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Let H be a Hopf algebra. Ju and Cai (2000) introduced the notion of twisting of an
H-module coalgebra. In this paper, we study the relationship between twistings,
crossed coproducts, and Hopf-Galois coextensions. In particular, we show that a
twisting of an H-Galois coextension remains H-Galois if the twisting is invertible.
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1. Introduction. A fundamental result in Hopf-Galois theory is the normal
basis theorem, stating that, for a finitely generated cocommutative Hopf al-
gebra H over a commutative ring k, the set of isomorphism classes of Galois
H-objects that are isomorphic to H as an H-comodule is a group, and this
group is isomorphic to the second Sweedler cohomology group H?(H, k) (see
[14]). The Galois object corresponding to a 2-cocycle is then given by a crossed
product construction. The crossed product construction can be generalized to
arbitrary Hopf algebras and plays a fundamental role in the theory of exten-
sions of Hopf algebras (see [3, 11]). Also in this more general situation, it turns
out that there is a close relationship between crossed products on one side and
Hopf-Galois extensions and cleft extensions on the other side (cf. [3, 4, 11]). A
survey can be found in [13]. An alternative way to deform the multiplication on
an H-comodule algebra A has been proposed in [1], using the so-called twisting
of A, and it was shown that the crossed product construction can be viewed
as a special case of the twisting construction. The relation between twistings
and H-Galois extensions was studied in [2].

Now, there exists a coalgebra version of the normal basis theorem (see [6]).
In this situation, one tries to deform the comultiplication on a commutative
Hopf algebra H, using this time a Harrison cocycle instead of a Sweedler co-
cycle. Crossed coproducts, cleft coextensions, and Hopf-Galois coextensions
have been introduced and studied in [8, 10]. Ju and Cai [12] have introduced
the notion of twisting of an H-module coalgebra, which can be viewed as a dual
version of the twistings introduced in [1]. The aim of this paper is to study the
relationship between twistings, crossed coproducts, and Hopf-Galois coexten-
sions. Our main result is the fact that the twisting of a Hopf-Galois coextension
by an invertible twist map is again a Hopf-Galois coextension (and vice versa).
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Our paper is set up as follows. In Section 2.1, we recall the twistings intro-
duced in [12], and in Section 2.2 we recall the definition of a Harrison cocycle
and the crossed coproduct construction from [8, 10]. In Section 3, we introduce
an alternative version of 2-cocycles, called twisted 2-cocycles, and discuss the
relation with Harrison cocycles (Proposition 3.3). In Section 4, we introduce
an equivalence relation on the set of twistings of an H-module coalgebra and
we show that a twisting in an equivalence class is invertible if and only if all
the other twistings in this equivalence class are invertible (Theorem 4.4). Two
twistings are equivalent if and only if their corresponding crossed coproducts
are isomorphic (Proposition 2.1). In Section 5, the relationship between twist-
ings and Hopf-Galois coextensions is investigated.

For the general theory of Hopf algebras, we refer to the literature (see, e.g,
[9, 13, 15]).

2. Notation and preliminary results. We work over a field k. All maps are
assumed to be k-linear. For the comultiplication on a k-coalgebra C, we use
the Sweedler-Heyneman notation

Ac(C) =C1®C (2.1)

with the summation implicitly understood. We use a similar notation for a
(right) coaction of a coalgebra on a comodule:

pm)=moem; e MeC. (2.2)

Let A be a k-algebra, then Hom(C, A) is also an algebra, with convolution prod-
uct

(fxg)(c)=f(c1)g(ca). (2.3)

We will denote by Reg(C,A) the set of convolution invertible elements in
Hom(C,A), and A/Lg will be the category of modules with a right A-action and
aright C-coaction, such that the C-coaction is A-linear.

2.1. Twistings of a coalgebra. We recall some definitions and results from
[12]. Let H be a Hopf algebra over a field k, with bijective antipode S. The
composition inverse of the antipode will be denoted by S.

Recall that a right H-module coalgebra is a coalgebra C which is also a right
H-module such that

A(c-h)=c1-hi®cr-ho, ec(c-h)=¢c(c)eyg(h) (2.4)

forallce Cand h € H.
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Consider the category .5, whose objects are right H-modules and right C-
comodules M such that the following compatibility relation is satisfied:

p(m-h)=my-h,@m; - h,. (2.5)

Recall from [12] that we have the following associative multiplication on
Hom(C,H®C):

T*A=(myeidc)o (idy ®A)oT (2.6)
for all T,A € Hom(C,H ® C). The unit of this multiplication is the map o :C —
HeC,o(c)=1®c.

