be products of elements of type p; (for various d’s) and of

their conjugates by powers of f. It remains to construct elements p;" (for any 4 and
1) by means of two generators w) and f. We have

, gk, ifi=2%k=0,1,2,...,
we) (f1) = (3.7)
1, ifiez\{2¥|k=0,1,2,...},

where this time the countable group K is presented as Kg) = {go,91,--- }- The element
d can be presented as a product g; - g; for infinitely many pairs g;,g; € K. On the
other hand, the number of all possible pairs g;,g; with a common upper bound on |i|
and |j| is clearly finite. Thus, there necessarily exists a pair g;,g; such thatd = g; - g;
and 2%,27 > 2n,. Then

py =l wl (3.8)
O

Lemmas 3.1, 3.2, and 3.3 prove Theorem 1.2 because the continuum of two-generator
torsion-free S D-groups we constructed do generate pairwise distinct varieties of groups.
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And none of these groups is locally soluble because it would be then a soluble group,
and, thus, it could not contain the initial group G that was chosen to be insoluble.

ACKNOWLEDGMENTS. The author is very much thankful to Prof. Alexander Yu.
Ol'shanskii, Moscow State University and Vanderbilt University, for an advice (included
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