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P za).

2000 Mathematics Subject Classification: 33D15, 33D67.

1. Introduction. There are three known g-analogs of classical Bessel func-
tions [6, 5] that are due to Jackson [7]. Following the notation of Ismail [6, 5],
these are designated by J\(,k)(z;q), k=1,2,3.

The parameter g is taken to satisfy 0 < g < 1. The third Jackson g-Bessel
function 153) (z;q) is defined as

(@4) 0
\(/3)(2;11) = mzvldﬁ q"*! ;4,92° |. (1.1)

This function is also known as the Hahn-Exton g-Bessel function [8, 9]. The
notation ;®; in (1.1) is the standard in use for g-hypergeometric series [4]. The
function J\(,3) (z;q) satisfies a linear g-difference equation and it is known that
Jf,3) (z;q) has an infinite number of simple real zeros [8]. In this paper, we will
give lower and upper bounds for these zeros. The roots of these functions are
of interest for several reasons. Firstly, it is intrinsically interesting to provide
information about the roots of a function such as (1.1), which is an entire func-
tion of order zero. Also, the roots of Jf,Z) (z;q) and J\(,S) (z;q) figure prominently
in expansions in terms of “g-Fourier series” [2, 3]. Lastly, if we denote the roots
of I (z; q) by jﬁf\),, then the mass points of the orthogonality measure for a g-
analog of Lommel polynomials are located at the points 1/ Jif‘), Furthermore,
although the function defined in (1.1) is of a simpler character than the re-
maining Jackson g-Bessel functions, it is hoped that the results given here for
J\(,3) (z;q) may be extended in the future to J\(,k) (z;q), k=1,2.

2. The roots of 153) (z;q). We prove two lemmas stating the existence of an
odd number of roots in a certain interval and then we prove that J§3) (z;q) has
only one root in such an interval.
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First we apply the following transformation to (1.1):

0 0
(c;q)wlfbl[ c ;q,Z} =(z;q)oo1<1>1[ 5 ;q,c}. (2.1)

This produces

3) (. _(QZZ;Q)m v 0 Vil
Jv (z,q)—i(q;q)w z 1<I>1[ g2 1,4 . (2.2)

This last relation in a series form gives

B)(z:q) = _ % k(k+2v+1)/2
HED =1 )oo Z( (qzz.q) (@;a)k
@%5a) 2.3)
¢ k(k+2v+1)/2
T (a4 q)oo Z( @ '

This representation will be critical in the proof of the next two lemmas.
LEMMA 2.1. Ifq"*' <(1-q)2, thensgn[J5® (a=™'%;q)]1=(-1)™, m=1,2,....
PROOF. Setz =q "™/2in (2.3) to obtain

—m+k+1;q)

k(k+2v+1)/2. (24)
(R

(@) - S Ui
LA @) = 3 Dk

Now observing that (qg-™***1:q). = 0 if k < m, the series on the right-hand
side of this last equality can be written as

m+k+1;q)

) k(k+2v+l)/2_ (25)
(@)

> (- 1)"

k=m

Setting j = k —m in this last series yields

—(‘3',‘33;;‘ B @ ™%q) = (-1)™ > (~1)74;, (2.6)
a =
where
(@A) e (Grmyrmaaven) 2
j = . 2.7
T @D m (2.7)

Now we prove that Aj,;; < A;. A calculation shows that A;,; < Aj is equiv-
alent to g™ /*tv+l < (1 —g™m**1)(1 —g/*1). But the left-hand side of this in-
equality is decreasing in m and j, while the right-hand side is increasing in m
and j. So we only need to verify the case j = m = 0, that is, ¢"*! < (1 -q)?, but
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this is the hypothesis of the lemma. Clearly, since A;.; < Aj, then

sgn(—-1)™ > (-1)JA; = (-D)™. (2.8)
Jj=0 O

Lemma 2.1 states that there exist an odd number of roots in the interval
(q~™/?*1/2 q=m/2) The next lemma refines this statement.