Remark that we have an algebra isomorphism

o«:Hom(C,H®C) —y End(H ® C)°P, 2.7)

where « is defined as follows. Take T : C — H® C, and write T(c) = c_1 ® ¢o
(summation is understood). Then «(7) = fr :H® C — H®C is given by

fr(hec)=ht(c) =hc_1®c. (2.8)
Assume that T satisfies the following normality conditions:
(1eec)T(c) =¢€(c)1n, (ego1)T(c) =cC (2.9)
or
c1&c(co) = &c(c)ly, enl(c_1)co =c. (2.10)

We can then define a new (in general noncoassociative) comultiplication A+ on
C as follows:

Ar(c)=c1-C2-1®C20 OF Ar=(py®id)o(ideT)oA, (2.11)
where @y : C® H — C is the right H-action on C, and where we used the
Sweedler-type notation (id®T)(Ac) = ¢1®c2,-1 ® 2. Let CT be equal to C as
a right H-module, with comultiplication A+ (c). A similar construction applies
to M € S : Fr (M) = M7 as a right H-comodule, with

pT(m) =mg-my_1®myy, (2.12)

where T is called a twisting if and only if C™ is a right H-module coalgebra, and
M™ e M§ for all M € M. It is shown in [12, Theorem 1.1] that T:C — H® C,
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satisfying (2.9), is a twisting if and only if for all h € H and ¢ € C,

C71h1®C0'h2:hl(C-h2)71®(C'h2)0, (2.13)

C-1®Cp,1C0.2,-1®C02,0=C1,-1C2,-1,1®C1,0"C2,-12®C20, (2.14)
where (2.13) is equivalent to
S(h1)671h2®C0-h3 =(c-h)_1®(c-h)y. (2.15)
If T has an inverse A, then the functor F is an equivalence of categories.
Left-hand twistings are defined in a similar way. Consider the vector space
isomorphism

Hom(C,C®H) = Endy (C® H,C @ H). (2.16)

The composition on the right-hand side is transported into the following as-
sociative multiplication on Hom(C,C® H):

TXA=To(ToA%xToT). (2.17)

Here, T is the usual twist map. The unit ¢’ on Hom(C,C ® H) is given by
o'(c)=ce®l.1If A e Hom(C,C® H) satisfies the normalizing conditions

(1®eg)A(c) =c, (ec®1)A(c) = ec(c) 1y, (2.18)

then we can twist the comultiplication on C as follows. Write A(c) = ¢y ® c1,
and define 5 A by

AA(c) = C1,0®C2-C1,1- (2.19)

Let AC be equal to C as a right H-module, equipped with the comultiplication
A1A. The C-coaction M € €.ly can also be twisted as follows:

Ap(m) =m_1g@mom_y,, (2.20)
where A is called a left-hand twisting if *C is an H-module coalgebra, and
AM € "C ity for every M € CMy. The map A: C — C® H satisfying (2.18) is a

left-hand twisting if and only if for all h € H and c € C,

Co-,’l1®C1h2=(C-h1)0®h2(c-h1)1, (2.21)

€0,1,0®C0,2*C0,1,1®C1 =C1,0®C20°C1,1,1 ®C2,1C1,1,2- (2.22)
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Equation (2.21) is equivalent to
co-h1®S(hs)cihy =Y (c-h)o® (c-h)i. (2.23)
For T € Hom(C,H ® C) with inverse A, we write
T(c)=c_1®cCy, Alc) =ci-1)®C0)- (2.24)
We then have
C-1C0,(~1) ® Co,(0) = C(~1)C(0),-1®C(0),0 = 1®C. (2.25)
For y € Hom(C,C ® H) with inverse u, we write
y(c) =co®cy, u(c) =co)y®ca)- (2.26)

Let 7(C) and £(C) be the sets of twistings and left-hand twistings of C, respec-
tively, and U(J (C)) and U (£(C)) the sets of invertible twistings and left-hand
twistings, respectively.

PROPOSITION 2.1. TakeT € U(J(C)) with inverse A. Define {(t):C — Ce®H
by

£(T)(c) = Co,(0) -S(co,(,l))g(c,l)l ®.§(C71)2. (2.27)
Take 'y € U(£(C)), with inverse u. Define v (y):C — H®C by
r(y)(c) =S(c1); ®co,0) -S(co,m)S(c1)s- (2.28)

Then{:U(T(C)) — U(X(C)) is a bijection with inverse v. Furthermore, (o) =
o' andrv(o’)=o0.

PROOF. It is shown in [12] that £(T) € U(£(C)) with sn inverse given by

£(T)" () = co,0) - S(co,-1))1S(c-1); ®8(S(c-1)3)S(co,-1))2S(c-1)5-  (2.29)

Set g = S(co,—1)), h =S(c-1). Then £(T)(c) = co,0) - gh1 ® h2, SO
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r(£(1))(c) = S(h2), @ (co,0) - gh1)o,0) * S ((€o,0) - gh1) g, -1y
-S((co,0) - gh1)_1)1S(S(S((co,0) - gh1)_1)3)
-S((co,0) - gh1)o,-1)) 28 ((co,0) - gh1) 1)2)S (h2),
= S(h2), ® (co,0) - gh1) o,0)S ((€o,0) - gh1) g, -1))
“S((co,0) - gh1)_1)1S(S((co,0 - gh1) 1))
-S(S((co0 - gh1)o,-1))2)S((co0) - gh1) _1)3S (h2),
=S(h2), @ (co0 - gh1)g )
~&((co,0 *gh1)g 1)) S ((co,0 - gh1)_1)S (h2), (2.30)
= S(h2), ® (co,0) - gh1) o - S((co,0) - gh1) 1) S (h2),
=S(h2); ®co,0,0 - (gh1)3S((gh1),)S (co,0),-1)
-$(S(gh1),)S (h2),
=S(h3) ®co,0)0-S(co,0),-1)ghiS(h2)
= S(h) ®co,0),0 S(co,0),-1)9
=5(S(c-1)) ®co,0),0* S(€o,-1)€0,00),-1)

=c1®cy=T1(C).

In [12],itis also shown that ¥ (y) € U(J(C)), and it is straightforward to verify
that the x-inverse of v (y) is given by

r(y) () =5(S(c1)1)S(co,1))1S(c1)s®cCo,0) * S(co,1))2S(c1)5. (2.31)
Then a routine verification similar to the above one shows that

L(r(y))(c) =yle) (2.32)

for all ¢ € C. It is easy to show that £(0) = ¢’ and r(0’) = 0. O

2.2. The crossed coproduct. We recall the following definitions from [8,
10].

DEFINITION 2.2. Let C be a coalgebra and H a Hopf algebra. It is said that
H coacts weakly on C if there is a k-linearmap p : C — H®C; p(c) = ¢[-11® 0]
satisfying the following conditions for all ¢ € C:

C[-11®Co11 ®C[0]2 = C1[-1]C2[-1] ® C1[0] ® C2[0],
ec(croy)cr-11 = €(c) 1y, (2.33)
en(cr-11)cro) = c.

Assume that H coacts weakly on C, and let x: C - H® H, x(c) = xx1(c) ®
o2 (c), be a linear map. Let C >1, H be the coalgebra whose underlying vector
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space is C ® H, with comultiplication and counit given by

Ax(c><h) = (c1 > cop-11ex1(e3) ) ® (c2p0) > 2 (€c3) h2), (2.34)
ex(c>ah) =ec(c)ey(h). '

It was pointed out in [10] that £,(c > h) satisfies the counit property if and
only if

(eg®id)a(c) = (id®ey) x(c) = ec(c) 1y (2.35)
and that A, is coassociative if and only if « satisfies

ci-ne(cz) @ o (crpoy) a2 (c2); ® &z (cipoy) &z (€2)
=0 (c1)e(c2);®@c(cr)x(c2), ®x(cr),
cip-110a (c2) ® cijo-110¢2 (€2) ® cifo)jo)

=01 (CI)CZ[—I]I ® 2 (01)02[71]2 ® C210]-

(2.36)

(2.37)

In [10], (2.36) is called the cocycle condition and (2.37) is called the twisted
comodule condition. Following [7], we call «, satisfying (2.35), (2.36), and (2.37),
a Harrison 2-cocycle.

Now, consider two weak H-coactions p,p’:C — H® C, and write

p(c) =cr-119 o1, p'(c) =cr1y®c. (2.38)

Also consider two 2-cocycles &, : C — H ® H corresponding respectively to
p and p’, and write

x(c) = (c)®m(c), &' (c) = &y (c)® o (c). (2.39)

Then we can consider the crossed coproducts C >4 H and C ><1:X, H. In the
next lemma, we discuss when these are isomorphic.

LEMMA 2.3. Consider a convolution invertible map u : C — H satisfying the
conditions

cny®cy =u"t(er)ea-nulcs) ®cap, (2.40)

o' (c) =ut(er)ea-1y0a (cs3)u(ca); @ ut (capo)) 2 (c3)ulca), (2.41)
for all c € C. Then the map

¢:C>)y H— C>1qH, ¢(c>"h)=ci><u(c2)h (2.42)
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is a left C-colinear right H-linear coalgebra isomorphism. Every left C-colinear
right H-linear coalgebra isomorphism between C >y H and C ><1:X, H is of this
type.

PROOF. The proof is a dual version of a similar statement for crossed prod-
ucts (see [13]). O

It was shown in [12] that the crossed coproduct construction can be viewed
as a special case of the twisting construction from Section 2.1. Let H be a Hopf
algebra and C aright H-module coalgebra, and view C ® H as a right H-module
coalgebra, with the right H-action being induced by the multiplication by H.
It was proved in [12] that there is a bijective correspondence between crossed
coproduct structures on C ® H and twistings of C ® H. We recall the description
of this bijection.

Consider a weak coaction p and a 2-cocycle x giving rise to the crossed
coproduct C >y H, and write

plc) =ci-n®cp;,  «lc)=o(c)®ax(c). (2.43)
The corresponding twisting T: C® H — H® C ® H is defined by
T(c®h) =S(hi)ci—n o (c2)he ®cio) ® &2 (c2) hs. (2.44)

Conversely, if T is a twisting of C ® H, then (C® H)T = C >1, H, with weak
coaction p and 2-cocycle « given by

p(c) = (ideid®ey)T(c®1), (2.45)
x(c) = (ideec®id)T(c®1). (2.46)

3. Twisted 2-cocycles. Let H be a Hopf algebra with bijective antipode S
and let S be the composition inverse of S. Take an H-module coalgebra C, and
letB=C/CH".