LEMMA 2.2. Let q"*! < (1—-q)? and define

log(l—q’””/(l—qm))_

(2.9)
logq

oY (q) =

Then

sgn []f,g)(q""/z““"‘%)(q”z;q)] =(-D™!, m=1,2,.... (2.10)

PROOF. First observe that the function (x%)(q) is well defined because if
q"*"! < (1 -¢q)?%, then ¢"*' < (1 —q) and so, for positive integer m, g™* <
(1—g™), thatis, 1 —g™*v/(1-g™) > 0. Being defined, it is clear that o(,(q‘{)(q)
is positive because 1 — g™V /(1 —q™) < 1 holds for any g € (0,1).

Observe also that

m+v
a

Y (q) <1 < log (1— ) >logg = g™ < (1-q)(1-q™), (2.11)

1—-gm
which is true if g¥*! < (1),q)2. So, we have 0 < &'y (q) < 1.
(v
Now, set z = g~™/2+%m’(@)/2 jp (2.3). The substitution gives

(4;9) = (3)(q—m/2+a%)(q)/2;q)

q*an/ZJrva(W‘f)(q)/Z v

m-2 ( —m+o<§,‘i)(q)+k+1.q)
— (_1)k o 2k(k+2v+1)/2
kzzo (@;a)k 1 (2.12)

(q—m+a%)(q)+k+1;q)

) qk(k+2v+l)/2_

+ 2 (=DF :
el (4;a)k
Denote the first sum above by S; and the second by S». If 0 < k < m — 2,

then 0 < &y (q) < 1 implies that sgn(q‘m’f""%)W“"“;q)o0 = (=1)™"*-1 Thus

sgnS; = (-1 1 m=1,2,....
In S, set j = k—m+1 to obtain

Sy = (="M Y (~1)1A;, (2.13)
j=0
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where

o @)+
o Mq(ﬁm,l)(ﬁmﬂv)ﬂ (2.14)

Aj= .
/ (@) j+m—1
A calculation shows that A;;1 < A; is reduced to g/*™* < (1—q"‘§rvl)(q)+j)(l—
q™*7), which holds because g™+ = (1 ,qu%)(m )(1-q™) and because the left-
hand side of the last inequality is decreasing in j and the right-hand side is
increasing in j. The infinite series is thus positive and therefore

sgnS, = (—=1)™"! = sgn§;. (2.15)
O

From Lemmas 2.1 and 2.2, we know that Jf,3) (z;q) has an odd number of
. . (v)
roots in the interval (q~"/2+%m (@) g=m/2) The next theorem proves that there
is exactly one root in each such interval and that there are no other roots.

THEOREM 2.3. If ¢V*' < (1 -¢q)? and if w,((")(q) are the positive roots of
3 (z;q), ordered increasingly ink, then w,i") (q) = g M2+ with0 < e (v) <
o (@), k=1,2,....
PROOF. From the preceding lemmas, we know that 15,3)
the form w,i") =g K2+ with 0 < e; < (x,((") (q).
To simplify the notation, we set

(z;q) has roots of

F(z) = (@) I (z:9). (2.16)

(@54) oz

We prove that the only positive roots of F(z) inside the disk |z| < g~™/2 are
w,iV)(q), k=1,2,...,m.

Suppose there are other roots Ay, k = 1,2,...,Py; Ak > 0. By Jensen’s theo-
rem [1], we can write