DEFINITION 3.1. Amap «:C - H® H, x(c) = x1(c) ® xz2(c) is called a
twisted 2-cocycle if the following conditions are satisfied for all h € H and
cecC:

(idp®en)a(c) = (ep®idy ) x(c) = ec(c)1p, (3.1)
a(c-h) =S(h1)o(c)h2®S(hy)x2(c)hs, (3.2)
ai(cr)ar(cz), ®cz- oz (cr)xi(c3), ® xz(c3)

3.3
=oq(cr)®ca-ar(ez)ez(cr); ® xz(c3)xa(cr),. 69

Our first result is the fact that the twisted 2-cocycles can be used to define
twistings on C.
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PROPOSITION 3.2. With notation as above, if x : C — H® H is a twisted 2-
cocycle, then the map

Toa:C—H®C, Tu(c)=0cq(c1)®co-x2(c1), (3.4)

is a twisting of C.

PROOF. It follows easily from (3.1) that T, satisfies the normalizing condi-
tion (2.9). Next, we compute

(c-h)_1®(c-h)o=a((c-h))®(c-h)z-oa((c-h2);)
=oy(c1-hi)®co-hooa(cy-hy)
=S(h1)e1(c1)ho®ca-hsS(hy) o (cy)hs (3.5)
=S(h1) e (c1)ho®ca-xa(cr)hs
=S(hi)c_1h,®co - hs,

and (2.13) follows easily. Finally, we compute the left- and right-hand sides of
(2.14):

C_1®Co,1+Co2,-19C02,0
= (18A7)Ta(c) = ca(c1) ® (c2- 2 (c1))y - a (((e2 - x2(c1)))y)
® ((c2- xa(c1))2)z - 2 (((c2- 2 (c1))y)y)
=ai(c1)®ca- (1) e (c3- xa(cr)»)
® (c4- o2 (c1)3) - o2 (3 - 2 (c1))
=a(c1)®cz- oz (c1);S(oa(c1),) e (e3)xz(cr)s
®Cq- 0‘2(C1)6‘§(0‘2(C1)5)(x2(c3)0‘2(C1)4
=a1(c1)®co- oy (e3)oa(c1); ®ca oxa(cs) (1),
€1,-1€2,-11®C1,0*C2,-12 ®C2,0
=> o (cn) e (car); ®ciz-oa(cnr) - o (ca1), ® oo - o (C21)
=ar(c1)oa(es);@ca-ca(cr)r(cs), ®@cy- xa(cs)

=o1(c1)®@co- o (c3)oa(cr); ®ca oxa(cs)oa(cr)s.

Thus (2.14) follows, and T is a twisting. ]

There is also a relation between twisted 2-cocycles and Harrison 2-cocycles.
Let C be a right H-module coalgebra. Consider the trivial weak coaction p(c) =
1®c and «: C — H® H. Then the cocycle condition (2.36) and the twisted
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comodule condition (2.37) of Definition 2.2 take the following form:

xi(c2) @y (cr)ez(c2); @z (cr)xa(cz),
= (cr)a(e2), @ (cr) i (c2), ® xz(c2),

x1(c2)® o (c2)®cy = o (c1)®aa(cr) ®co. (3.8)

The set of Harrison 2-cocyles corresponding to the trivial weak coaction is
denoted by Zi,.(H,C). Thus, Zi,.(H,C) consists of maps satisfying (2.35),
(3.7), and (3.8). The set of twisted 2-cocycles &' : C® H — H ® H in the sense of
Definition 3.1 will be denoted by Z2,(H,C® H).

PROPOSITION 3.3. Let C be a right H-module coalgebra. There exists a biject
in between Zj,..(H,C) and Z3,(H,C ® H).

PROOF. Take o' € Z2,(H,C ® H) and write
al(coh)=> al(coh)eal(ceh). (3.9)
For all c € C and h € H, we have

o (c1ehy)axi(c2®hs), ®@ab(ci@hi)xi(c2®h2),®ab(co@hy) (3.10)
=o(c1®h)) @ (ca®@hy)ob(c1®hy), ® b (c2®hy) o (c1®hy),. '

Now, define &: C — H® H by x(c) = &' (c®1). It is easy to see that « satisfies
(2.35) and (3.8). Using (3.10), we compute

a1 (c2) @ o (cr)aa(c2); @ xa(cr) oxa(c2),

= (c1)@on(c2)exa(cr); ® aa(ca)oa(cr),

1

c(crel)ea(c2el)ab(ciol)®ab(c2®1)od(c1®1), (3.11)
t
1

[0

(c
(
(c191)(c2®1); 0 (c191)ad (c2®1), @ (c2®1)
(c

i (cr)e(c2), @ () ai(c2), ® &z (cz),

and it follows that « also satisfies (3.7).
Conversely, let « € Z2,,.(H,C), and define o' : C9 H -~ H® H by

(Xt(C®I’L) :S(hl)al(c)hz®§(h4)a2(c)h3. (3.12)
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We can easily show that «! satisfies conditions (3.1) and (3.2) of Definition 3.1.
A straightforward computation shows that (3.3) is also satisfied:

o (crohy)od (c3@hs), @c2®hao(c1®hy) o (c3®hs3),® ob(c3®h3)
=Shioa(c1)h2S(hz7)oa(c3),hs
® 2 ®@hsS (ha) oz (c1)h3S (he) o (c3),he ® S (h1) o2 (c3) hao
=S(h) o (c1) o (c3) he®@ca @ aa(cr) i (e3),hs ® S (hs) oz (c3) ha
=S(h1)oa(cs)h@ca®ay(c1) oz (c3) hs®S (hs)oe(c1)xa(cs),ha
(h)oq(c1)he®@co® o (c3) oz (cr)hs ®S (hs) o (cs3) oz (1) ha
(h1) oy (c1)he®cr @ h7S (hg) o (c3)hoS (he) xa (1) hs
S(hi1) &z (c3)hioS (hs) oz (c1)ha

ca®h))®cxehyad (csohs)a(cioh), ®as(cs®hs)od(ci®hy),.
(3.13)

I
R
sy
—

So it follows that «! is a twisted 2-cocycle. We leave it to the reader to show that
the maps between Z3,,.(H,C) and Z3,(H,C ® H) defined above are the inverses
of each other. O

4. Equivalence of twistings. In this section, we will define an equivalence
relation on the set of twistings of an H-module coalgebra C. If a twisting is
invertible, then all other twistings in the same equivalence class are also in-
vertible.

PROPOSITION 4.1. Take T,A € J(C) and use notation (2.24). Consider v €
Hom(C, H) satisfying the following identities, for allh € H, ¢ € C:

EHoV = &, v(c-h)=S(hi)v(c)hy, (4.1)

cr,-nv(c2);®c1 0 - v(c2), =v(c1)ca,1®C201 - V(C202). 4.2)

Then @ : CT — C*, y(c) = c1 - v(c2), is a left B-colinear and right H-linear
coalgebra map inducing the identity map on B. If v € Reg(C,H), then y is an
isomorphism.

PrOOF. Using the second identity in (4.1) and B = C/CH™", we can easily
prove that y is left B-colinear and right H-linear. Using the first identity in
(4.1), we obtain that ¢ induces a well-defined map B — B, which is the identity.
In order to prove that y is a coalgebra map, we need to check that

Ylcr-ca-1)®W(ca0) = Ye)w(c)a, -1 @Y (c)2 - (4.3)
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Again, we compute the left- and right-hand sides and see that they are equal:

PP (c)z,-1) @Yz,
= (c1-v(c2)) (cr-v(c2))y 1@ (c1-v(c2))a 0
=c1-v(c3)(ca-v(c3)y) () ®(ca-v(c3)2) (0
=c1-v(c3);S(v(es)y) ez, -1y v(cs);®ca 0 - v(cs)y
=c1-co,-1v(c3); ®c2,0 -V (c3),
=c1-v(c2)c3-19¢301-V(C302), (4.4)
Y(ci-co-1)®P(czo)
= (c1-c2-1)1 v ((c1-c2-1)2) ® (c20)1 - v ((€20)7)
=c1-(e3-1)v(c2- (€3-1)2) ® (€30)1 - v ((€3,0)2)
=c1-c3-115(c3-12)v(Cc2)Cc3,-13®C301 -V (C30.2)
=c1-v(c2)c3-19¢30,1-V(C302)-
If v € Reg(C,H), then its inverse w also satisfies (4.1), and @ : C* — CT defined
by
) =ci-w(c) (4.5)

is the inverse of y. =

DEFINITION 4.2. It is said that T,A € J(C) are equivalent if there exists
v € Reg(C,H) satisfying the conditions of Proposition 4.1. This is denoted by
T ~A.

LEMMA 4.3. The relation ~ is an equivalence relation on J (C).

PROOF. Clearly, T ~ T through v(c) = ¢(c)14.
Next, assume that T ~ A, and take v € Reg(C,H) satisfying (4.1) and (4.2).
Equation (4.2) is equivalent to

C-1)®C) =V (Cl)C2’71U71 (C3)1 ®C20,1V (C2’0’2)U71 (C3)2. (4.6)

The inverse u of v satisfies (4.1). It also satisfies (4.2) since
u(cr)cea, -1 ®cz, 001 - u(c2,0),2)
=u(c)v (Cz)C3,—1v7l (ca)1®c301-V (C3,0,3)1V71 (ca)»
-S(v71(ca)3)S(v(e303)2)ulc302)v(c303)3v " (ca) g (4.7)
= Cl,—lv_l (c2),®cCi101 'M(Cl,o,z)v(Cl,o,z)v_l(cz)z

=ciu(c2), ®cio1-u(c2),,

and it follows that A ~ T.
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Now, assume that T ~ A and A ~ y, and take the corresponding maps v,u €
Reg(C,H). Set w = u* v, and write

T(c) =c-1®cCo, Alc) =c-1y®co), y(c) =cr-119co3- (4.8)
It is easily shown that w satisfies (4.1), v satisfies (4.6), and u satisfies
c-n®cio) = uler)ea,-nut(e3); ®c2,0),1 - ulc,0,2)u (€3),- (4.9)
We compute

)yut(es) ®c30,1
v(c303)1V " (€a),S (v (ca)3)S (v (C303),)
U (C3,0,2)V(€3,03)3v " (ca) gu" (c5),

=u(cr)v(ca)es1v " (ea)ut(es), (4.10)

ci-11®cjo; = ulcr)v(ca)es v (ca

® 30,1 U(c302)V(c303) v (ca)u " (c5),
=(ux*v)(c1)ez1(u*xv) Hes),

®C20,1 - (UkV)(Co02)(Ukv) ez)y,

and this proves that T ~ y. O
THEOREM 4.4. Take T ~ A € J(C). If T is invertible, then A is also invertible.