1 am -m/2 ,i0
o |, og [ F(amzei?) o

qu/Z

m/2 Pm
+2 > lo
Wik kg:l J

m
=2 Zlogq
k=1

q—m/z
Ak

m Py
=2 > logq ™k 4+ 2 Y log
k=1 k=1

-m?+m & b gmi2
= ————logq-2logq > ex+2 > log )
2 k=1 k=1 Ak

(2.17)
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On the other hand, by the definition of the g-Bessel function, we have

o k(k+1 /2-mk

— /2 9 2ik0
Fla et Z qv+1 )k (q;q)kel

—m?2 P
q( me+m)/2

(@52) m (@D m
* k(k+1)/2
a
X (—1)k
kz (amvila) (@m;a),

eZimO (2.18)

eZikQ_

Then we have

2

; -m?+m
log |F(q ™/2e'") | = 5 loga-log(a"*';a),, ~log(d:@)m
k gktkrn2 2ik0 (19
+lo (-1) e
& Z (@mv+ha) (@™ a),
so that
1 21 12,19
i . -m 1
VHE%QWL log [F(q~™/%e'’) |do
. —-m?+
=,1115rgoflogq log (a”';d)  ~108(4;@) (2.20)

o qk(k+1)/2

—1)k
k:z,m( )(qm*v“;q)k(qm*l;q)k

eZik@ d4o.

N
+ lim EL log

m-— oo

Now observe that

Z . ghtksD/2 2iko i K k(k+1)/2 ,2ik0
lim (-1 e™™ = (=1)a e
meco (qm+v+1;q)k(qm+l;q)k Koo

(2.21)

The above limit is uniform in 6. By the Jacobi triple product identity [4],

z (7q1/2€2i9)k(q1/2) (q qule 7219;61)00_ (2.22)

00

k



4246 L. D. ABREU ET AL.

Using the uniform convergence to interchange the limit and the integral,

hd qk(k+1)/2

e 2ik0
- 12
nlll% = J log e ao

1 k
z( ) (@amv+1q), (@™ q),

21
2 J 10g| qq6219 7210 |d9

21
=log(q;q) w + —I log | (qe*;q).,|do
1o _2i0. (2.23)
o ), log [ (e?%q) ., |d0O

el 21
=log(q;q)w+zij log | (1-gq/*'e??)_|de
s 21T Jo

e 1 21 ) )
_— P e 1)
+J§)27TJ0 log | (1-g/e %) _|d6

=10g(q;q) -

The integrals in the third equality above vanish because of the mean value
theorem for harmonic functions.
We have thus concluded that

: 1 ar -m/2 ,i0
7111930%[0 log [F(q~™/?e")|do

(2.24)

_ 2
= lim Mlogq—log(qv“;q)w-

m-— oo 2

From (2.17), we can write

m/2 m
Jlim (2 Zlogq)\ ) — lim (ZIqu > ek) =-log(q"*%q).,. (2.25)

k=1 k=1

But, as can be seen by the Taylor expansion of 0(,((” (q), €x = 0(g*), and this
implies D7, € < o.
Also

-m/2 qu/Z
Z log " > log T asm— oo (2.26)
1

So the identity (2 25) can only hold if the first sum is empty, and the only
roots are thus + w (q) k=1,2,. O
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REMARK 2.4. It follows from (2.25) that >;_,€x =10g(g"";q)/210gq.

REMARK 2.5. Observe that for fixed j, we can always choose m sufficiently
large so that

qm+j+v+1 < (1 _qm+j+1)(1 _qj+1)’

jrm+v o (q)+j m+j (2.27)
a <(1=q*m' V) (1-q™").
Thus, we have the asymptotic behaviour

wi-q ™? whenm — o (2.28)

without the restriction g¥*! < (1 —¢g)2. In [5], Ismail conjectured that
(1) limp e g™ 2wy’ (@) = 1,
() limpn - wpyty (@) /wiy’ (@%) = 1/4.

The asymptotic relation (2.28) establishes these conjectures.

REMARK 2.6. Lemmas 2.1 and 2.2 and Theorem 2.3 state that the roots
w,iV) (q) satisfy the inequalities

g e @ <y (g) < g2, (2.29)

These bounds are quite accurate. This is evident if we estimate the length of
the interval containing the roots. A somewhat tedious calculation with Taylor
series shows that

q—m/2 _q—m/2+o<(,x)(q) — qm/2+vo(1). (230)

Clearly, for fixed g satisfying the conditions of the theorem, the bounds be-
come increasingly accurate as either k or v increases.
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