PROOF. Take v € Reg(C,H) satisfying the conditions in Proposition 4.1 and
let ¢ : CT — C? be the coalgebra isomorphism given by

W(c)=ci-v(c). (4.11)
Let 7! be the inverse of T, and write
T He) =iy ®c, T(c) =c_1®Cy, Ac) =c(_1)®c(p). 4.12)
Define u:C - H® C by

pie) =crn@cpo =y ) v (w ) o) v(w ) os),

(4.13)
ey ()2 v (W () 0)3),-

Using the temporary notation ¢! (¢)(-1y = a and ¢~ (c) o) = b, it is not hard
to prove that u is a left inverse of A. Indeed,
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(meid)(id®A)u(c)

=av!

(u*A)(c) =

(b1)v(b3),(b2-v(b3),) (1) ® (b2-v(b3))
av~'(b1)v(b3),S
“H(b1) by
1)

=av 1(

(v (b3),)b2,-1)v (b3) 3 ®ba,0) -
v (b3),;®bs ) - v(b3),
v(b2)b3,1®b30,1 -V (b30,2)
—ab_1®bo1-v(bo2) =10y (), -v(p

“L(e)2)
=ley(p™!

(c))=1®c=o0(c).

U(b3)4

(4.14)

The proof of the fact that u is also a right inverse of A is much more technical

From the fact that v is invertible, and using (4.2), we obtain
Alc) =cy®c) =v(cr)ca, v Y
Now, set ¢~ (c) = ¢1-v~1(c2). We compute

(Axp)(c) = (meid)(ideu)A(c)

=V (Cl)cz,—lv_l (c3)1 (201 -V (c202)V™

! (C3)2)[—1]
® (2,01 -V (c202)V 7" (€3)2) 101

=v(c1)er1v Hez), S(v!

(€3)2)S(v(c20,2)1)(€201) 1
V(c202),v "

(c3)3®(c2,01) 07 V(C202)3v " (€3)4
v(c1)ea,-18(v(c202)1) (c201) [ 17V (c202),v

v (es),

® (€2,0,1)101 "V (c2,0,2)3v 7 (c3)
=v(c1)ez18(v(cz02) )W
V(W (€201) 0y3)1
(7

(CZ,O,I)(_1>U71((/—’71

(C2,0,1)<0).1)
v(c20.2),v 7 (

c3)1 @@ (c201) ()2

(€2,0,1)0y3) 2V (€2,0,2)3v 7 (€3)
=v(c1)eo-1S(v(c203)1) (c200 -V
v (o001 v7!

V(c203),v "

! (02,0,2))(_1>
(€2,02))01) v (€201 vt
(c3)1®(c201-v"
v ((c200 '071(02,0,2))«))3)21/

=v(c1)cz,-15(v(c203),)S (v
.’L]71

(CZ,O,Z))(0)3)1
! (Cz,o,z) ) (0)2
(c2,03)3v7"(c3),
(c202)1)€2014-1yV "
(c202)3)1) v ((c20,1,000 V™
(c3), @ (c201,00) V7"

v ((e201,00 V!

(C2,0,2)2

1(02,0,2)3)3)1

((c20,1,00 - v 7!

V(C203),v 7

(€20,2)3)2

(€2,0,2)3)3) 2V (€2,03) 30 (c3)

€3),®C20,1 -V (C202)V " (€3),.

(4.15)
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=v(cr)ez1S(v 7 (c202)1v(c203)1)c201,-1yV " (€202)2
U (e2,0,1,000,1 VT (€2,02)3) U (€20,1,0003 VT (€2,02)5) 1V (€2,03) 2
v (e3) @ 200,002 VT (C202)4
v (€2,01,003 -V (€202)5) 2V (€203)3v 7 (€3)
=v(cr)ez1S(v 1 (c202)1v(c203)1)c201,-1yV (C202)2
SV THe2,0,2)3) v (€2,0,1,00,1)V T H(€2,0,2)4S (VT (€2,02)6)1
V(€2,0,1,(03)1 (V1 (€2,02) 7)1V (€2,03)2v " (€3),
®C2,0,1,000.2 -V (€202)5S (V1 (€20.2)6)2
V(€2,0,1,00)3)2 (V! (€202)7)2v (€2,03) 307" (€3),
=v(c1)e2, 1S (v (e202) 1V (c203)1)C2,0,1,-1yV 1 (€202),S (VT (€20,2)3)
7 (e2,0,1,00,1) V7 (€2,0,2) 48 (VT (€2,0,2) 7) V (€2,0,100),3)1
U (e2,02)5V (€203)2v 71 (€3)1 ® 2010002 - VT (€202)5
S (e202)6) v (€2,0,1,003) 2V (€202) 9V (€203)3v 7" (€3),
=v(c)ea,1S(v 1 (c202)1v(c203)1) 2011V (C20,1,001)
V(€201,6003) 1V (€2,0.2) v (€2,03) v (€3),
®2,0,1,(00,2 "V (€2,0,1,(0,3) 2V 1 (€2,0,2) 3V (€2,03) 3V (€3)

-1 Cg)

=v (CI)CZ,flCZ,O,(—l)v_l (€2,0,00,1)V (€2,0,0),3) 1V

®C2,0,000.2 "V (€2,0,0,3)2V " (€3),
=v(c)v He1)v(cas) v (e3); ®c22 v (ca3),v Hes),
=v(e)v " (c2)v(ca) vt (es) @c3-v(ca)v ! (cs5),
=1l®c=0/(c),

(4.16)

and it follows that A is convolution invertible. O

THEOREM 4.5. Let C be a right H-comodule algebra and consider T,A €
J(C®H). Then T and A are equivalent in the sense of Definition 4.2 if and only
if there is a left C-colinear and right H-linear coalgebra isomorphism between
the crossed coproducts C >y H, p and C ><,, H, p" corresponding to T and A.

PrROOF. Consider (2.38). If T ~ A, then there exists v € Reg(C ® H,H) satis-
fying (4.1) and (4.2). Define

u:C—H, u(c)=vcol). (4.17)
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If we can show that u satisfies (2.40) and (2.41), then one implication is proved
by Lemma 2.3. It follows from (4.2) that

(c1®1) v(c2®1);®(c1®1) -V (c2®1),

(4.18)
=v(a1®1)(c2®1) 1 ®(c2®1);-V((c2®1)g5,).
Applying 1 ® 1 ® € to both sides, we find
(a®l) pv(cel)e(les)(c1®l),
(4.19)
=v(a1®l)(c2®])_ ;0(1®e)(c2®1),,
and using (2.45), we obtain
C(-1) ® C(0) =u71(61)62[71]u(C3)®Cz[0]. (4.20)
So u satisfies (2.40).
Applying 1 ® e® 1 to both sides of (4.18), we find
&(c)=v(c1®1)(c201) ;v ez ®1),
. (4.21)
®(eel)((c2@l)g;-v((c2®@l)g,) v (c3®1),).
It follows from (2.44) that
(c®1)p =cio1®x2(c2),
(e@1)((c2®1)g, 'U((CZ®1)0,2)U_1(C3®1)2)
=(e® 1)(C2,[0]_1 ®0(2(C3)1’U(C2,[0],2®(X2(C3)2)’U_1 (C4®1)2)

(4.22)
= a2(c3), v (c2101® a2(c3),) v (ca®1),
=v(c20®1) o2 (c3)v ! (ca® 1),
=v((1ee)(c2®1)y®1)(e®1)(c301)v " (ca®1),.

So,
&'(c)=v(c1®l)(c2®1)_;(c3®1)_ v (ca®1),
eV((1ee)(c2®1)y®1)(e®@1)(c301)v ' (ca®1), (4.23)

=u"'(c1)car-110a (cs)ulcs); @ut (ca07) 2 (c3)u(ca),,

and (2.41) follows.
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Conversely, assume that the two crossed coproducts are isomorphic. By
Lemma 2.3, there exists u € Reg(C,H) satisfying (2.40) and (2.41). Define

v:CoH —H, v(coh)=S(h)u'(c)hs. (4.24)
Then
egv(coh) =&(S(h)u'(c)hz) = e(c)e(h),
v((ceh)-g) =v(cohg) =Shg)ut(c)(hg): (4.25)
=S(g91)S(h1)u ' (c)h2g2 = S(g1)v(c®h)gs.
So,

Alceh)=(ceh)1®(c®h)y
= S(hl)Cl,(,UO(,l (c2)ho ®C1,0) ® O(,Z (Cz)]’l3
=S(h)u"(c1)ea-nulcs)u' (ca)es, 1o (ce)u(cr) ho

®C2,[0] ou!

(cs,101) xa(ce)ulcz),hs
=S(hi)u"(c1)ez-1100 (e3)u(ca) ha @z o1
®u ! (c2012) o2 (c3)u(cs)ohs
=S(h1)u™t(c1)h2S(h3)ca-1701 (c3)haS (h7)u(ca), hs
®ca011®u H(ca012) o2 (c3)hsS (he)u(cs),ho
=S(h1)u™t(c1)h2S(hs3)ca-1701 (c3)haS (ho)u(ca) Mo ® c2,011
® a2 (c3)1hsS (he)S (e (c3))u™" (ca01,2) o2 (€3) 3h7S (hg)u(ca) hin
=v(c1®hy)(c2®h2) vt (c3®h3),
®(C2®0h2)o, - V((c2®h2)g,) v (c3@h3),.
(4.26)
This shows that T ~ A. O
5. Twisting Hopf-Galois coextensions. Let H be a Hopf algebra with bi-

jective antipode S, and C a right H-module coalgebra. As before, we use the
following notation:

B=C/I, I={c(h—€e(h))|heH, ceC}. (5.1)

For T € J(C), we have that C*/IT =C/I = B.
Now, assume that C/B is an H-Galois coextension (see [5]). This means that
the canonical map

B:Ce®H — CogC, B(coh)=ci®cy-h, (5.2)
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is a bijection. Recall that, in this situation, COpC is the cotensor product
CopC = {ZiCi®di eCoC| Zicil ®7T(Ci2) ®di =2iC; ®7T(di1) ®di2}, (5.3)

where 17 : C — B is the natural epimorphism.

LEMMA 5.1. With notation as above, consider the map
B :C®H — CogC, PB'(ceh)=ci-hecs. (5.4)

If the antipode S is bijective, then B is bijective (resp., injective, resp., surjective)
if and only if B’ is bijective (vesp., injective, resp., surjective).

PROOF. The map
¢$:CoH — C®H, ¢(coh)=c-hieS(hs) (5.5)
is a bijection with inverse
¢ ' (coh)=c-h,®Sh,. (5.6)

Then the statement follows from the fact that B’ = o . O

THEOREM 5.2. Take T € U(J(C)). Then C™ /B is an H-Galois coextension if
and only if C/B is an H-Galois coextension.

PROOF. Let A be the inverse of T. As before, we use the notation (2.24). Let
BT be the canonical map corresponding to the coextension C7/B, that is,

BT(c®h)=c1-c2-1h®c2p. (5.7)

Consider the following diagram:

CeoH *B> CogC

fl gl (5.8)

CeoH i ogC,
where
fcoh)=cyeS(c.1)h, gced)=cy-S(c1)ed, (5.9)
f and g are bijections, with inverses given by

flceh)=co®S(c)h, g lced) =cp-Slcr))ed. (5.10)
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We can also compute

B f(coh)=B"(co®S(c-1)h)
=co1-Co2-15(co1)h®cozp
=10+ C2-125(c1,-102,-11)h®Cap
=c10-C2,-128(c2,-11)S(c1,-1)h®cag
=cio-S(ci-1)hec (5.11)
=c10-h3S(h2)S(c1-1)h1®c2
=c10-h3S(S(h1)ci—1he)®c
=(c1-h)o-S((c1-h)_y)®ce
=g(c1-hecz)=gB(ceh).

This shows that (5.8) is commutative and it follows that f§ is bijective if and
only if BT is bijective. O
THEOREM 5.3. Let C/B be an H-Galois coextension and take T,A € J(C).
Every left B-colinear and right H-linear coalgebra map
W:CT— C (5.12)
is of the form @(c) = ¢ -v(c2), where v € Hom(C,H) satisfies conditions (4.1)
and (4.2) of Proposition 4.1. If ¢ is an isomorphism, then v € Reg(C,H).

PROOF. We use the notation (2.24). As in [5], we consider the map
T=(e®1)B':CoC — H. (5.13)

We introduce the notation c{d = T(c ® d). Then we have the following prop-
erties:

ea(cod) = ec(c)ec(d), (5.14)
(cod)h =co(d-h), (5.15)
(c-h)od=5S(h)(cod), (5.16)
c1-(c0d) = €(c)d. (5.17)
The map
v:C—H, v(c)=ciop(ca), (5.18)

satisfies the property

c1-v(c2) =c1-(c20p(c3)) = wlc). (5.19)
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Since y is a coalgebra,
egv(c) = eg(crow(c2)) = e(yw(c)) = (c), (5.20)

and it follows that egov = &c.
It follows from (5.16) and (5.17) that

v(c-h)=(c-h)1o@((c-h)2) =c1-hiow(ca-ho)

= S(h) (crow(e2))ha = () v (©)he. 62D
Since  is a coalgebra map, we have that
Y(er-co-1)@P(c20) = Ylehw(C)z,-1) @Y ()20,
c1-v(c2)e3-1©c301-v(c302)
= (c1-v(c2))(c1-v(c2))y 1y ®(c1-v(c2))a (5.22)
=c1-v(ce3), (e 'U(C3)2)(71) ®(c2- V(CB)z)(m
=c1-c2,-1v(c3); ®C2,0 -V (C3),,
which is equivalent to
c1®co-v(c3)Ca1©C40,1-V(Ca02)
(5.23)
=C18C-C3,-1)V(C4); ®C3,0) - V(Ca)se
After we apply B! to both sides, we obtain
1oV(c2)e3-18¢301-V(€302) =Cc1®C2,-1)V(C3); ®C2,00) - V(€3) 5, 5.2

v(c1)ca,-1®¢201 -V (C20,2) = Cl,(—l)v(C2)1 ®C1,0) "V (Cz)z-

If  is an isomorphism, then ¢! : C* — C7 is a left B-colinear and right H-
linear coalgebra map. Then we have a map w : C — H satisfying (4.1) and (4.2)
such that

Y (c) =c1-w(c). (5.25)
For all ¢ € C, we have that
c=ci-v(c)w(cs) =cr-w(c2)v(cs). (5.26)

Proceeding as in the proof of (5.24), we find that v is convolution invertible.
O
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